Skip to main content

Solid Oxide Fuel Cell Materials: Durability, Reliability, and Cost

  • Reference work entry
  • First Online:
Fuel Cells and Hydrogen Production
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media, LLC 2012

Glossary

Acceleration method:

Generally speaking, there is no appropriate acceleration method for stack performance degradation as a whole. Therefore, individual factors should be carefully accelerated to know the degradation phenomena. One degradation phenomena should consist of several processes having different activation processes. It is highly required to have an acceleration method which should not create additional sources of different origin and mask the original sources of degradation to be investigated.

Cr poisoning:

Catastrophic degradation of lanthanum manganite–based cathode due to the chromium– oxygen vapors emitted from Cr2O3 oxide scale as a result of reaction with (humidified) air. Cr poisoning for other cathodes such as cobaltite or ferrites are completely different in mechanism. The SrCrO4 formation is a key phenomena causing the lowering in cathode performance.

EVD cells:

Sealless tubular cells fabricated by the electrochemical vapor deposition (EVD) technique. The...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Yokokawa H, Sakai N (2003) Part 4. Fuel cell principle, systems and applications, Chapter 13 History of high temperature fuel cell development. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells fundamentals technology and application, vol 1. Fundamentals and survey of systems. Wiley, Chichester, pp 219–266

    Google Scholar 

  2. Moebius HH (1997) On the history of solid electrolyte fuel cells. J Solid State Electrochem 1:2–16

    Article  Google Scholar 

  3. Brown JT (1985) High temperature solid-oxide fuel cells (SOFCs). Energy Int J:209–229

    Google Scholar 

  4. Yokokawa H (2003) Understanding materials compatibility. Annu Rev Mater Res 33:581–610

    Article  Google Scholar 

  5. Atkinson A, Marquis AJ (2009) Mechanical stability. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells fundamental technology and applications. Advanced in electrocatalysis, materials, diagnostics and durability: part 1, vol 5. Wiley, Chichester, pp 463–474

    Google Scholar 

  6. Yokokawa H, Tu H, Iwanschitz B, Mai A (2008) Fundamental mechanism limiting solid oxide fuel cell durability. J Power Sources 182:400–412

    Article  Google Scholar 

  7. Yasuda I, Hishinuma M (1995) Mathematical analysis of stress distribution in acceptor doped lanthanum chromites under an oxygen potential gradient. In: Dokiya M, Yamamoto O, Tagawa H, Singhal SC (eds) Solid oxide fuel cells IV, PV 95-1. The Electrochemical Society, Pennington, pp 924–933

    Google Scholar 

  8. Yokokawa H, Yamaji K, Brito ME, Kishimoto H, Horita T (2010) General considerations on degradation of SOFC anodes and cathodes to impurities in gases. J Power Sources. https://doi.org/10.1016/j.powersour.2010.07.093. (to be published)

  9. Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) Thermodynamic analysis of reaction profiles between LaMO3 (M = Ni, Co, Mn) and ZrO2. J Electrochem Soc 138:2719

    Article  Google Scholar 

  10. Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) Chemical thermodynamic considerations in sinterability of LaCrO3-based perovskites. J Electrochem Soc 138:1018

    Article  Google Scholar 

  11. Pal UB, Singhal SC (1981) Electrochemical vapor deposition of Yttria-stabilized zirconia films. J Electrochem Soc 137(9):2937–2941

    Article  Google Scholar 

  12. Isenberg AO (1981) Energy conversion via solid oxide electrolyte electrochemical-cells at high-temperatures. Solid State Ionics 3(4):431–437

    Article  Google Scholar 

  13. Singhal SC (1995) Advance in tubular solid oxide fuel cell technology. In: Dokiya M, Yamamoto O, Tagawa H, Singhal SC (eds) Solid oxide fuel cells IV PV 95-1. The Electrochemical Society, Pennington, pp 195–207

    Google Scholar 

  14. Singhal SC (1997) Recent progress in tubular solid oxide fuel cell technology. In: Stimming U, Singhal SC, Tagawa H, Lehnett W (eds) Solid oxide fuel cells V, PV 97-40. The Electrochemical Society, Pennington, pp 37–50

    Google Scholar 

  15. Fee DC, Zwick SA, Ackerman JP (1983) Solid oxide fuel cell performance. In: Salzano FJ (ed) Proceedings of the conference on high temperature solid oxide electrolytes anion conductors, vol 1. Brookhaven National Laboratory, Upton, pp 29–38

    Google Scholar 

  16. Steele BCH, Hori KM, Uchino S (2000) Kinetic parameters influencing the performance of IT-SOFC composite electrodes. Solid State Ionics 135:445–450

