Skip to main content

Molten Carbonate Fuel Cells

  • Reference work entry
  • First Online:
Fuel Cells and Hydrogen Production
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2018

Glossary

Activation overpotential:

Voltage loss due to slow charge-transfer rate on the electrode surface.

Anode:

A porous electrode where hydrogen is oxidized with carbonate ions \( \left({\mathrm{CO}}_3^{2-}\right) \) to steam and carbon dioxide.

Basicity:

Log(Kd) of molten carbonates where Kd is the equilibrium constant of the reaction \( {\mathrm{CO}}_3^{2-}\overset{k_d}{\rightleftharpoons }{\mathrm{O}}^{2-}+{\mathrm{CO}}_2 \) similarly to the pH of aqueous solutions.

Cathode:

A porous electrode where oxygen is reduced with carbon dioxide to carbonate ions \( \left({\mathrm{CO}}_3^{2-}\right) \).

Effectiveness factor (ε):

A ratio of overpotential without pore diffusion resistance to that with pore diffusion resistance.

Electrolyte:

Molten carbonates providing ionic paths for the electrode reactions with combinations of Li2CO3, Na2CO3, and K2CO3.

Exchange current density (io):

An actual current density of an electrode at net zero current indicating catalytic activity of the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Tomczyk P (2006) MCFC versus other fuel cells—characteristics, technologies and prospects. J Power Sources 160:858–862

    Article  Google Scholar 

  2. Yuh C, Hilmi A, Farooque M, Leo T, Xu G (2009) Direct fuel cell materials experience. ECS Trans 17:637–654

    Article  Google Scholar 

  3. Selman JR, Maru HC (1981) Physical chemistry and electrochemistry of alkali carbonate melts. In: Mamantov G, Braunstein J (eds) Advances in molten salt chemistry. Plenum Press, New York, pp 202–212

    Google Scholar 

  4. Lide DR (2008) Handbook of chemistry and physics, 88th edn. CRC Press, Boca Raton, pp 6–143. 5–73

    Google Scholar 

  5. Hong SG, Selman JR (2004) Wetting characteristics of carbonate melts under MCFC operating conditions. J Electrochem Soc 151:A77–A84

    Article  Google Scholar 

  6. Yuh CY, Selman JR (1984) Polarization of the molten carbonate fuel cell anode and cathode. J Electrochem Soc 131:2062–2069

    Article  Google Scholar 

  7. Morita H, Komoda M, Mugikura Y, Izaki Y, Watanabe T, Masuda Y, Matsuyama (2002) Performance analysis of molten carbonate fuel cell using a Li/Na electrolyte. J Power Sources 112:509–518

    Article  Google Scholar 

  8. Nishina T, Masuda Y, Uchida I (1993) Gas solubility and diffusivity of H2, CO2 and O2 in molten alkali carbonates. In: Saboungi ML, Kojima H, Duruz J, Shores D (eds) Proceedings of the international symposium on molten salt chemistry and technology. The Electrochemical Society PV93-9, New Jersey, pp 424–435

    Google Scholar 

  9. Yuh CY, Farooque M, Maru H (1999) Advances in carbonate fuel cell matrix and electrolyte. In: Uchida I, Hemmes K, Lindbergh G, Shores DA, Selman JR (eds) Carbonate fuel cell technology. The Electrochemical Society PV99-20, New Jersey, pp 189–201

    Google Scholar 

  10. Fujita Y (2003) Durability. In: Handbook of fuel cells fundamentals technology and applications. Wiley, England, pp 969–982

    Google Scholar 

  11. Yuh C, Johnsen R, Farooque M, Maru H (1993) Carbonate fuel cell endurance: hardware corrosion and electrolyte management status. In: Shores D, Maru H, Uchida I, Selman JR (eds) Carbonate fuel cell technology. The Electrochemical Society PV93-3, New Jersey, pp 158–170

    Google Scholar 

  12. Fujita Y, Nishimura T, Hosokawa JI, Urushibata H, Sasaki A (1996) Degradation of materials in molten carbonate fuel cells with Li/Na electrolyte. In: The 3rd FCDIC fuel cell symposium proceedings. Fuel Cell Development Information Center, Japan, pp 151–155

    Google Scholar 

  13. Matsumoto K, Yuasa K, Nakagawa K (1999) Protection against localized corrosion of stainless steel below 843K in molten lithium-sodium carbonate. Denki Kagaku 67:253–258

