Skip to main content

Solid Oxide Fuel Cells

  • Reference work entry
  • First Online:
  • 4458 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC 2012

Glossary

Anode:

The negative terminal of the SOFC where oxygen ions from the electrolyte react with fuel releasing electrons to the external circuit.

Cathode:

The positive terminal of the SOFC where oxygen molecules from the air are reduced to oxygen ions by absorbing electrons from the external circuit.

Electrolyte:

The central component of the SOFC which conducts electricity by the movement of oxygen ions. This is the solid analogue of the liquid electrolyte used in a battery.

Fuel cell stack:

A fuel cell composed of several individual fuel cell (anode/electrolyte/cathode) units electrically interconnected in order to provide a useful device in terms of power output.

Heterostructure:

A structure consisting of two closely matched materials with properties superior to those of the individual components due primarily to interface effects. Can be further enhanced through creation of multilayer heterostructures where many repeats are generated.

Planar device:

A fuel cell constructed from...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

Primary Literature

  1. Huang K, Goodenough JB (2009) Solid oxide fuel cell technology principles, performance and operations. Woodhead Energy Series. Woodhead Publishing Ltd, Cambridge, p 344

    Book  Google Scholar 

  2. Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and applications. Elsevier Advanced Technology, Oxford, p xvi, 405 p

    Google Scholar 

  3. Lawlor V, Griesser S, Buchinger G, Olabi AG, Cordiner S, Meissner D (2010) Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities (vol 193, p 387, 2009). J Power Sources 195(3):936–936

    Article  Google Scholar 

  4. Kendall K (2010) Progress in microtubular solid oxide fuel cells. Int J Appl Ceram Technol 7(1):1–9

    Article  MathSciNet  Google Scholar 

  5. Sammes NM, Du Y, Bove R (2005) Design and fabrication of a 100 W anode supported micro-tubular SOFC stack. J Power Sources 145(2):428–434

    Article  Google Scholar 

  6. Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M (2008) Cube-type micro SOFC stacks using sub-millimeter tubular SOFCs. J Power Sources 183(2):544–550

    Article  Google Scholar 

  7. Suzuki T, Funahashi Y, Yamaguchi T, Fujishiro Y, Awano M (2009) Performance of the micro-SOFC module using submillimeter tubular cells. J Electrochem Soc 156(3):B318–B321

    Article  Google Scholar 

  8. Hibino T, Iwahara H (1993) Simplification of solid oxide fuelcell system using partial oxidation of methane. Chem Lett 1993(7):1131–1134

    Article  Google Scholar 

  9. Yano M, Tomita A, Sano M, Hibino T (2007) Recent advances in single-chamber solid oxide fuel cells: a review. Solid State Ionics 177(39–40):3351–3359

    Article  Google Scholar 

  10. Riess I (2008) On the single chamber solid oxide fuel cells. J Power Sources 175(1):325–337

    Article  Google Scholar 

  11. Evans A, Bieberle-Hutter A, Rupp JLM, Gauckler LJ (2009) Review on microfabricated micro-solid oxide fuel cell membranes. J Power Sources 194(1):119–129

    Article  Google Scholar 

  12. Su PC, Chao CC, Shim JH, Fasching R, Prinz FB (2008) Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett 8(8):2289–2292

    Article  Google Scholar 

  13. Thorel AS, Chesnaud A, Viviani M, Barbucci A, Presto S, Piccardo P, Ilhan Z, Vladikova D, Stoynov Z (2009) IDEAL-cell, a high temperature innovative dual membrane fuel cell. ECS Trans 25(2):753–762

    Article  Google Scholar 

  14. Kilner JA (2000) Fast oxygen transport in acceptor doped oxides. Solid State Ionics 129(1):13–23

    Article  MathSciNet  Google Scholar 

  15. Merkle R, Maier J, Bouwmeester HJM (2004) A linear free energy relationship for gas-solid interactions: correlation between surface rate constant and diffusion coefficient of oxygen tracer exchange for electron-rich perovskites. Angew Chem Int Ed 43(38):5069–5073

    Article  Google Scholar 

  16. Tietz F, Mai A, Stover D (2008) From powder properties to fuel cell performance – a holistic approach for SOFC cathode development. Solid State Ionics 179(27–32):1509–1515