    Article  Google Scholar 

  17. Frey H, Kessler A, Munch W, Edel M, Nerlich V (2009) Chapter 68 Field experience with molten carbonate fuel cells (MCFCs) and solid oxide fuel cells (SOFCs) with an emphasis on degradation. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells fundamental technology and applications. Advanced in electrocatalysis, materials, diagnostics and durability: part 2, vol 6. Wiley, Chichester, pp 992–1001

    Google Scholar 

  18. Carter JD, Myers D, Kumar R (2006) Recent progress on the development of TuffCell, a metal-supported SOFC/SOEC. In: Presented in the 30th international conference & exposition on advanced ceramics and composites, Cocoa Beach, pp 22–27

    Google Scholar 

  19. Tucker MC (2010) Progress in metal supported solid oxide fuel cells: a review. J Power Sources 195(15):4570–4582

    Article  Google Scholar 

  20. Brandon NP, Blake A, Corcoran D, Cumming D, Duckett A, El-Koury K, Haigh D, Kidd C, Leah R, Lewis G, Matthews C, Maynard N, Oishi N, McColm T, Trezona R, Selcuk A, Schmidt M, Verdugo L (2004) Development of metal supported solid oxide fuel cells for operation at 500–600°C. J Fuel Cell Sci Technol 1(1):61–65

    Article  Google Scholar 

  21. Hooie DT, Camara EH (1985) Onsite industrial applications for natural gas-fueled fuel cells. Fuel Cell Semin:182–185

    Google Scholar 

  22. Stolten D, de Haart LGJ, Blum L (2003) Design criteria for SOFC generators. In: Proceedings of the 27th annual Cocoa Beach conference and exposition on advanced ceramics and composites, Cocoa Beach, Florida, USA. American Ceramic Society, Westerville, pp 263–272

    Google Scholar 

  23. Suzuki M, Iwata S, Higaki K, Inoue S, Shigehisa T, Miyoshi I, Nakabayashi H, Shimazu K (2009) Development and field test results of residential SOFC CHP system. In: Singhal SC, Yokokawa H (eds) Solid oxide fuel cells XI –part 1. ECS Trans 25(2):143–148

    Google Scholar 

  24. Mai A, Iwanschitz B, Weissen U, Denzler R, Haberstock D, Nerlich V, Sfeir J, Schler A (2009) Status of Hexis SOFC stack development and the Galileo 1000 N Micro-CHP system. In: Singhal SC, Yokokawa H (eds) Solid oxide fuel cells XI – part 1. ECS Trans 25(2):149–158

    Google Scholar 

  25. Love J, Amarasinghe S, Selvey D, Zheng X, Christiansen L (2009) Development of SOFC stacks at ceramic fuel cells limited. In: Singhal SC, Yokokawa H (eds) Solid oxide fuel cells XI – part 1. ECS Trans 25(2):115–124

    Google Scholar 

  26. Hinnells M (2008) Combined heat and power in industry and buildings. Energy Policy 36(12):4522–4526

    Article  Google Scholar 

  27. Singhal SC (1999) Progress in tubular solid oxide fuel cell technology. In: Singhal SC, Dokiya M (eds) Solid oxide fuel cell VI PV 99-19. The Electrochemical Society, Pennington, pp 39–51

    Google Scholar 

  28. Takeuchi H, Nishiyama H, Ueno A, Aikawa S, Aizawa M (1999) Current status of SOFC development by wet process. In: Singhal SC, Dokiya M (eds) Solid oxide fuel cell VI, PV 99-19. The Electrochemical Society, Pennington, pp 879–884

    Google Scholar 

  29. Donitz W, Erdle E, Schafer W, Schamm R, Spah R (1991) Status of SOFC development at dornier. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium solid oxide fuel cells. Commission of the European Communities, Brussels/Luxembourg, pp 75–84

    Google Scholar 

  30. Nakanishi A, Hattori M, Sakaki Y, Kimura K, Ando Y, Miyamoto H, Oozawa H (2005) Development of MOLB type SOFC. In: Singhal SC, MIzusaki J (eds) Solid oxide fuel cells IX, PV-2005-07. The Electrochemical Society, Pennington, pp 82–88

    Google Scholar 

  31. Bagger C, Christiansen N, Hendriksen PV, Jensen EJ, Larsen SS, Mogensen M (1996) Technical problems to be solved before the solid oxide fuel cell commercialized. Fuel Cell Semin:44–47

