Skip to main content

Polymer Electrolyte (PE) Fuel Cell Systems

  • Reference work entry
  • First Online:
Fuel Cells and Hydrogen Production
  • 4478 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2017

Glossary

Fuel Cells (FC):

Electrochemical cells that convert chemical energy from a fuel into electrical energy through the controlled transfer of electrical charge driven by the difference in electrochemical potential between two electrodes separated by an electrolyte.

Electrocatalyst:

A material that enhances the rate of an electrochemical reaction, such as the hydrogen oxidation reaction (HOR) or the oxygen reduction reaction (ORR), without itself being consumed in the reaction. In most PEM fuel cells, the electrocatalysts are nanosized materials made from the precious group metals (PGM), usually platinum, palladium, and ruthenium or alloys of these materials with nickel, cobalt, and manganese.

Polymer Electrolyte Membrane (PEM):

Cation- or anion-conducting polymer membrane that separates the two electrodes in a fuel cell. In most PEM fuel cells, the polymer is a cation (proton) conductor and in this case PEM can stand for proton exchange membrane.

Triple-Phase Boundary (TPB):
...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary References

  1. Nassauer S (2017) Wal-Mart, Amazon rivalry spreads to forklifts. Wall Street Journal, July 21, 2017. https://www.wsj.com/articles/wal-mart-amazon-rivalry-spreads-to-forklifts-1500634801

  2. Fuel Cell Industry Review (2016). www.FuelCellIndustryReview.com

  3. Barbir F (2005) PEM fuel cells. Elsevier, Amsterdam/Boston

    Google Scholar 

  4. Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, New York

    Google Scholar 

  5. Vielstich W, Lamm A, Gasteiger HA (eds) (2003) Handbook of fuel cells. Wiley, Chichester

    Google Scholar 

  6. Garland N, Kopasz JP (2007) The United States Department of Energy’s high temperature, low humidity membrane program. J Power Sources 172:94–99

    Article  Google Scholar 

  7. Mader J, Xioa L, Schmidt TJ, Benicewicz BC (2008) Polybenzimidazole/acid complexes as high temperature membranes. In: Fuel cells: advances in polymer science, vol 216. Springer, Berlin/Heidelberg, pp 63–124

    Google Scholar 

  8. Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117(3):987–1104

    Article  Google Scholar 

  9. Vishnyakov A, Niemark AV (2000) Molecular study of Nafion membrane solvation in water and methanol. J Phys Chem B 104:4471–4478

    Article  Google Scholar 

  10. Kreuer DK, Paddison S, Spohr E, Schuster M (2004) Transport in proton conductors for fuel cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637

    Article  Google Scholar 

  11. Springer TE, Zawodzinski TA, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138:2334–2341

    Article  Google Scholar 

  12. Fimrite J, Carnes B, Struchtrup H, Djilali N (2009) Coupled proton and water transport in polymer electrolyte membranes. In: Paddison SJ, Promislow KS (eds) Device and materials modeling in PEM fuel cells, Series: topics in applied physics, vol 113. Springer, New York

    Google Scholar 

  13. Weber AZ, Newman J (2004) Modeling transport in polymer-electrolyte fuel cells. Chem Rev 104:4679–4726

    Article  Google Scholar 

  14. Wang CY (2004) Fundamental models for fuel cell engineering. Chem Rev 104:4727

    Article  Google Scholar 

  15. Weber AZ, Borup RL, Darling RM, Das PK, Dursch TJ, Gu W, Harvey D, Kusoglu A, Lister S, Mench MM, Mukundan R, Owejan JP, Pharoah JG, Secanell M, Zenyuk IV (2014) A critical review of modeling transport phenomenon in polymer-electrolyte fuel cells. J Electrochem Soc 161(12):F1254–F1299

    Article  Google Scholar 

  16. Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150:A1523–A1527

    Article  Google Scholar 

  17. Meyers JP, Darling RM (2006) Model of carbon corrosion in PEM fuel cells. J Electrochem Soc 155:A1432–A1442

    Article  Google Scholar 

  18. Reiser CA, Bregoli L, Patterson TW, Yi JS, Yanag JD, Perry MI, Jarvi TD (2005) A reverse current decay mechanism for fuel cells. Electrochem Solid-State Lett 8(6):A273