    Article  Google Scholar 

  17. Kilner JA (2007) Optimisation of oxygen ion transport in materials for ceramic membrane devices. Faraday Discuss 134:9–15

    Article  Google Scholar 

  18. Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook SJ, Santamaria J (2008) Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321(5889):676–680

    Article  Google Scholar 

  19. Georges S, Goutenoire F, Altorfer F, Sheptyakov D, Fauth F, Suard E, Lacorre P (2003) Thermal, structural and transport properties of the fast oxide-ion conductors La2–xRxMo2O9 (R=Nd, Gd, Y). Solid State Ionics 161(3–4):231–241

    Article  Google Scholar 

  20. Kendrick E, Knight KS, Slater PR (2009) Ambi-site substitution of Mn in lanthanum germanate apatites. Mater Res Bull 44(8):1806–1809

    Article  Google Scholar 

  21. Lacorre P, Goutenoire F, Bohnke O, Retoux R, Laligant Y (2000) Designing fast oxide-ion conductors based on La2Mo2O9. Nature 404(6780):856–858

    Article  Google Scholar 

  22. Li Q, Xia T, Liu XD, Ma XF, Meng J, Cao XQ (2007) Fast densification and electrical conductivity of yttria-stabilized zirconia nanoceramics. Mater Sci Eng B 138(1):78–83

    Article  Google Scholar 

  23. Thangadurai V, Weppner W (2005) Studies on electrical properties of La0.8Sr0.2Ga0.8Mg0.2O2.80 (LSGM) and LSGM-SrSn1-xFexO3 (x=0.8; 0.9) composites and their chemical reactivity. Electrochim Acta 50(9):1871–1877

    Article  Google Scholar 

  24. Tsai D-S, Hsieh M-J, Tseng J-C, Lee H-Y (2005) Ionic conductivities and phase transitions of lanthanide rare-earth substituted La2Mo2O9. J Eur Ceram Soc 25(4):481–487

    Article  Google Scholar 

  25. Vannier RN, Skinner SJ, Chater RJ, Kilner JA, Mairesse G (2003) Oxygen transfer in BIMEVOX materials. Solid State Ionics 160(1–2):85–92

    Article  Google Scholar 

  26. Verkerk MJ, Keizer K, Burggraaf AJ (1980) High oxygen ion conduction in sintered oxides of the Bi2O3-Er2O3 system. J Appl Electrochem 10(1):81–90

    Article  Google Scholar 

  27. Kosacki I, Rouleau CM, Becher PF, Bentley J, Lowndes DH (2005) Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics 176(13–14):1319–1326

    Article  Google Scholar 

  28. Karthikeyan A, Chang CL, Ramanathan S (2006) High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects. Appl Phys Lett 89(18):183116

    Article  Google Scholar 

  29. Azad S, Marina OA, Wang CM, Saraf L, Shutthanandan V, McCready DE, El-Azab A, Jaffe JE, Engelhard MH, Peden CHF, Thevuthasan S (2005) Nanoscale effects on ion conductance of layer-by-layer structures of gadolinia-doped ceria and zirconia. Appl Phys Lett 86(13):131906

    Article  Google Scholar 

  30. Korte C, Peters A, Janek J, Hesse D, Zakharov N (2008) Ionic conductivity and activation energy for oxygen ion transport in superlattices – the semicoherent multilayer system YSZ (ZrO2+9.5 mol% Y2O3)/Y2O3. Phys Chem Chem Phys 10(31):4623–4635

    Article  Google Scholar 

  31. Guo X (2009) Comment on “Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures”. Science 324(5926):465

    Article  Google Scholar 

  32. Cavallaro A, Burriel M, Roqueta J, Apostolidis A, Bernardi A, Tarancón A, Srinivasan R, Cook SN, Fraser HL, Kilner JA, McComb DW, Santiso J (2010) Electronic nature of the enhanced conductivity in YSZ-STO multilayers deposited by PLD. Solid State Ionics 181(13–14):592–601

    Article  Google Scholar 

  33. Kilner JA (2008) Ionic conductors feel the strain. Nat Mater 7(11):838–839

    Article  Google Scholar 

  34. Pennycook TJ, Beck MJ, Varga K, Varela M, Pennycook SJ, Pantelides ST (2010) Origin of colossal ionic conductivity in oxide multilayers: interface induced sublattice disorder. Phys Rev Lett 104(11):115901