    Google Scholar 

  32. Hilpert K, Quadakkers J, Singheiser L (2003) Chapter 74 Interconnects. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells fundamental technologies and applications. Fuel cell technology and applications, part 2, vol 4. Wiley, Chichester, pp 1037–1054

    Google Scholar 

  33. Yang ZG, Stevenson J (2009) Chapter 35 Durability of metallic interconnects and protective coatings. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells fundamental technology and applications. Advanced in electrocatalysis, materials, diagnostics and durability: part 1, vol 5. Wiley, Chichester, pp 531–542

    Google Scholar 

  34. Taniguchi S, Kadwaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y, Saitoh T (1995) Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator. Power Sources 55:73–79

    Article  Google Scholar 

  35. Yokokawa H (2001) Recent developments in solid oxide fuel cell materials. Fuel Cells Fundam Syst 1(2):1–15

    Google Scholar 

  36. Sakai N, Horita T, Yokokawa H, Dokiya M (1996) Oxygen permeation measurement of La1-xCaxCrO3-d by using an electro-chemical method. Solid State Ionics 86–88:1273–1278

    Article  Google Scholar 

  37. Sakai N, Yamaji K, Horita T, Yokokawa H, Kawada T, Dokiya M, Hiwatashi K, Ueno A, Aizawa M (1999) Determination of oxygen permeation flux through La0.75Ca0.25CrO3-d by electrochemical method. J Electrochem Soc 146(4):1341–1345

    Article  Google Scholar 

  38. Nishi T et al (2003) Solid electrolyte fuel cell. Japan Patent 3,453,283

    Google Scholar 

  39. Kȍck W, Martinz H-P, Greiner H, Janousek M (1995) Development and processing of metallic Cr based materials for SOFC parts. In: Dokiya M, Yamamoto O, Tagawa H, Singhal SC (eds) Soli oxide fuel cells IV, PV 95-1. The Electrochemical Society, Pennington, pp 841–849

    Google Scholar 

  40. Glatz W, Kunschert G, Janousek M, Venskutonis A (2005) P/M processing and properties of high performance interconnect materials and components for SOFC applications. In: Singhal SC, Dokiya M (eds) Solid oxide fuel cell IX, PV 2005-07. The Electrochemical Society, Pennington, pp 1773–1780

    Google Scholar 

  41. Yokokawa H, Horita T (2003) Chapter 5. Cathode. In: Singhal SC, Kendall K (eds) High temperature solid oxide fuel cells fundamentals design and application. Elsevier, Oxford, pp 119–147

    Chapter  Google Scholar 

  42. Yokokawa H, Horita T, Sakai N, Yamaji K, Brito ME, Xiong XP, Kishimoto H (2006) Thermodynamic considerations on Cr poisoning in SOFC cathodes. Solid State Ionics 177:3193–3198

    Article  Google Scholar 

  43. Mentzer NH, Mai A, Stover D (2009) Durability of cathodes including Cr poisoning. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells fundamental technology and applications. Advanced in electrocatalysis, materials, diagnostics and durability: part 1, vol 5. Wiley, Chichester, pp 566–578

    Google Scholar 

  44. Hilpert K, Das D, Miller M, Peck DH, Weiss R (1996) Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes. J Electrochem Soc 143:3642

    Article  Google Scholar 

  45. Batawi E, Plas A, Straub W, Honneger K, Diethelm R (1999) New cost-effective ceramic oxide phases used as protective coatings for chromium-based interconnects. In: Singhal SC, Dokiya M (eds) Solid oxide fuel cells VI, PV 99-19. The Electrochemical Society, Pennington, pp 767–773

    Google Scholar 

  46. Larring Y, Norby T (2000) Spinel and Perovskite functional layers between plansee metallic interconnect (Cr-5 wt% Fe-1wr% Y2O3) and ceramic (La0.85Sr0.15)0.91MnO3 cathode materials for solid oxide fuel cells. J Electrochem Soc 147(9):3251–3256

    Article  Google Scholar 

  47. Ghosh D, Tang E, Perry M, Prediger D, Pastula M, Boersuma R (2001) Status of SOFC developments at global thermoelectric. In: Yokokawa H, Singhal SC (eds) Solid oxide fuel cells VII, PV-2001-16. The Electrochemical Society, Pennington, pp 100–110

    Google Scholar 

  48. Wuilleman Z, Autissier N, Nakajo A, Luong M, Van herle J, Favrat D (2008) Modeling and study of the influence of sealing on solid oxide fuel cell. J Fuel Cell Sci Technol 5:011016

