Skip to main content

PEM Fuel Cells: Materials and Design Development Challenges

  • Reference work entry
  • First Online:
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2012

Glossary

Hydrogen oxidation reaction (HOR):

The electrochemical oxidation of molecular hydrogen occurring at the anode of a fuel cell.

Membrane electrode assembly (MEA):

The assembly consisting of the electrolyte membrane sandwiched between the anode and cathode.

Oxygen reduction reaction (ORR):

The electrochemical reduction of molecular oxygen through a four electron transfer at the cathode of a fuel cell.

Perfluorosulfonic acid (PFSA):

The CF2SO3H group is the protogenic group on ionomers and membranes utilized in catalyst layer and electrolyte in a fuel cell.

Proton exchange membrane (PEM):

A solid polymer thin film that is proton conducting and functions as the central component of a fuel cell.

Definition of the Subject and Its Importance

Substantial resources have been devoted over the past decade to the development of proton exchange membrane (PEM) fuel cells that use hydrogen fuel and oxygen from the air to produce electricity for applications including automotive propulsion....

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Gasteiger HA, Marković NM (2009) Just a dream – or future reality? Advances in catalyst development offer hope for commercially viable hydrogen fuel cells. Science 324:48–49

    Article  Google Scholar 

  2. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller T, Gittleman C, Kocha SS, Miller D, Mittelsteadt C, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage? Electrochem Soc Interface 14(2):24–35, Pennington

    Google Scholar 

  3. Gasteiger HA, Gu W, Litteer B, Makharia R, Brady B, Budinski M, Thompson E, Wagner FT, Yan SG, Yu PT (2007) Catalyst degradation mechanisms in PEM and direct methanol fuel cells. In: Kakac S, Pramuanjaroenkij A, Vasiliev L (eds) Proceedings of the conference of the NATO-advanced-study-institute on mini-micro fuel cells – fundamentals and applications, Cesme Izmir, 22 July–03 Aug. Springer, Dordrecht, pp 225–233

    Google Scholar 

  4. Masten DA, Bosco AD (2003) System design for vehicle applications – GM/Opel. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 4. Wiley, Chichester, pp 714–724

    Google Scholar 

  5. Gasteiger HA, Mathias MF (2005) Fundamental research and development challenges in polymer electrolyte fuel cell technology. In: Murthy M, Fuller TF, Van Zee JW (eds) Proceedings of the symposium on proton conducting membrane fuel cells III, 202nd ECS Meeting, held in Salt Lake City, Utah in the year 2002, vol PV 2002–31. The Electrochemical Society, Pennington, pp 1–24

    Google Scholar 

  6. Endoh E (2009) Highly durable PFSA membranes. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 361–374

    Google Scholar 

  7. Liu H, Coms FD, Zhang J, Gasteiger HA, LaConti AB (2009) Chemical degradation: correlations between electrolyzer and fuel cell findings. In: Büchi FN, Inaba M, Schmidt TJ (eds) Polymer electrolyte fuel cell durability. Springer, New York, pp 71–118

    Chapter  Google Scholar 

  8. Lai YH, Dillard DA (2009) Mechanical durability characterization and modeling of ionomeric membranes. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 403–419

    Google Scholar 

  9. Patterson TW, Darling RM (2006) Damage to the cathode catalyst of a PEM fuel cell caused by localized fuel starvation. Electrochem Solid-State Lett 9:A183–A185

    Article  Google Scholar 

  10. Gu W, Yu PT, Carter RN, Makharia R, Gasteiger HA (2010) Modeling of membrane-electrode assembly degradation in proton-exchange-membrane fuel cells – local H2 starvation and start-stop induced carbon-support corrosion. In: Pasaogullari U, Wang C-Y (eds) Modeling and diagnostics of polymer electrolyte fuel cells, Modern aspects of electrochemistry, vol 49. Springer, New York, pp 45–85

    Google Scholar 

  11. Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JDL, Perry ML, Jarvi TD (2005) A reverse current decay mechanism for fuel cells. Electrochem Solid-State Lett 8:A273–A276

    Article  Google Scholar 

  12. Yu P, Gu W, Makharia R, Wagner FT, Gasteiger HA (2006) The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation. ECS Trans 3:797–809

    Article  Google Scholar 

  13. Perry ML, Patterson TW, Reiser C (2006) System strategies to mitigate carbon corrosion in fuel cells. ECS Trans 3:783–795