    Article  Google Scholar 

  35. Kushima A, Yildiz B (2010) Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? J Mater Chem 20(23):4809–4819

    Article  Google Scholar 

  36. Schichtel N, Korte C, Hesse D, Janek J (2009) Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films-theoretical considerations and experimental studies. Phys Chem Chem Phys 11(17):3043–3048

    Article  Google Scholar 

  37. Peters A, Korte C, Hesse D, Zakharov N, Janek J (2007) Ionic conductivity and activation energy for oxygen ion transport in superlattices – the multilayer system CSZ (ZrO2+CaO)/Al2O3. Solid State Ionics 178(1–2):67–76

    Article  Google Scholar 

  38. Korte C, Schichtel N, Hesse D, Janek J (2009) Influence of interface structure on mass transport in phase boundaries between different ionic materials experimental studies and formal considerations. Monatshefte Fur Chemie 140(9):1069–1080

    Article  Google Scholar 

  39. Otsuka K, Matsunaga K, Nakamura A, Ji S, Kuwabara A, Yamamoto T, Ikuhara Y (2004) Effects of dislocations on the oxygen ionic conduction in yttria stabilized zirconia. Mater Trans 45(7):2042–2047

    Article  Google Scholar 

  40. Otsuka K, Kuwabara A, Nakamura A, Yamamoto T, Matsunaga K, Ikuhara Y (2003) Dislocation-enhanced ionic conductivity of yttria-stabilized zirconia. Appl Phys Lett 82(6):877–879

    Article  Google Scholar 

  41. Sase M, Yashiro K, Sato K, Mizusaki J, Kawada T, Sakai N, Yamaji K, Horita T, Yokokawa H (2008) Enhancement of oxygen exchange at the hetero interface of (La, Sr)CoO3/(La, Sr)2CoO4 in composite ceramics. Solid State Ionics 178(35–36):1843–1852

    Article  Google Scholar 

  42. Ullmann H, Trofimenko N, Tietz F, Stover D, Ahmad-Khanlou A (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes. Solid State Ionics 138(1–2):79–90

    Article  Google Scholar 

  43. Tarancon M, Burriel M, Santiso J, Skinner SJ, Kilner JA (2010) Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. J Mater Chem 20:3799–3813

    Article  Google Scholar 

  44. Kilner JA (2009) Accelerated R&D of solid oxide fuel cells with lowering operation temperature vision. Electrochemistry 77(2):113–113

    Article  Google Scholar 

  45. Rossiny JCH, Julis J, Fearn S, Kilner JA, Zhang Y, Chen LF, Yang SF, Evans JRG (2008) Combinatorial characterisation of mixed conducting perovskites. Solid State Ionics 179(21–26):1085–1089

    Article  Google Scholar 

  46. Zhu CJ, Liu XM, Yi CS, Pei L, Wang DJ, Yan DT, Yao KG, Lu TQ, Su WH (2010) High-performance PrBaCo2O5+delta-Ce0.8Sm0.2O1.9 composite cathodes for intermediate temperature solid oxide fuel cell. J Power Sources 195(11):3504–3507

    Article  Google Scholar 

  47. Sayers R, Liu J, Rustumji B, Skinner SJ (2008) Novel K2NiF4-type materials for solid oxide fuel cells: compatibility with electrolytes in the intermediate temperature range. Fuel Cells 8(5):338–343

    Article  Google Scholar 

  48. Fischer W, Malzbender J, Blass G, Steinbrech RW (2005) Residual stresses in planar solid oxide fuel cells. J Power Sources 150:73–77

    Article  Google Scholar 

  49. Alonso JA, Martinez-Lope MJ, Aguadero A, Daza L (2008) Neutron powder diffraction as a characterization tool of solid oxide fuel cell materials. Prog Solid State Chem 36(1–2):134–150

    Article  Google Scholar 

  50. Aguadero A, Alonso JA, Daza L (2008) Oxygen excess in La2CoO4+delta: a neutron diffraction study. Z Naturfsch Sect B J Chem Sci 63(6):615–622

    Article  Google Scholar 

  51. Aguadero A, Alonso JA, Fernandez-Diaz MT, Escudero MJ, Daza L (2007) In situ high temperature neutron powder diffraction study of La2Ni0.6Cu04O4+delta in air: correlation with the electrical behaviour. J Power Sources 169(1):17–24