    Article  Google Scholar 

  49. Ivers-Tiffée E, Timmermann H, Leonide A, Mentzer NH, Malzbender J (2009) Methane reforming kinetics, carbon deposition, and redox durability of Ni/8 yttria stabilized zirconia (YSZ) anodes. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells fundamental technology and applications. Advanced in electrocatalysis, materials, diagnostics and durability: part 2, vol 6. Wiley, Chichester, pp 933–956

    Google Scholar 

  50. Steinberger-Wilckens R, Blum L, Buchkrember H-P, de Haart LGJ, Pap M, Steinbrech RW, Uhlenbruck S, Tietz F (2009) Overview of solid oxide fuel cell development at Forschungzentrum Juelich. ECS Trans 25(2):213–220

    Article  Google Scholar 

  51. Yokokawa H, Sakai H, Horita T, Yamaji K, Brito ME, Kishimoto H (2008) Thermodynamic and kinetic considerations on degradations in solid oxide fuel cell cathodes. J Alloy Compd 452:41–47

    Article  Google Scholar 

  52. Sakai N, Kishimoto H, Yamaji K, Horita T, Brito ME, Yokokawa H (2007) Interface stability of Perovskite cathodes and rare-earth doped ceria interlayer in SOFCs. J Electrochem Soc 154(12):B1331–B1337

    Article  Google Scholar 

  53. Xiong YP, Yamaji K, Horita T, Yokokawa H, Akikusa J, Eto H, Inagaki T (2009) Sulfur poisoning of SOFC cathodes. J Electrochem Soc 156(5):B588–B592

    Article  Google Scholar 

  54. Yamaji K, Kishimoto H, Horita T, Yokokawa H, Akikusa J, Kawano M (2010) Effect of temperature on SO2 poisoning for SSC cathode. In: Proceedings 77th meeting of electrochemical society of Japan, March 29–31, Toyama, 1G20, p 209

    Google Scholar 

  55. Simner SP, Anderson MD, Pederson LR, Stevenson JW (2005) Performance variability of La(Sr)FeO3 SOFC cathode with Pt, Ag, and Au current collectors. J Electrochem Soc 152:A1851

    Article  Google Scholar 

  56. Christiansen N, Hansen JB, Holm-Larsen H, Jørgensen MJ, Larsen P, Hendriksen P, Hagen A, Linderoth S (2008) Solid oxide fuel cell research and development at tops – fuel cell A/S and Risø. In: Proceedings of the 8th European solid oxide fuel cell forum. The European Fuel Cell Forum, Switzerland, B0201

    Google Scholar 

  57. Yokokawa H, Horita T, Sakai N, Yamaji K, Brito ME, Xiong YP, Kishimoto H (2004) Protons in ceria and their roles in SOFC electrode reactions from thermodynamic and SIMS analyses. Solid State Ionics 174:205–221

    Article  Google Scholar 

  58. Yokokawa H, Horita T, Sakai N, Yamaji K, Brito ME, Xiong YP, Kishimoto H (2006) Ceria: relation among thermodynamic, electronic hole and proton properties. Solid State Ionics 177:1705–1714

    Article  Google Scholar 

  59. Komatsu T, Arai H, Chiba R, Nozawa K, Arakawa M, Sato K (2006) Cr poisoning suppression in solid oxide fuel cells using LaNi(Fe)O3 electrodes. Electrochem Solid State Lett 9(1):A9–A12

    Article  Google Scholar 

  60. Hartvingsen JJ, Elangovan S, Khandkar AC (2003) Chapter 76 System design. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells fundamentals technology and applications. Fuel cell technology and applications: part 2, vol 4. Wiley, Chichester, pp 1070–1085

    Google Scholar 

  61. Okuda M (2010) Solid oxide fuel cell demonstration program. In: Proceedings of the report symposium of NEDO projects on fuel cells and hydrogen, Tokyo, July 7–9. NEDO, Kawasaki, pp 141–148

    Google Scholar 

  62. Okuda M (2010) SOFC demonstrative research project. In: Proceedings of the progress report symposium of solid oxide fuel cell demonstrative research project, March 8, 2010, New Energy Foundation, Tokyo

    Google Scholar 

  63. Yokokawa H (2010) NEDO SOFC project on durability/reliability. In: Proceedings of the report symposium of NEDO projects on fuel cells and hydrogen, Tokyo, July 7–9. NEDO, Kawasaki, pp 95–107

    Google Scholar 

  64. Yoshida H, Fujita K, Yakabe H, Yamashita S, Sobue T, Seyama T (2006) Subjects to be solved in SOFC system development. In: 15th symposium on solid oxide fuel cells in Japan, extended abstracts. The solid oxide fuel cell society of Japan, Tokyo, pp 18–21