    Article  Google Scholar 

  19. www.cd-adapco.com

  20. www.fluent.com

  21. www.comsol.com

  22. Markovic N, Gasteiger H, Ross PN (1997) Kinetics of oxygen reduction on Pt (hkl) electrodes: implications of the crystalline size effect with supported Pt electrocatalysts. J Electrochem Soc 144:1591–1159

    Article  Google Scholar 

  23. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  24. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  25. Taylor CD, Wasileski SA, Filhol JS, Neurock M (2006) First principles modeling of the electrochemical interface: consideration and calculation of a tunable surface potential from atomic and electronic structure. Phys Rev B 73:65402

    Article  Google Scholar 

  26. Adachi H, Ahmed S, Lee SHD, Papadias D, Ahluwaia RK, Bendert JC, Adzic RR et al (2007) Platinum monolayer fuel cell electrocatalysis. Top Catal 46:249

    Article  Google Scholar 

  27. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greely J, Nørskov JK (2006) Changing the activity of electrocatalyst for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897

    Article  Google Scholar 

  28. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel cell cathode. J Phys Chem B 108:17886–17892

    Article  Google Scholar 

  29. Koper MTM (ed) (2009) Fuel cell catalysis. Wiley, Hoboken

    Google Scholar 

  30. Zhang J, Lima FHB, Shao MH, Sasaki K, Wang JX, Hanson J, Adzic RR (2005) Platinum monolayer on non-noble metal-nobel metal core-shell nanoparticle electrocatalysts for O2 reduction. J Phys Chem B 109(48):22701–22704

    Article  Google Scholar 

  31. Hu J, Wu L, Kuttiyiel KA, Goodman KR, Zhang C, Zhu Y, Vukmirovic MB, White MG, Sasaki K, Adzic RR (2016) Increasing stability and activity of core-shell catalysts by preferential segregation of oxide on edges and vertices: oxygen reduction on Ti-Au@Pt/C. J Am Chem Soc 138:9294–9300

    Article  Google Scholar 

  32. Kang Y, Yang P, Markovic NM, Stamenkovic VR (2016) Shaping electrocatalysis through tailored materials. Nano Today 11:587–600

    Article  Google Scholar 

  33. Han B, Carlton CE, Konkanand A, Kukreja RS, Theobald BR, Gan L, O’Malley R, Strasser P, Wagner FT, Shao-Horn Y (2015) Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ Sci 8:258

    Article  Google Scholar 

  34. Lopes PP, Strmcnik D, Tripkovic D, Connell JG, Stomenkovic V, Markovic NM (2016) Relationship between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments. ACS Catal 6:2536–2544

    Article  Google Scholar 

  35. Gasteiger HA, Kocha SS, Sompali B, Wagner FT (2005) Activity benchmarks for Pt, Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56:9–35

    Article  Google Scholar 

  36. Weber AZ, Kusoglu A (2014) Unexplained transport resistances for low loaded fuel-cell catalyst layers. J Mater Chem A 2:17207–17211

    Article  Google Scholar 

  37. Gostick JT, Weber AZ (2015) Resistor network modeling of ionic conduction in polymer electrolytes. Electrochim Acta 179:137–145

    Article  Google Scholar 

  38. Paul DK, Shim HK, Giorgi JB, Karan K (2016) Thickness dependence of thermally induced changes in surface and bulk properties of Nafion® nanofilms. J Polym Sci B Polym Phys 54:1267–1277

    Article  Google Scholar 

  39. Orfanidi A, Madkikar P, El-Sayed HA, Harzer GS, Kratky T, Gasteiger HA (2017) The key to high performance low Pt loaded electrodes. J Electrochem Soc 164(4):F418–F426

    Article  Google Scholar 

  40. Kongkanand A, Mathias MF (2016) The priority and challenge of high-power performance of low-platinum proton exchange membrane fuel cells. J Phys Chem Lett 7:1127–1137

    Article  Google Scholar 

  41. Debe MK (2003) Novel catalysts, catalysts support and catalysts coated membrane methods. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 3. Wiley, New York. Chapter 45