    Article  Google Scholar 

  52. Aguadero A, Perez M, Alonso JA, Daza L (2005) Neutron powder diffraction study of the influence of high oxygen pressure treatments on La2NiO4+delta and structural analysis of La2Ni1–xCuxO4+delta (0 < = x < = 1). J Power Sources 151:52–56

    Article  Google Scholar 

  53. Bartolome JF, Bruno G, Deaza AH (2008) Neutron diffraction residual stress analysis of zirconia toughened alumina (ZTA) composites. J Eur Ceram Soc 28(9):1809–1814

    Article  Google Scholar 

  54. Skinner SJ (2003) Characterisation of La2NiO4+delta using in situ high temperature neutron powder diffraction. Solid State Sci 5(3):419–426

    Article  Google Scholar 

  55. Goodenough JB (2004) Electronic and ionic transport properties and other physical aspects of perovskites. Rep Prog Phys 67(11):1915–1993

    Article  Google Scholar 

  56. Goodenough JB (2003) Oxide-ion electrolytes. Annu Rev Mater Res 33:91–128

    Article  Google Scholar 

  57. Knight KS, Soar M, Bonanos N (1992) Crystal-structures of gadolinium-doped and yttrium-doped barium cerate. J Mater Chem 2(7):709–712

    Article  Google Scholar 

  58. Knight KS, Bonanos N (1995) A high-resolution neutron powder diffraction study of neodymium doping in barium cerate. Solid State Ionics 77:189–194

    Article  Google Scholar 

  59. Jacobson AJ, Tofield BC, Fender BEF (1972) Structures of BaCeO3, BaPrO3 and BaTbO3 by neutron-diffraction – lattice-parameter relations and ionic radii in O-perovskites. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem B 28(Mar 15):956–961

    Article  Google Scholar 

  60. Slater PR, Irvine JTS, Ishihara T, Takita Y (1998) High-temperature powder neutron diffraction study of the oxide ion conductor La0.9Sr0.1Ga0.8Mg0.2O2.85. J Solid State Chem 139(1):135–143

    Article  Google Scholar 

  61. Skinner SJ, Amow G (2007) Structural observations on La-2(Ni, CO)O-4 +/−delta phases determined from in situ neutron powder diffraction. J Solid State Chem 180(7):1977–1983

    Article  Google Scholar 

  62. Hou SE, Alonso JA, Rajasekhara S, Martinez-Lope MJ, Fernandez-Diaz MT, Goodenough JB (2010) Defective Ni perovskites as cathode materials in intermediate-temperature solid-oxide fuel cells: a structure-properties correlation. Chem Mater 22(3):1071–1079

    Article  Google Scholar 

  63. Sakata M, Mori R, Kumazawa S, Takata M, Toraya H (1990) Electron-density distribution from x-ray-powder data by use of profile fits and the maximum-entropy method. J Appl Crystallogr 23:526–534

    Article  Google Scholar 

  64. Yashima M, Sirikanda N, Ishihara T (2010) Crystal structure, diffusion path, and oxygen permeability of a Pr2NiO4-based mixed conductor (Pr0.9La0.1)(2)(Ni0.74Cu0.21Ga0.05)O4+delta. J Am Chem Soc 132(7):2385–2392

    Article  Google Scholar 

  65. Yashima M, Enoki M, Wakita T, Ali R, Matsushita Y, Izumi F, Ishihara T (2008) Structural disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor. J Am Chem Soc 130(9):2762

    Article  Google Scholar 

  66. Chroneos A, Parfitt D, Kilner JA, Grimes RW (2010) Anisotropic oxygen diffusion in tetragonal La2NiO4+delta: molecular dynamics calculations. J Mater Chem 20(2):266–270

    Article  Google Scholar 

  67. Guillot S, Beaudet-Savignat S, Lambert S, Vannier RN, Rousse P, Porcher F (2009) Evidence of local defects in the oxygen excess apatite La-9.67(SiO4)(6)O-2.5 from high resolution neutron powder diffraction. J Solid State Chem 182(12):3358–3364

    Article  Google Scholar 

  68. Leon-Reina L, Porras-Vazquez JM, Losilla ER, Aranda MAG (2006) Interstitial oxide positions in oxygen-excess oxy-apatites. Solid State Ionics 177(15–16):1307–1315