    Google Scholar 

  65. Wuillemin Z, Nakajo A, Muller A, Schuler JA, Diethelm S, Van herle J, Favrat D (2009) Locally-resolved study of degradation in a SOFC repeat element. ECS Trans 25(2):457–466

    Article  Google Scholar 

  66. Yokokawa H, Sakai N, Horita T, Yamaji K (2009) Impact of impurities on reliability of materials in solid oxide fuel cell (SOFC) stack/modules. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells fundamentals technology and application. Advances in electrocatalysis, materials, diagnostics and durability: part 2, vol 6. Wiley, Chichester, pp 979–991

    Google Scholar 

  67. Yamaji K, Sakai N, Kishimoto H, Horita T, Brito ME, Yokokawa H (2009) Application of secondary ion mass spectrometry (SIMS) technique on the durability of solid oxide fuel cell (SOFC). In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells fundamentals technology and application. Advances in electrocatalysis, materials, diagnostics and durability: part 1, vol 5. Wiley, Chichester, pp 555–565

    Google Scholar 

  68. Yokokawa H, Horita T, Yamaji K, Kishimoto H, Brito ME (2010) Materials chemical point of view for durability issues in solid oxide fuel cells. J Korean Ceram Soc 47(1):26–38

    Article  Google Scholar 

  69. Wunderlich C (2007) Staxera SOFC stacks in series production. Abstracts for oral presentations for 2007 fuel cell seminar and exposition. October 15–19, 2007, San Antonio, p 322

    Google Scholar 

  70. Matsuzaki Y, Yasuda I (2001) Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes. J Electrochem Soc 148:A126

    Article  Google Scholar 

  71. Badwal SPS, Deller R, Foger K, Ramprakash Y, Zhang JP (1997) Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells. Solid State Ionics 99:297–310

    Article  Google Scholar 

  72. Simner SP, Anderson MD, Xia G-G, Yang Z, Pederson LR, Stevenson JW (2005) SOFC performance with Fe-Cr-Mn alloy interconnect. J Electrochem Soc 152(4):A740–A745

    Article  Google Scholar 

  73. Jiang SP, Zhang JP, Fȍger K (2000) Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells. J Electrochem Soc 147(1):4013–4022; (2000) 147(9): 3195–3205; (2001) 148(7):C447–C455

    Article  Google Scholar 

  74. Paulson SC, Birss VI (2004) Chromium poisoning of LSM-YSZ SOFC cathodes I. Detailed study of the distribution of chromium species at a porous, single-phase cathode. J Electrochem Soc 151(1):A1961–A1968

    Article  Google Scholar 

  75. Konysheva E, Penkalla H, Wessel E, Mertens J, Seeling U, Singheiser L, Hilpert K (2006) Chromium poisoning of Perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel Croffer 22APU. J Electrochem Soc 153(4):A765–A773

    Article  Google Scholar 

  76. Konysheva E, Mertens J, Penkalla H, Singheiser L, Hilpert K (2007) Chromium poisoning of the porous composite cathode effect of cathode thickness and current density. J Electrochem Soc 154(12):B1252–B1264

    Article  Google Scholar 

  77. Tsuneyoshi K, Mori K, Sawata A, Mizusaki J, Tagawa H (1989) Kinetic studies on the reaction at the La0.6Ca0.4MnO3/YSZ interface, as an SOFC air electrode. Solid State Ionics 35:263–268

    Article  Google Scholar 

  78. Jiang SP, Zhang S, Zhen YD (2006) Deposition of Cr species at (La, Sr) (Co, Fe)O3 cathodes of solid oxide fuel cells. J Electrochem Soc 153(1):A127–A134

    Article  Google Scholar 

  79. Kim JY, Sprenkle VL, Canfield NL, Meinhardt KD, Chick LA (2006) Effects of chrome contamination on the performance of La0.6Sr0.4Co0.2Fe0.8O3 cathode used in solid oxide fuel cells. J Electrochem Soc 153(5):A880–A886

    Article  Google Scholar 

  80. Xiong YP, Yamaji K, Kishimoto H, Brito ME, Horita T, Yokokawa H (2009) Deposition of platinum particles at LSM/ScSZ/air three-phase boundaries using a platinum current collector. Electrochem Solid State Lett 12(3):B31–B33

    Article  Google Scholar 

  81. Ingram BJ, Cruse TA, Krumpelt M (2007) Potassium-assisted chromium transport in solid oxide fuel cells. J Electrohcem Soc 154(11):B1200–B1205