    Google Scholar 

  42. Gancs L, Kobayashi T, Debe MK, Atanasoski R, Wieckowski A. (2008) Chrystallographic characteristics of nanostructured thin-film fuel cell electrocatalysts: a HRTEM study. Chem Mater 20(7):2444–2454

    Article  Google Scholar 

  43. Debe, M. K. (2010) Advanced cathode catalysts and supports for PEM fuel cells. DOE Hydrogen Program Merit Review and Peer Evaluation, Washington, DC

    Google Scholar 

  44. Ahluwalia RK, Pang J-K, Wang X, Cullen DA, Steinbach AJ (2017) Long-term stability of nanostructured thin film electrodes at operating potentials. J Electrochem Soc 164(4):F306–F320

    Article  Google Scholar 

  45. Tang JM, Jensen K, Waje M, Li W, Larsen P, Pauley K, Chen Z, Ramesh P, Itkis M, Yan Y, Haddon R (2007) High performance hydrogen fuel cells with ultralow Pt loading carbon nanotube thin film catalysts. J Phys Chem C 111(48):17901–17904

    Article  Google Scholar 

  46. Antonlini E, Gonzalez ER (2009) Ceramic materials as supports for low temperature fuel cell catalysts. Solid State Ionics 180:746–763

    Article  Google Scholar 

  47. Scherer GG (ed) (2008) Fuel cells II, Advances in polymer science, vol 216, Springer, Berlin/Heidelberg

    Google Scholar 

  48. Abhishek R, Yu X, Dunn S, McGrath JE (2009) Influence of mircostructure and chemical composition on proton exchange membrane properties of sulfonated-fluorinated hydrophilic-hydrophobic multiblock copolymers. J Membr Sci 327(1+2):118–124

    Google Scholar 

  49. Lipp L (2010) High temperature membrane with humidification independent cluster structure. DOE Hydrogen Program Merit Review and Peer Evaluation, Washington, DC

    Google Scholar 

  50. Yandrasits M (2017) New fuel cell membranes with improved durability and performance, project FC109. DOE Fuel Cell Annual Merit Review and Peer Evaluation, Washington, DC

    Google Scholar 

  51. Inaba M (2009) Chemical degradation of perfluorinated sulfonic acid membranes. In: Buechi FN, Inaba M, Schmidt TJ (eds) Polymer electrolyte fuel cell durability. Springer Science + Business Media, LLC, New York

    Google Scholar 

  52. Danilczuk M, Coms FD, Schlick S (2008) Fragmentation of fluorinated model compounds exposed to oxygen radicals: spin trapping ESR experiments and implications for the behaviour of proton exchange membranes used in fuel cells. Fuel Cells (Weinheim, Germany) 8(6):436–452

    Article  Google Scholar 

  53. Ghassemzadeh L, Marrony M, Barrera R, Kreuer KD, Maier J, Mueller K (2009) Chemical degradation of proton conducting perflurosulfonic acid ionomer membranes studied by solid-state nuclear magnetic resonance spectroscopy. J Power Sources 186(2):334–338

    Article  Google Scholar 

  54. Antoine O, Durand R (2000) RRDE study of oxygen reduction on Pt nanoparticles inside Nafion®: H2O2 production in PEMFC cathode conditions. J Appl Electrochem 30:839–844

    Article  Google Scholar 

  55. Liu H, Gasteiger HA, Laconti A, Zhang J (2006) Factors impacting chemical degradation of perfluorinated sulfonic acid ionomers operating conditions and catalyst impact on membrane degradation. Electrochem Soc Trans 1(8):283–293

    Google Scholar 

  56. Mittal V, Kunz R, Fenton JM (2006) Factors accelerating membrane degradation rate and the underlying degradation mechanism in PEMFC operating conditions and catalyst impact on membrane degradation. Electrochem Soc Trans 1(8):275–282

    Google Scholar 

  57. Miyake N, Wakizoe M, Honda E, Ohta T (2006) High durability of Asahi Kasei Aciplex membrane operating conditions and catalyst impact on membrane degradation. Electrochem Soc Trans 1(8):249–261