    Google Scholar 

  14. Hoffmann J, Yuh CY, Jopek AG (2003) Electrolyte and material challenges. In: Handbook of fuel cells fundamentals technology and applications. Wiley, England, pp 921–941

    Google Scholar 

  15. Ang PGP, Sammells AF (1980) Influence of electrolyte composition on electrode kinetics in the molten carbonate fuel cell. J Electrochem Soc 127:1287–1293

    Article  Google Scholar 

  16. Jewulski J, Suski L (1984) Model of isotropic anode in the molten carbonate fuel cell. J Appl Electrochem 14:135–143

    Article  Google Scholar 

  17. Lu SH, Selman JR (1984) Electrode kinetics of fuel oxidation at copper in molten carbonates. J Electrochem Soc 131:2827–2833

    Article  Google Scholar 

  18. Nishina T, Takahashi M, Uchida I (1990) Gas electrode reactions in molten carbonate media IV. Electrode kinetics and mechanism of hydrogen oxidation in (Li+K)CO3 eutectics. J Electrochem Soc 137:1112–1121

    Article  Google Scholar 

  19. Appleby AJ, Nicholson SB (1977) Reduction of oxygen in alkali carbonate melts. J Electroanal Chem 83:309–328

    Article  Google Scholar 

  20. Appleby AJ, Nicholson S (1974) The reduction of oxygen in molten lithium carbonate. Electroanal Chem Interfacial Electrochem 53:105–119

    Article  Google Scholar 

  21. Kinoshita K (1992) Electrochemical oxygen technology. Electrochemical Society, Wiley, New York, p 37

    Google Scholar 

  22. Nishina T, Uchida I, Selman JR (1994) Gas electrode reactions in molten carbonate media V. Electrochemical analysis of the oxygen reduction mechanism at a fully immersed gold electrode. J Electrochem Soc 141:1191–1198

    Article  Google Scholar 

  23. Yoshikawa M, Mugikura Y, Watanabe T, Ota T, Suzuki A (1999) The behavior of MCFCs using Li/K and Li/Na carbonates as the electrolyte at high pressure. J Electrochem Soc 146:2834–2840

    Article  Google Scholar 

  24. Lee CG, Kang BS, Seo HK, Lim HC (2003) Effect of gas-phase transport in molten carbonate fuel cell. J Electroanal Chem 540:169–188

    Article  Google Scholar 

  25. Uchida I, Mugikura Y, Nishina T, Itaya K (1986) Gas electrode reactions in molten carbonate media II. Oxygen reduction kinetics on conductive oxide electrodes in (Li+K)CO3 eutectic at 650°C. J Electroanal Chem 206:241–252

    Article  Google Scholar 

  26. Baumgartner C (1984) Electronic conductivity decrease in porous NiO cathodes during operation in molten carbonate fuel cell. J Electrochem Soc 131:2607–2610

    Article  Google Scholar 

  27. Ota K, Mitsushima S, Kato S, Asano S, Yoshitake H, Kamiya N (1992) Solubilities of nickel oxide in molten carbonate. J Electrochem Soc 139:667–671

    Article  Google Scholar 

  28. Doyon JD, Gilbert T, Davies G, Paetsch L (1987) NiO solubility in mixed alkali/alkaline earth carbonates. J Electrochem Soc 134:3035–3038

    Article  Google Scholar 

  29. Kunz HR, Bregoli LJ (1990) Ionic migration in molten carbonate fuel cells. In: Selman JR, Shores DA, Maru HC, Uchida I (eds) Carbonate fuel cell technology. The Electrochemical Society PV90-16, New Jersey, pp 157–168

    Google Scholar 

  30. Veldhuis JB, Eckes FC, Plomp L (1992) The dissolution properties of LiCoO2 in molten 62:38 mol% Li:K carbonates. J Electrochem Soc 139:L6–L8

    Article  Google Scholar 

  31. Hatoh K, Niikura J, Yasumoto E, Gamo T (1994) The exchange current density of oxide cathodes in molten carbonates. J Electrochem Soc 141:1725–1730

    Article  Google Scholar 

  32. Motohira N, Senso T, Yamauchi K, Kamiya N, Ota K (1999) Solubility of nickel in molten carbonates-the effect of Mg addition. In: The 6th FCDIC fuel cell symposium proceedings. Fuel Cell Development Information Center, Japan, pp 237–240