    Article  Google Scholar 

  82. Stanislowsli M, Froitzheim J, Niewolak L, Quadakkers WJ, Hilpert K, Markus T, Singheiser L (2007) Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings. J Power Sources 164:578–589

    Article  Google Scholar 

  83. Muller AC, Weber A, Beie HJ, Krugel A, Gerthsen D, Ivers-Tiffée E (1998) Influence of current density and fuel utilization on the degradation of the anode. In: Stevens P (ed) Proceedings of the 3rd European solid oxide fuel cell forum. The European Fuel Cell Forum, pp 353–362

    Google Scholar 

  84. Weber A, Sauer B, Muller AC, Herbstritt D, Ivers-Tiffée E (2002) Oxidation of H2, CO and methane in SOFCs with Ni/YSZcermet anodes. Solid State Ionics 152–153:543–550

    Article  Google Scholar 

  85. Kishimoto H, Horita T, Yamaji K, Brito ME, Xiong YP, Yokokawa H (2010) Sulfur poisoning on SOFC Ni anodes: thermodynamic analyses within local equilibrium anode reaction model. J Electrochem Soc 157(6):B802–B813

    Article  Google Scholar 

  86. Wilson JR, Kobsciriphat W, Mendoza R, Chen H-Y, Hiller JM, Miller DJ, Thornton K, Voorhees PW, Adler SB, Barnett SA (2006) Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat Mater 5:541–544

    Article  Google Scholar 

  87. Abbaspour A, Nandakumar K, Luo J, Chuang KT (2006) A novel approach to study the structure versus performance relationship of SOFC electrodes. J Power Sources 161:965–970

    Article  Google Scholar 

  88. Smith JR, Chen A, Gostovic D, Hickey D, Kundinger D, Duncan KL, DeHoff RT, Jones KS, Wachsman ED (2009) Evaluation of the relation between cathode microstructure and electrochemical behavior for SOFCs. Solid State Ionics 180:90–98

    Article  Google Scholar 

  89. Timmermann H, Sawady W, Campbell D, Weber A, Reimert R, Ivers-Tiffée E (2008) Coke formation and degradation in SOFC operation with a model reformate from liquid hydrocarbons. J Electrochem Soc 155(4):B356–B359

    Article  Google Scholar 

  90. Mukerjee S, Kerr R, Shaffer S (2009) Solid oxide fuel cell development for transportation and stationary applications: latest update on stack and system performance. In: Abstracts for the oral and poster presentations for 2009 Fuel cell seminar and exposition, November 16–19, 2009, Palm Springs, HRD 24-1

    Google Scholar 

  91. Matsuzaki Y, Yasuda I (2000) The poisoning effect of sulfur-containing impurity gas on a SOFC anode: part I. Dependence on temperature, time, and impurity concentration. Solid State Ionics 132:261–269

    Article  Google Scholar 

  92. Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2006) H2S poisoning of solid oxide fuel cells. J Electrochem Soc 153(11):A2023–A2029

    Article  Google Scholar 

  93. Lohsoontorn P, Brett DJL, Brandon NP (2008) The effect of fuel composition and temperature on the interaction of H2S with nickel-ceria anodes for solid oxide fuel cells. J Power Sources 183:232–239

    Article  Google Scholar 

  94. Lohsoontorn P, Brett DJL, Brandon NP (2008) Thermodynamic predictions of the impact of fuel composition on the propensity of sulphur to interact with Ni and ceria-based anodes for solid oxide fuel cells. J Power Sources 175:60–67

    Article  Google Scholar 

  95. Dong J, Cheng Z, Zha S, Liu M (2006) Identification of nickel sulfides on Ni-YSZ cermet exposed to H2 fuel containing H2S using Raman spectroscopy. J Power Sources 156:461–465

    Article  Google Scholar 

  96. Hansen JB (2008) Correlating sulfur poisoning of SOFC nickel anodes by Temkin isotherm. Electrochem Solid State Lett 11(10):B178–B180

    Article  Google Scholar 

  97. Marques AI, Abreu YD, Botte GG (2006) Theoretical investigations of Ni/YSZ in the presence of H2S. Electrochem Solid State Lett 9(3):A163–A166

    Article  Google Scholar 

  98. Wang J-H, Liu M (2007) Computational study of sulfur-nickel interactions: a new S-Ni phase diagram. Electrochem Commun 9:2213–2218

    Google Scholar 

  99. Zha S, Cheng Z, Liu M (2007) Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells. J Electrochem Soc 154(2):B201–B206

    Article  Google Scholar 

  100. Ferrizz RM, Gorte RJ, Vohs JM (2003) Determining the Ce2O2SceOx phase boundary for conditions relevant to adsorption and catalysis. Appl Catal B43:273–280