    Article  Google Scholar 

  14. Genorio B, Subbaraman R, Strmcnik D, Tripkovic D, Stamenkovic VR, Markovic NM (2011) Tailoring the selectivity and stability of chemically modified platinum nanocatalysts to design highly durable anodes for PEM fuel cells. Angew Chem Int Ed 50:1–6

    Article  Google Scholar 

  15. Ralph TR, Hudson S, Wilkinson DP (2006) Electrocatalyst stability in PEMFCs and the role of fuel starvation and cell reversal tolerant anodes. ECS Trans 1:67–84

    Article  Google Scholar 

  16. Debe MK, Schmoeckel AK, Vernstrom GD, Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161:1002–1011

    Article  Google Scholar 

  17. Carter RN, Greszler TA, Baker DR (2009) Technique for measuring gas transport resistance in application-scale aged fuel cell gas diffusion media. ECS Trans 25:225–231

    Article  Google Scholar 

  18. Perry ML, Patterson T, Madden T (2010) GDL degradation in PEFC. ECS Trans 33:1081–1087

    Article  Google Scholar 

  19. Stephens IEL, Bondarenko AS, Perez-Alonso FJ, Calle-Vallejo F, Bech L, Johansson TP, Jepsen AK, Frydendal R, Knudsen BP, Rossmeisl J, Chorkendorff I (2011) Tuning the activity of Pt (111) for oxygen electroreduction by subsurface alloying. J Am Chem Soc 133:5485–5491

    Article  Google Scholar 

  20. Gu W, Baker DR, Liu Y, Gasteiger HA (2009) Proton exchange membrane fuel cell (PEMFC) down-the-channel performance model. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 631–657

    Google Scholar 

  21. Pasaogullari U (2009) Heat and water transport models for polymer electrolyte fuel cells. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 616–630

    Google Scholar 

  22. Freunberger SA, Reum M, Büchi FN (2009) Design approaches for determining local current and membrane resistance in polymer electrolyte fuel cells (PEFCs). In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 603–615

    Google Scholar 

  23. Carter RN, Gu W, Brady B, Yu PT, Subramanian K, Gasteiger HA (2009) Membrane electrode assembly (MEA) degradation mechanism studies by current distribution measurements. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 829–843

    Google Scholar 

  24. Trabold TA, Owejan JP, Gagliardo JJ, Jacobson DL, Hussey DS, Arif M (2009) Use of neutron imaging for proton exchange membrane fuel cell (PEMFC) performance analysis and design. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 658–672

    Google Scholar 

  25. Wipke K, Sprik S, Kurtz J, Garbak J (2009) Field experience with fuel cell vehicles. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 6. Wiley, Chichester, pp 893–904

    Google Scholar 

  26. Thompson EL, Gu W, Gasteiger HA (2009) Performance during start-up of proton exchange membrane (PEM) fuel cells at subfreezing conditions. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 699–717

    Google Scholar 

  27. Mathias M, Roth J, Fleming J, Lehnert W (2003) Diffusion media materials and characterization. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 517–537

    Google Scholar 

  28. Baker DR, Caulk DA, Neyerlin KC, Murphy MW (2009) Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods. J Electrochem Soc 156:B991–B1003

    Article  Google Scholar 

  29. Caulk DA, Baker DR (2011) Modeling two-phase water transport in hydrophobic diffusion media for PEM fuel cells. J Electrochem Soc 158:B384–B393

    Article  Google Scholar 

  30. Mittelsteadt CK, Liu H (2009) Conductivity, permeability, and ohmic shorting of ionomeric membranes. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 345–359

    Google Scholar 

  31. Liu Y, Ji C, Gu W, Jorne J, Gasteiger HA (2011) Effects of catalyst carbon support on proton conduction and cathode performance in PEM fuel cells. J Electrochem Soc 158:B614–B621

    Article  Google Scholar 

  32. Neyerlin KC, Gu W, Jorne J, Clark A, Gasteiger HA (2007) Cathode catalyst utilization for the ORR in a PEMFC – analytical model and experimental validation. J Electrochem Soc 154:B279–B287

    Article  Google Scholar 

  33. Neyerlin KC, Gu W, Jorne J, Gasteiger HA (2007) Study of the exchange current density for the hydrogen oxidation and evolution reactions. J Electrochem Soc 154:B631–B635

    Article  Google Scholar 

  34. Gasteiger HA, Baker DR, Carter RN, Gu W, Liu Y, Wagner FT, Yu PT (2010) Electrocatalysis and catalyst degradation challenges in proton exchange membrane fuel cells. In: Stolten D (ed) Hydrogen and fuel cells. fundamentals, technologies, and applications. Wiley-VCH, Weinheim, pp 3–16