    Google Scholar 

  58. Yu J, Matsuura T, Yoshikawa Y, Islam MN, Hori M (2005) In situ analysis of performance degradation of a PEMFC under nonsaturated humidification. Electrochemical Solid-State Lett 8(3):A156–A158

    Article  Google Scholar 

  59. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME (2004) Advanced materials for improved PEM performance and life. J Power Sources 131:41–48

    Article  Google Scholar 

  60. Trogadas P, Parronda J, Ramani V (2008) Degradation mitigation in polymer electrolyte membranes using cerium oxide as a regenerative free radical scavenger. Electrochem Solid-State Lett 11(7):B113–B116

    Article  Google Scholar 

  61. Wang L, Advani SG, Prasad AK (2017) Self-healing composite membrane for proton electrolyte membrane fuel cell applications. J Electrochem Soc 163(10):F1267–F1271

    Article  Google Scholar 

  62. Lassegues JC, Schoolmann D, Trinquet O (1992) Proton conducting acid polymer blends. In: Balkanski T, Takahashi T, Tuller HL (eds) Solid state ionics. Elsevier, Amsterdam, pp 443–448

    Google Scholar 

  63. Lassègues JC (1992) Mixed inorganic-organic systems: the acid/polymer blends. In: Colomban P (ed) Proton conductors: solids, membranes and gel – materials and devices. Cambridge University Press, Cambridge/New York, pp 311–328

    Chapter  Google Scholar 

  64. Savinell R, Yeager E, Tryk D, Landau U, Wainright J, Weng D, Lux K, Litt M, Rogers C (1994) A polymer electrolyte for operation at temperatures up to 200°C. J Electrochem Soc 141(4):L46–L48

    Article  Google Scholar 

  65. Schmidt TJ (2009) High-temperature polymer electrolyte fuel cells: durability insights. In: Buchi FN, Inaba M, Schmidt TJ (eds) Polymer electrolyte fuel cell durability, Springer, New York

    Google Scholar 

  66. Neyerlin KC, Singh A, Chu D (2008) Kinetic characterization of a Pt-Ni/C catalyst with a phosphoric acid doped PBI membrane in a proton exchange membrane fuel cell. J Power Sources 176:112–117

    Article  Google Scholar 

  67. Strmcnik D, Escudero-Escribano M, Kodama K, Stamenkovic VR, Cuesta A, Markovick NM (2010) Enhanced electrocatalysis of the oxygen reduction reaction based upon patterning of platinum surfaces with cyanide. Nat Chem 2

    Article  Google Scholar 

  68. Xu H, Pivovar B, Advanced Catalysts and MEAs for reversible alkaline membrane fuel cells, project FC129, DOE 2016 AMR https://www.hydrogen.energy.gov/pdfs/review16

  69. Yanagi H, Fukuta K (2008) Anion exchange membrane and ionomer for alkaline membrane fuel cells. ECS Trans 16:257–262

    Article  Google Scholar 

  70. Duan Q, Ge S, Wang C-Y (2013) Water uptake, ionic conductivity, and swelling properties of anion-exchange membrane. J Power Sources 243:773–778

    Article  Google Scholar 

  71. Kaspar RB, Letterio MP, Wittkopf JA, Gong K, Gu S, Yan Y (2015) Manipulating water in high-performance hydroxide exchange membrane fuel cells through asymmetric humidification and wetproofing. J Electrochem Soc 162(6):F483–F488

    Article  Google Scholar 

  72. Ren X, Price SC, Jackson AC, Pomerantz N, Beyer FL (2014) Highly conductive anion exchange membrane for high power density fuel cell performance. J ACS Appl Mater Interfaces 6:13330–13333

    Article  Google Scholar 

  73. Pivovar B (2016) Advanced ionomers and MEAs for alkaline membrane fuel cells, DOE hydrogen and fuel cell annual merit review, project FC147