    Article  Google Scholar 

  101. Chou Y-S, Stevenson JW, Hardy JS, Singh P (2006) Material degradation during isothermal aging and thermal cycling of hybrid mica seal with Ag interlayer under SOFC exposure conditions. J Electrochem Soc 153(8):A1591–A1598

    Article  Google Scholar 

  102. Hansen KV, Norrman K, Mogensen M (2004) H2-H2O-Ni-YSZ electrode performance effect of segregation to the interface. J Electrochem Soc 151(9):A1436–A1444

    Article  Google Scholar 

  103. Hauch A, Jensen SH, Bilde-Sørensen JB, Mogensen M (2007) Silica segregation in the Ni/YSZ electrode. J Electrochem Soc 154(7):A619–A626

    Article  Google Scholar 

  104. Aravind PV, Ouweltjes JP, Woudstra N, Rietveld G (2008) Impact of biomass-derived contaminants on SOFCs with Ni/Gadolinia-doped ceria anodes. Electrochem Solid State Lett 11(2):B24–B28

    Article  Google Scholar 

  105. Yang Z, Meihardt KD, Stevenson JW (2003) Chemical compatibility of barium-calcuium-aluminosilicate-based sealing glasses with tge ferritic stainless steel interconnect in SOFCs. J Electrochem Soc 150(8):A1095–A1101

    Article  Google Scholar 

  106. Hofmann P, Panopoulos KD, Fryda LE, Schweiger A, Ouweltjes JP, Karl J (2008) Integrating biomass gasification with solid oxide fuel cells: effect of real product gas tars, fluctuations and particulates on Ni-GDC anode. Int J Hydrog Energy 33:2834–2844

    Article  Google Scholar 

  107. Marina OA, Pederson LR, Gemmen R, Finklea K, Celik IB (2009) Overview of SOFC anode interactions with coal gas impurities. In: 2009 Fuel cell seminar, Palm Spring, HRD43b-1

    Google Scholar 

  108. Gemmen RS, Trembly J (2006) On the mechanisms and behavior of coal syngas transport and reaction within the anode of a solid oxide fuel cell. J Power Sources 161:1084–1095

    Article  Google Scholar 

  109. Trembly JP, Gemmen RS, Bayless DJ (2007) The effect of IGFC warm gas cleanup system conditions on the gas-solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes. J Power Sources 163:986–996

    Article  Google Scholar 

  110. Trembly JP, Gemmen RS, Bayless DJ (2007) The effect of coal syngas containing HCl on the performance of solid oxide fuel cells: investigations into the effect of operational temperature and HCl concentration. J Power Sources 169:347–354

    Article  Google Scholar 

  111. Trembly JP, Gemmen RS, Bayless DJ (2007) The effect of coal syngas containing AsH3 on the performance of SOFCs: investigations into the effect of operational temperature, current density and AsH3 concentration. J Power Sources 171:818–825

    Article  Google Scholar 

  112. Xu B, Zondlo JW, Finklea HO, Demircan O, Gong M, Liu XB (2009) The effect of phosphine in syngas on Ni-YSZ anode-supported solid oxide fuel cells. J Power Sources 193:739–746

    Article  Google Scholar 

  113. Trembly JP, Marques AI, Ohrn TR, Bayless DJ (2006) Effects of coal syngas and H2S on the performance of solid oxide fuel cells: single-cell tests. J Power Sources 158:263–273

    Article  Google Scholar 

  114. Zhi M, Chen X, Finklea H, Celik I, Wu NQ (2008) Electrochemical and microstructural analysis of nickel-yttria-stabilized zirconia electrode operated in phosphorus-containing syngas. J Power Sources 183:485–490

    Article  Google Scholar 

  115. Haga K, Adachi S, Shiratori Y, Itoh K, Sasaki K (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179:1427–1431

    Article  Google Scholar 

  116. Bao J, Krishnan GN, Jayaweera P, Perez-Mariano J, Sanjurjo A (2009) Effect of various coal contaminants on the performance of solid oxide fuel cells: part I accelerated testing. J Power Sources 193:607–616

    Article  Google Scholar 

  117. Bao J, Krishnan GN, Jayaweera P, Kau KH, Sanjurjo A (2009) Effect of various coal contaminants on the performance of solid oxide fuel cells: part II. ppm and sub-ppm level testing. J Power Sources 193:617–624

    Article  Google Scholar 

  118. Bao J, Krishnan GN, Jayaweera P, Sanjurojo A (2010) Effect of various coal gas contaminants on the performance of solid oxide fuel cells: part III Synergistic effects. J Power Sources 195(5):1316–1324