    Google Scholar 

  35. Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114–130

    Article  Google Scholar 

  36. Paddison SJ (2003) Proton conduction mechanisms at low degrees of hydration in sulfonic acid-based polymer electrolyte membranes. Annu Rev Mater Res 33:289–319

    Article  Google Scholar 

  37. Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha SS, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: a mechanistic investigation. J Electrochem Soc 152:A2256–A2271

    Article  Google Scholar 

  38. Kinoshita K, Lundquist JT, Stonehart P (1973) Potential cycling effects on platinum electrocatalyst surfaces. J Electroanal Chem 48:157–166

    Article  Google Scholar 

  39. Kawahara S, Mitsushima S, Ota K-I, Kamiya N (2006) Deterioration of Pt catalyst under potential cycling. ECS Trans 3(1):625–631

    Article  Google Scholar 

  40. Zhang J, Litteer BA, Gu W, Liu H, Gasteiger HA (2007) Effect of hydrogen and oxygen partial pressure on Pt precipitation within the membrane of PEMFCs. J Electrochem Soc 154:B1006–B1011

    Article  Google Scholar 

  41. Wagner FT, Yan SG, Yu PT (2009) Catalyst and catalyst-support durability. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 250–263

    Google Scholar 

  42. Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46:285–305

    Article  Google Scholar 

  43. Chen S, Gasteiger HA, Hayakawa K, Tada T, Shao-Horn Y (2010) Platinum-Alloy catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes. J Electrochem Soc 157:A82–A97

    Article  Google Scholar 

  44. Yu PT, Gu W, Zhang J, Makharia R, Wagner FT, Gasteiger HA (2009) Carbon-support requirements for highly durable fuel cell operation. In: Büchi FN, Inaba M, Schmidt TJ (eds) Polymer electrolyte fuel cell durability. Springer, New York, pp 29–53

    Chapter  Google Scholar 

  45. Gallagher KG, Darling RM, Fuller TF (2009) Carbon-support corrosion mechanisms and models. In: Vielstich W, Gasteiger HA, Yokokawa H (eds) Handbook of fuel cells – advances in electrocatalysis, materials, diagnostics, and durability, vol 5. Wiley, Chichester, pp 819–828

    Google Scholar 

  46. Thampan T, Malhorta S, Tang H, Datta R (2000) Modeling of conductive transport in proton-exchange membranes for fuel cells. J Electrochem Soc 147:3242–3250

    Article  Google Scholar 

  47. Springer TE, Zawodzinski T, Gottesfeld S (1991) Polymer electrolyte fuel cell model. J Electrochem Soc 138:2334–2342

    Article  Google Scholar 

  48. Springer T, Zawodzinski T, Gottesfeld S (1997) In: McBreen J, Mukerjee S, Srinivasan S (eds) Electrode materials and processes for energy conversion and storage, Proceedings series, vol PV 97–13. The Electrochemical Society, Pennington, pp 15–24

    Google Scholar 

  49. Bernardi DM, Verbrugge MW (1992) A mathematical model of the solid-polymer-electrolyte fuel-cell. J Electrochem Soc 139:2477–2491

    Article  Google Scholar 

  50. Gasteiger HA, Garche J (2008) Fuel cells. In: Ertl G, Knözinger H, Schuüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis, 2nd edn. Wiley-VCH, Weinheim, pp 3081–3121

    Google Scholar 

  51. Breault RD (2003) PAFC stack materials and stack design. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells: fundamentals, technology, and applications, vol 3. Wiley, Chichester

    Google Scholar 

  52. Kreuer KD, Schuster M, Obliers B, Diat O, Traub U, Fuchs A, Klock U, Paddison SJ, Maier J (2008) Short-side-chain proton conducting perfluorosulfonic acid ionomers: why they perform better in PEM fuel cells. J Power Sources 178:499–509

    Article  Google Scholar 

  53. Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C). J Membr Sci 185:73–81

    Article  Google Scholar 

  54. Wainwright JS, Litt MH, Savinell RF (2003) High-temperature membranes. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 436–446

    Google Scholar 

  55. Sakai T, Takenaka H, Wakabayashi N, Kawami Y, Torikai E (1985) Gas permeation properties of solid polymer electrolyte (SPE) membranes. J Electrochem Soc 132:1328–1332

    Article  Google Scholar 

  56. Broka K, Ekdunge P (1997) Oxygen and hydrogen permeation properties and water uptake of Nafion(R) 117 membrane and recast film for PEM fuel cell. J Appl Electrochem 27:281–289