    Article  Google Scholar 

  69. Leon-Reina L, Losilla ER, Martinez-Lara M, Bruque S, Llobet A, Sheptyakov DV, Aranda MAG (2005) Interstitial oxygen in oxygen-stoichiometric apatites. J Mater Chem 15(25):2489–2498

    Article  Google Scholar 

  70. Leon-Reina L, Losilla ER, Martinez-Lara M, Bruque S, Aranda MAG (2004) Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes. J Mater Chem 14(7):1142–1149

    Article  Google Scholar 

  71. Engin TE, Powell AV, Haynes R, Chowdhury MAH, Goodway CM, Done R, Kirichek O, Hull S (2008) A high temperature cell for simultaneous electrical resistance and neutron diffraction measurements. Rev Sci Instrum 79(9):095104

    Article  Google Scholar 

  72. Liu J (2010) Department of Materials. Imperial College London, London

    Google Scholar 

  73. Shearing PR, Golbert J, Chater RJ, Brandon NP (2009) 3D reconstruction of SOFC anodes using a focused ion beam lift-out technique. Chem Eng Sci 64(17):3928–3933

    Article  Google Scholar 

  74. Wilson JR, Kobsiriphat W, Mendoza R, Chen HY, Hiller JM, Miller DJ, Thornton K, Voorhees PW, Adler SB, Barnett SA (2006) Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 5(7):541–544

    Article  Google Scholar 

  75. Thompson SP, Parker JE, Potter J, Hill TP, Birt A, Cobb TM, Yuan F, Tang CC (2009) Beamline I11 at diamond: a new instrument for high resolution powder diffraction. Rev Sci Instrum 80(7):075107

    Article  Google Scholar 

  76. Itoh T, Shirasaki S, Fujie Y, Kitamura N, Idemoto Y, Osaka K, Ofuchi H, Hirayama S, Honma T, Hirosawa I (2010) Study of charge density and crystal structure of (La0.75Sr0.25)MnO3.00 and (Ba0.5Sr0.5)(Co0.8Fe0.2)O2.33-delta at 500–900 K by in situ synchrotron x-ray diffraction. J Alloy Comp 491(1–2):527–535

    Article  Google Scholar 

  77. Itoh T, Shirasaki S, Fujie Y, Kitamura N, Idemoto Y, Osaka K, Hirosawa I, Igawa N (2009) Study of mechanism of mixed conduction due to electrons and oxygen ions in (La0.75Sr0.25)MnO3.00 and (Ba0.5Sr0.5)(Co0.8Fe0.2)O-2.33 through Rietveld refinement and MEM analysis. Electrochemistry 77(2):161–168

    Article  Google Scholar 

  78. Hagen A, Poulsen HF, Klemenso T, Martins RV, Honkimaki V, Buslaps T, Feidenshans’l R (2006) A depth-resolved in situ study of the reduction and oxidation of Ni-based anodes in solid oxide fuel cells. Fuel Cells 6(5):361–366

    Article  Google Scholar 

  79. Atkinson A, Sun B (2007) Residual stress and thermal cycling of planar solid oxide fuel cells. Mater Sci Technol 23(10):1135–1143

    Article  Google Scholar 

  80. Villanova J, Sicardy O, Fortunier R, Micha JS, Bleuet P (2010) Determination of global and local residual stresses in SOFC by X-ray diffraction. Nucl Instrum Methods Phys Res Sect B 268(3–4):282–286

    Article  Google Scholar 

  81. Sumi H, Ukai K, Yokoyama M, Mizutani Y, Doi Y, Machiya S, Akiniwa Y, Tanaka K (2006) Changes of internal stress in solidoxide fuel cell during red-ox cycle evaluated by in situ measurement with synchrotron radiation. J Fuel Cell Sci Technol 3(1):68–74

    Article  Google Scholar 

  82. Yamazaki S, Matsui T, Sato T, Arita Y, Nagasaki T (2002) EXAFS study of reduced ceria doped with lanthanide oxides. Solid State Ionics 154:113–118

    Article  Google Scholar 

  83. Yamazaki S, Matsui T, Ohashi T, Arita Y (2000) Defect structures in doped CeO2 studied by using XAFS spectrometry. Solid State Ionics 136:913–920