    Article  Google Scholar 

  119. Burnette DD, Kremer GG, Bayless DJ (2008) The use of hydrogen-depleted coal syngas in solid oxide fuel cells. J Power Sources 182:329–333

    Article  Google Scholar 

  120. Huang T-J, Chou C-L, Chen W-J, Huang M-C (2009) Coal syngas reactivity over Ni-added LSCF-GDC anode of solid oxide fuel cells. Electrochem Commun 11:294–297

    Article  Google Scholar 

  121. Marques AI, Ohrn TR, Trembly JP, Ingram DC, Bayless DJ (2007) Effect of coal syngas and H2S on the performance of solid oxide fuel cells part 2 Stack tests. J Power Sources 164:659–667

    Article  Google Scholar 

  122. Cayan FN, Zhi M, Pakalapati SR, Celik I, Wu NQ, Gemmen R (2008) Effects of coal syngas impurities on anodes of solid oxide fuel cells. J Power Sources 185:595–602

    Article  Google Scholar 

  123. Casleton KH, Breault RW, Richards GA (2008) System issues and tradeoffs associated with syngas production and combustion. Combust Sci Technol 180:1013–1052

    Article  Google Scholar 

  124. Itoh H, Mori M, Mori N, Abe T (1993) Development of solid oxide fuel cells – producing cost estimation. Yokosuka Research Laboratory Rep. No. W92028, CRIEPI, Tokyo

    Google Scholar 

  125. Itoh H, Mori M, Mori N, Abe T (1994) Production cost estimation of solid oxide fuel cells. J Power Sources 49:315–332

    Article  Google Scholar 

  126. Romero C, Wright J (1996) The value and manufacturing costs of planar solid oxide fuel cell stacks. Topical Report no. TDA-GRI-96/0210 for Gas Research Institute

    Google Scholar 

  127. Krist K, Wright JD, Romero C, Chen TP (1996) Cost projections for planar solid oxide fuel cell systems. In: Fuel cell seminar, Orlando, pp 497–500

    Google Scholar 

  128. Krist K, Wright JD, Romero C (1995) Manufacturing costs for planar solid oxide fuel cells. In: Dokiya M, Yamamoto O, Tagawa T, Singhal SC (eds) Solid oxide fuel cells IV, PV 95-1. The Electrochemical Society, Pennington, pp 24–32

    Google Scholar 

  129. Ipponmatsu M, Sasaki H, Otoshi S (1996) Evaluation of the cost performance of the SOFC cell in the market. Int J Hydrog Energy 21(2):129–135

    Article  Google Scholar 

  130. George RA, Bessette N (1998) Reducing the manufacturing cost of tubular SOFC technology. J Power Sources 71:131–137

    Article  Google Scholar 

  131. Mizutani Y, Tamura M, Kawai M, Nomura K, Nakamura Y, Yamamoto O (1995) Characterization of the Sc2O3-ZrO2 system and its application as the electrolyte in planar SOFC. In: Dokiya M, Yamamoto O, Tagawa T, Singhal SC (eds) Solid oxide fuel cells IV, PV 95-1. The Electrochemical Society, Pennington, pp 301–317

    Google Scholar 

  132. Thijssen JH, Surdval WA (2009) Stack operating strategies for central station SOFC. In: 2009 Fuel cell seminar and exposition. November 16–19, Palm Springs, HRD32-3

    Google Scholar 

  133. Watanabe M, Uchida H, Yoshida M (1997) Effect of ionic conductivity of zirconia electrolytes on the polarization behavior of ceria-based anodes in solid oxide fuel cells. J Electrochem Soc 144(5):1739–11743

    Article  Google Scholar 

Books and Reviews

  • Ishihara T (ed) (2009) Perovskite oxide for solid oxide fuel cells. Springer, Dordrecht

    Google Scholar 

  • Minh Q, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam

    Google Scholar 

  • Singhal SC, Kendall K (eds) (2003) Solid oxide fuel cells. Elsevier, Oxford

    Google Scholar 

  • Vielstrich W, Yokokawa H, Gasteiger HA (eds) (2009) Hand book of fuel cells fundamentals technology and application, vols 5 and 6. Advances in electrocatalysis, materials, diagnostics and durability. Wiley, Chichester

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yokokawa, H., Horita, T. (2012). Solid Oxide Fuel Cell Materials: Durability, Reliability, and Cost. In: Lipman, T., Weber, A. (eds) Fuel Cells and Hydrogen Production. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7789-5_136

Download citation

Publish with us

Policies and ethics