    Google Scholar 

  74. Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7:2255–2260

    Article  Google Scholar 

  75. McGrath MF, Anthony MT, Shapiro AR (1992) Product development. Butterworth-Heinemann, Boston

    Google Scholar 

  76. Patterson ML, Fenoglio JA (1999) Leading product innovation. Wiley, New York

    Google Scholar 

  77. McGrath M (2001) Product strategy. McGraw-Hill, New York

    Google Scholar 

  78. www.FuelCelIndustryReview2016

  79. Du B, Pollard R, Elter JF, Ramani M (2009) Performance and durability of a polymer electrolyte fuel cell operating with reformate: effects of CO, CO2, and other trace impurities. In: Büchi F, Inaba M, Schmidt TJ (eds) Polymer electrolyte fuel cell durability. Springer, New York, pp 341–366

    Chapter  Google Scholar 

  80. Du B, Pollard R, Elter JF CO-air bleed interaction and performance degradation study in proton exchange membrane fuel cells. Electrochem Soc Trans 3(1):705–713

    Google Scholar 

  81. Adachi H, Ahmed S, Lee SHD, Papadias D, Ahluwaia RK, Bendert JC, Kanner SA, Yamazaki Y (2009) A natural gas fuel processor for a residential fuel cell systsem. J Power Sources 168:244–255

    Article  Google Scholar 

  82. Feitelberg AS, Rohr DF Jr (2005) Operating line analysis of fuel processors for PEM fuel cell systems. Int J Hydrog Energy 30:1251–1257

    Article  Google Scholar 

  83. Feitelberg A (2003) On the efficiency of PEM fuel cell systems and fuel processors, presentation at fuel cell seminar

    Google Scholar 

  84. Mukundan R, Kim YS, Garzon FH, Pivovar B (2006) Freeze/Thaw Effects in PEM Fuel Cells. ECS Trans 1(8):403–413

    Google Scholar 

  85. Guo QH, Qi ZH (2006) Effect of freeze-thaw cycles on the properties and performance of membrane-electrode assemblies. J Power Sources 160:1269–1274

    Article  Google Scholar 

  86. Lee C, Merida W (2007) Gas diffusion layer durability under steady state and freezing conditions. J Power Sources 164:141–153

    Article  Google Scholar 

  87. Mao L, Wang C-Y (2007) Analysis of cold start in polymer electrolyte fuel cells J Electrochem Soc 154:B139–B146

    Article  Google Scholar 

  88. Tang H, Qi Z, Ramani M, Elter JF (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J Power Sources 158:1306–1312

    Article  Google Scholar 

  89. Du B, Pollard R, Ramani M, Graney P, Elter JF (2007) Impact of cold start and hot stop on the performance and durability of a proton exchange membrane (PEM) fuel cell. ECS Trans:271–228

    Google Scholar 

  90. Meyers JP, Darling RM (2006) Model of carbon corrosion in PEM fuel cells. J Electrochem Soc 153(8):A1432–A1442

    Article  Google Scholar 

  91. Pukrushpan JT, Stefanopolou AG, Peng H (2005) Control of fuel cell power systems. Springer, London

    Google Scholar 

  92. Feitelberg AS, Elter JF. Development, design and performance of plug power’s next generation stationary PEM fuel cell system prototype. Presented at 2005 fuel cell seminar, Palm Springs, 14–18 Nov

    Google Scholar 

  93. Elter JF. The design and control of fuel cell systems. Presented at the H2 fuel cells millennium convergence, Bucharest, 21, 22 Sept 2007

    Google Scholar 

  94. James B, Huga-Kouadio JM, Houchins C (2017) Fuel cell systems analysis, project FC163, DOE annual merit review, Washington, DC. www.annualmeritreview.energy.gov/

  95. Hasegawa T, Imanishi H, Nada M, Ikogi Y (2016) Development of the fuel cell system in the mirai FCV, SAE technical paper 2016–01-1185. doi:https://doi.org/10.4271/2016-01-1185

  96. Konno N, Mizuno S, Nakaji H, Ishikawa Y (2015) Development of compact and high performance fuel cell stack. SAE Int J Altern Power 4(1). https://doi.org/10.4271/2015-01-1175

  97. Cooper J, Lee S-J, Elter J, Boussu J, Boman S (2009) Life cycle design metrics for energy generation technologies: method, data and case study. J Power Sources 186:138–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Elter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Elter, J.F. (2019). Polymer Electrolyte (PE) Fuel Cell Systems. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_149

Download citation

Publish with us

Policies and ethics