    Article  Google Scholar 

  84. Ohashi T, Yamazaki S, Tokunaga T, Arita Y, Matsui T, Harami T, Kobayashi K (1998) EXAFS study of Ce1–xGdxO2.x/2. Solid State Ionics 113:559–564

    Article  Google Scholar 

  85. Hormes J, Pantelouris M, Balazs GB, Rambabu B (2000) X-ray absorption near edge structure (XANES) measurements of ceria-based solid electrolytes. Solid State Ionics 136:945–954

    Article  Google Scholar 

  86. Zhang J, Wu ZY, Liu T, Hu TD, Wu ZH, Ju X (2001) XANES study on the valence transitions in cerium oxide nanoparticles. J Synchrotron Radiat 8:531–532

    Article  Google Scholar 

  87. Zhang J, Wu ZY, Rong LX, Dong BZ (2005) Temperature dependence of the growth of cerium oxide nanoparticles investigated by SAXS and XANES. Phys Scr T115:661–663

    Article  Google Scholar 

  88. Gnanasekar KI, Jiang X, Jiang JC, Aghasyan M, Tiltsworth R, Hormes J, Rambabu B (2002) Nanocrystalline bulk and thin films of La1–xSrMnO3 (0 < = x < = 0.3). Solid State Ionics 148(3–4):575–581

    Article  Google Scholar 

  89. Skinner SJ, Packer RJ, Bayliss RD, Illy B, Prestipino C, Ryan MP (in press) Redox chemistry of the novel fast oxide ion conductor CeNbO4+d determined through an in situ spectroscopic technique. Solid State Ionics. https://doi.org/10.1016/j.ssi.2009.12.008

    Article  Google Scholar 

  90. Pomfret MB, Owrutsky JC, Walker RA (2006) High-temperature Raman spectroscopy of solid oxide fuel cell materials and processes. J Phys Chem B 110(35):17305–17308

    Article  Google Scholar 

  91. Izzo JR, Joshi AS, Grew KN, Chiu WKS, Tkachuk A, Wang SH, Yun WB (2008) Nondestructive reconstruction and analysis of SOFC anodes using x-ray computed tomography at sub-50 nm resolution. J Electrochem Soc 155(5):B504–B508

    Article  Google Scholar 

  92. Malzbender J, Steinbrech RW, Singheiser L (2009) A review of advanced techniques for characterising SOFC behaviour. Fuel Cells 9(6):785–793

    Article  Google Scholar 

  93. Maher RC, Cohen LF (2008) Raman spectroscopy as a probe of temperature and oxidation state for gadolinium-doped ceria used in solid oxide fuel cells. J Phys Chem A 112(7):1497–1501

    Article  Google Scholar 

  94. Charrier-Cougoulic I, Pagnier T, Lucazeau G (1999) Raman spectroscopy of perovskite-type BaCexZr1–xO3(0 < = x < = 1). J Solid State Chem 142(1):220–227

    Article  Google Scholar 

  95. Pomfret MB, Owrutsky JC, Walker RA (2007) In situ studies of fuel oxidation in solid oxide fuel cells. Anal Chem 79(6):2367–2372

    Article  Google Scholar 

Books and Reviews

  • Gellings PJ, Bouwmeester HJM (1997) The CRC handbook of solid state electrochemistry. CRC Press, Boca Raton, p 630

    Google Scholar 

  • Kisi EH, Howard CJ (2008) Applications of neutron powder diffraction. Oxford series on neutron scattering in condensed matter, vol 15. Oxford University Press, Oxford/New York, p xvii, p 486

    Google Scholar 

  • Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, Chichester/West Sussex, p xxii, p 406

    Book  Google Scholar 

  • Maier J (2004) Physical chemistry of ionic materials: ions and electrons in solids. Wiley, Chichester/Hoboken, p 537

    Book  Google Scholar 

  • Rand DAJ, Dell R (2008) Hydrogen energy: challenges and prospects. RSC energy series. RSC Pub, Cambridge, p xxxviii, p 300

    Google Scholar 

  • Will G (2006) Powder diffraction: the rietveld method and the two-stage method to determine and refine crystal structures from powder diffraction data. Springer, Berlin/New York, p ix, p 224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Atkinson, A., Skinner, S.J., Kilner, J.A. (2012). Solid Oxide Fuel Cells. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_139

Download citation

Publish with us

Policies and ethics