Skip to main content

Offshore Wind Energy Technology Trends, Challenges, and Risks

  • Reference work entry
  • First Online:
Power Stations Using Locally Available Energy Sources
  • 1081 Accesses

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2017

Glossary

Anchor:

Device attached to the end of a mooring line or tendon for the purpose of limiting the movement of the mooring line or tendon and to transfer loads from a floating structure to the seabed.

Ballast:

Heavy material used to maintain stability of a floating structure.

Blade:

The part of a wind turbine rotor which produces mechanical forces through the action of the wind.

Cut-in wind speed :

Lowest wind speed at hub height at which the wind turbine starts to produce power.

Cut-out wind speed :

Highest wind speed at hub height at which the wind turbine is designed to produce power.

External conditions :

Factors affecting the design and operation of an offshore wind turbine, including the environmental conditions, other climatic factors, and the electrical network conditions.

Fixed offshore wind turbine :

An offshore wind turbine which is supported by the seabed (in distinction to a floating offshore wind turbine).

Floating offshore wind turbine...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. IEC (2009) Wind turbines, part 3: design requirements for offshore wind turbines, 61400-3. International Electrotechnical Commission, Geneva

    Google Scholar 

  2. Vowles HP (1932) Early evolution of power engineering. Isis 17(2):412–420 . Chicago, IL

    Article  Google Scholar 

  3. Nansen F (1897) Farthest north. MacMillan, London

    Google Scholar 

  4. Honnef H (1932) Windkraftwerke. Friedrich Vieweg & Sohn, Braunschweig

    Google Scholar 

  5. Dörner H (2002) Drei Welten – ein Leben. Prof. Dr. Ulrich Hütter. Hochschullehrer – Konstrukteur – Künstler, 2nd edn. Eigenverlag H. Dörner, Heilbronn

    Google Scholar 

  6. Heronemus WE (1972) Pollution-free energy from offshore winds. In: Proceedings of 8th annual conference and exposition, Marine Technology Society, Washington, DC

    Google Scholar 

  7. Casson L (1959) The ancient mariners. Victor Gollancz Ltd, London

    Google Scholar 

  8. Randall RE (1997) Elements of ocean engineering. The Society of Naval Architects and Marine Engineers, Jersey City

    Google Scholar 

  9. Musial W, Ram B (2010) Large-scale offshore wind power in the United States assessment of opportunities and barriers NREL/TP-500-40745. National Renewable Energy Laboratory, Golden

    Google Scholar 

  10. Manwell JF, McGowan JG, Rogers AL (2009) Wind energy explained: theory, design and application, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  11. Manwell JF, Elkinton CN, Rogers AL, McGowan JG (2007) Review of design conditions applicable to offshore wind energy in the United States. Renew Sustain Energy Rev, Elsevier: Amst 11(2):183–364

    Article  Google Scholar 

  12. Wang H, Barthelmie RJ, Pryor SC, Kim H (2014) A new turbulence model for offshore wind turbine standards. Wind Energy 17(10):1587–1604

    Article  Google Scholar 

  13. Gumbel EJ (1958) Statistics of extremes. Columbia University Press, New York

    MATH  Google Scholar 

  14. Ochi MK (1998) Ocean waves – the stochastic approach. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  15. USACE (2002) Coastal engineering manual, CEM M 1110-2-1100. US Army Corps of Engineers (USACE), Washington, DC

    Google Scholar 

  16. Airy GB (1845) On tides and waves. In: Encyclopedia metropolitana, 5. London, pp 241–396

    Google Scholar 

  17. Yuan Z, Huang Z (2010) An experimental study of inertia and drag coefficients for a truncated circular cylinder in regular waves. In: 9th international conference on hydrodynamics, Shanghai

    Article  Google Scholar 

  18. Houlsby GT, Byrne BW (2003) Foundations for offshore wind turbines. Phil Trans R Soc Lond A 361:2909–2930

    Article  Google Scholar 

  19. Westgate ZJ, De Jong JT (2005) Geotechnical considerations for offshore wind turbines. University of Massachusetts and the Massachusetts Technology Collaborative, Amherst

    Google Scholar 

  20. van Kuik GAM (2007) The Lanchester–Betz–Joukowsky limit. Wind Energy 10:289–291

    Article  Google Scholar 

  21. Hasager CB, Nygaard NG, Volker PJH, Karagali I, Andersen S, Badger J (2017) Wind farm wake: the 2016 Horns Rev photo case. Energies 10(3):317