    Article  Google Scholar 

  57. Kocha SS (2003) Principles of MEA preparation. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 3. Wiley, Chichester, p 538

    Google Scholar 

  58. Hsu WY, Gierke TD (1982) Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15:101–105

    Article  Google Scholar 

  59. Gebel G (2000) Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41:5829–5838

    Article  Google Scholar 

  60. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39

    Article  Google Scholar 

  61. Rubatat L, Gebel G, Diat O (2004) Fibrillar structure of Nafion: matching fourier and real space studies of corresponding films and solutions. Macromolecules 37:7772–7783

    Article  Google Scholar 

  62. Schmidt-Rohr K, Chen Q (2008) Parallel cylindrical water nanochannels in Nafion fuel-cell membranes. Nat Mater 7:75–83

    Article  Google Scholar 

  63. Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637–4678

    Article  Google Scholar 

  64. Elliott JA, Paddison SJ (2007) Modelling of morphology and proton transport in PFSA membranes. Phys Chem Chem Phys 9:2602–2618

    Article  Google Scholar 

  65. Kreuer KD (2000) On the complexity of proton conduction phenomena. Solid State Ionics 136:149–160

    Article  Google Scholar 

  66. Ise M (2000) Polymer Elektrolyt Membranen: Untersuchungen zur Mikrostruktur und zu den Transporteigenschaften für Protonen und Wasser. PhD thesis, University of Stuttgart

    Google Scholar 

  67. Kreuer KD (2011) Advances in materials for proton exchange membrane fuel cells systems 2011. Asilomar, Pacific Grove, 20–23 Feb 2011

    Google Scholar 

  68. Gebel G (2011) Advances in materials for proton exchange membrane fuel cells systems 2011. Asilomar, Pacific Grove, 20–23 Feb 2011

    Google Scholar 

  69. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587–4612

    Article  Google Scholar 

  70. Telfah A, Majer G, Kreuer KD, Schuster M, Maier J (2010) Formation and mobility of protonic charge carriers in methyl sulfonic acid–water mixtures: a model for sulfonic acid based ionomers at low degree of hydration. Solid State Ionics 181:461–465

    Article  Google Scholar 

  71. Desmarteau DD (1995) Novel perfluorinated ionomers and ionenes. J Fluor Chem 72:203–208

    Article  Google Scholar 

  72. Schaberg MS, Abulu JE, Haugen GM, Emery MA, O’Conner SJ, Xiong PN, Hamrock SJ (2010) New multi acid side-chain ionomers for proton exchange membrane fuel cells. ECS Trans 33(1):609–627

    Google Scholar 

  73. Herz HG, Kreuer KD, Maier J, Scharfenberger G, Schuster MFH, Meyer WH (2003) New fully polymeric proton solvents with high proton mobility. Electrochim Acta 48:2165–2171

    Article  Google Scholar 

  74. Steininger H, Schuster M, Kreuer KD, Maier J (2006) Intermediate temperature proton conductors based on phosphonic acid functionalized oligosiloxanes. Solid State Ionics 177:2457–2462

    Article  Google Scholar 

  75. Schuster M, Rager T, Noda A, Kreuer KD, Maier J (2005) About the choice of the protogenic group in PEM separator materials for intermediate temperature, low humidity operation: a critical comparison of sulfonic acid, phosphonic acid and imidazole functionalized model compounds. Fuel Cells 5:355–365

    Article  Google Scholar 

  76. Paddison SJ, Kreuer KD, Maier J (2006) About the choice of the protogenic group in polymer electrolyte membranes: ab initio modelling of sulfonic acid, phosphonic acid, and imidazole functionalized alkanes. Phys Chem Chem Phys 8:4530–4542

    Article  Google Scholar 

  77. Steininger H, Schuster M, Kreuer KD, Kaltbeitzel A, Bingöl B, Meyer WH, Schauff S, Brunklaus G, Maier J, Spiess HW (2007) Intermediate temperature proton conductors for PEM fuel cells based on phosphonic acid as protogenic group: a progress report. Phys Chem Chem Phys 9:1764–1773

    Article  Google Scholar 

  78. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443:63–66

    Article  Google Scholar 

  79. Lefévre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74

    Article  Google Scholar 

  80. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447

    Article  Google Scholar 

  81. Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet JP (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun:2. https://doi.org/10.1038/ncomms1427

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Paddison, S.J., Gasteiger, H.A. (2012). PEM Fuel Cells: Materials and Design Development Challenges. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_145

Download citation

Publish with us

Policies and ethics