    Google Scholar 

  33. Yuh CY, Selman JR (1991) The polarization of molten carbonate fuel cell electrodes I. Analysis of steady-state polarization data. J Electrochem Soc 138:3642–3648

    Article  Google Scholar 

  34. Morita H, Mugikura Y, Izaki Y, Watanabe T, Abe T (1997) Analysis of performance of molten carbonate fuel cell V. Formulation of anode reaction resistance. Denki Kagaku 65:740–746

    Google Scholar 

  35. Morita H, Mugikura Y, Izaki Y, Watanabe T, Abe T (1998) Model of cathode reaction resistance in molten carbonate fuel cells. J Electrochem Soc 145:1511–1517

    Article  Google Scholar 

  36. Ramaswami K, Selman JR (1994) Rotating disk studies in molten carbonates III. Diffusion coefficients and bulk concentration in lithium carbonates. J Electrochem Soc 141:2338–2343

    Article  Google Scholar 

  37. Vogel WM, Smith SW, Bregoli LJ (1983) Studies of the reduction of oxygen on gold in molten Li2CO3-K2CO3 at 650°C. J Electrochem Soc 130:574–578

    Article  Google Scholar 

  38. Malinowska B, Cassir M, Devynck J (1994) Design of a gold ultramicroelectrode for voltammetric studies at high temperature in glass-corrosive media (molten carbonate at 650°C). J Electrochem Soc 141:2015–2017

    Article  Google Scholar 

  39. Uchida I, Nishina T, Mugikura Y, Itaya K (1986) Gas electrode reactions in molten carbonate media I. Exchange current density of oxygen reduction in (Li+K)CO3 eutectic at 650°C. J Electroanal Chem 206:229–239

    Article  Google Scholar 

  40. Lee CG, Nakano H, Nishina T, Uchida I, Kuroe S (1998) Characterization of a 100 cm2 class molten carbonate fuel cell with current interruption. J Electrochem Soc 145:2747–2751

    Article  Google Scholar 

  41. Yuh CY, Selman JR (1988) Characterization of fuel cell electrode processes by AC impedance. AICHE J 34:1949–1958

    Article  Google Scholar 

  42. Morita H, Mugikura Y, Izaki Y, Watanabe T (1999) Analysis of performance of molten carbonate fuel cell VI. Analysis of Nernst Loss on current interrupt wave. Electrochemistry 67:438–444

    Google Scholar 

  43. Lee CG (2016) Analysis of impedance in a molten carbonate fuel cell. J Electroanal Chem 776:162–169

    Article  Google Scholar 

  44. Lee CG, Lim HC (2005) Experimental investigation of electrode reaction characteristics with reactant gas addition measurement in a molten carbonate fuel cell. J Electrochem Soc 152:A219–A228

    Article  Google Scholar 

  45. Becker D, Jüttner K (2003) The impedance of fast charge transfer reactions on boron doped diamond electrodes. Electrochim Acta 49:29–39

    Article  Google Scholar 

  46. Lee CG, Kim DH, Lim HC (2007) Electrode reaction characteristics under pressurized conditions in a molten carbonate fuel cell. J Electrochem Soc 154:B396–B404

    Article  Google Scholar 

  47. Lee CG (2013) Effect of temperature on the cathodic overpotential in a molten carbonate fuel cell. J Electroanal Chem 701:36–42

    Article  Google Scholar 

  48. Lee CG (2017) Influence of temperature on the anode reaction in a molten carbonate fuel cell. J Electroanal Chem 785:152–158

    Article  Google Scholar 

  49. Lee CG, Hwang JY, Oh M, Kim DH, Lim HC (2008) Overpotential analysis with various anode gas compositions in a molten carbonate fuel cell. J Power Sources 179:467–473

    Article  Google Scholar 

  50. Lee CG, Yamada K, Hisamitsu Y, Ono Y, Uchida I (1999) Kinetics of oxygen reduction in molten carbonates under pressurized Air/CO2 oxidant gas conditions. Electrochemistry 67:608–613

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choong-Gon Lee .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Lee, CG. (2019). Molten Carbonate Fuel Cells. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_141

Download citation

Publish with us

Policies and ethics