    Article  Google Scholar 

  22. Eggleston DM, Stoddard FS (1987) Wind turbine engineering design. Van Nostrand Reinhold, New York

    Google Scholar 

  23. Jonkman J (2005) FAST user’s guide, NREL/EL-500-38230. National Renewable Energy Laboratory, Golden

    Google Scholar 

  24. Downing SD, Socie DF (1982) Simple rainflow counting algorithms. Int J Fatigue 4(1):31–40

    Article  Google Scholar 

  25. Jonkman J, Butterfield S, Musial W, Scott G (2009) Definition of a 5-MW reference wind turbine for offshore system development NREL/TP-500-38060. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  26. Jonkman J, Musial W (2010) Offshore code comparison collaboration (OC3) for IEA task 23 offshore wind technology and deployment NREL/TP-5000-48191. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  27. Jonkman J (2010) Definition of the floating system for phase IV of OC3 NREL/TP-500-47535. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  28. Matha D (2010) Model development and loads analysis of an offshore wind turbine on a tension leg platform, with a comparison to other floating turbine concepts NREL/SR-500-45891. National Renewable Energy Laboratory, Golden

    Google Scholar 

  29. Robertson AJ, Jonkman J, Masciola M, Song H, Goupee A, Coulling A, Luan C (2014) Definition of the semisubmersible floating system for phase II of OC4 NREL/TP-5000-60601. National Renewable Energy Laboratory, Golden

    Google Scholar 

  30. Jonkman J (2007) Dynamics modeling and loads analysis of an offshore floating wind turbine NREL/TP-500-41958. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  31. Wright SD, Rogers AL, Manwell JF, Ellis A (2002) Transmission options for offshore wind farms in the United States. In: Proceedings of AWEA annual conference, Portland

    Google Scholar 

  32. Nexan Submarine Cables (2009) [Online]. Available: http://www.nexans.com/Corporate/2009/Nexans_HV_submarine_3cores_cable.jpg. Accessed 12 Apr 2017

  33. Neher MH, McGrath H (1957) The calculation of the temperature rise and load capability of cable systems. AIEE Trans, Part III 76:752–772

    Google Scholar 

  34. Elkinton CN (2007) Offshore wind farm layout optimization, PhD dissertation. Amherst

    Google Scholar 

  35. A2SEA Taking Windpower Offshore [Online]. Available: http://www.marine-marchande.net/Collection%20Le%20Mens/LeMens13/A2sea.htm. Accessed 12 Apr 2017

  36. Ram B (2009) An integrated risk framework for gigawatt-scale deployments of renewable energy: the U.S. wind energy case NREL/SR-500-47129. National Renewable Energy Laboratory, Golden

    Google Scholar 

  37. Koeller J, Koeppel J, Peters W (2006) Offshore wind energy research on environmental impact. Springer Verlag, Berlin

    Book  Google Scholar 

  38. Ozkan D (2010) Financial analysis and cost optimization of offshore wind energy under uncertainty and in deregulated markets. Washington, DC

    Google Scholar 

  39. Macilwain C (2010) Energy: supergrid. Nature 468:624–625

    Article  Google Scholar 

Books and Reviews

  • Barltrop NDP, Adams AJ (1991) Dynamics of fixed marine structures. Butterworth Heinemann, Oxford

    Google Scholar 

  • Barthelmie RJ, Courtney MS, Højstrup J, Larsen SE (1996) Meteorological aspects of offshore wind energy: observations from the Vindeby wind farm. J Wind Eng Ind Aerodyn 62(2–3):191–211

    Article  Google Scholar 

  • Burton T, Sharpe D, Jenkins N, Bossanyi E (2011) Wind energy handbook. Wiley, Chichester

    Book  Google Scholar 

  • Cheng PW (2002) A reliability based design methodology for extreme responses of offshore wind turbines. PhD dissertation, Delft University of Technology, Delft

    Google Scholar 

  • Cruz J, Atcheson M (2016) Floating offshore wind energy: the next generation of wind energy. Springer International Publishing AG, Switzerland

    Book  Google Scholar 

  • Dicorato M, Forte G, Pisani M, Trovato M (2011) Guidelines for assessment of investment cost for offshore wind generation. Renew Energy 36:2043–2051

    Article  Google Scholar 

  • Elkinton CN, Manwell JF, McGowan JG (2008) Optimizing the layout of offshore wind energy systems. J Mar Technol Soc 42(2):19–27

    Article  Google Scholar 

  • Gardner P, Craig LM, Smith GJ (1998) Electrical systems for offshore wind farms. In: Proceedings of 1998 British Wind Energy Associates Conference, Professional Engineering Publishing Limited, UK

    Google Scholar 

  • Gerdes G, Tiedemann A, Zeelenberg S (2010) Case study: European offshore wind farms – a survey for the analysis of the experiences and lessons learnt by developers of offshore wind farms Deutsche WindGuard GmbH, Deutsche Energie-Agentur GmbH (dena). University of Groningen. Available from http://www.offshore-wind.de/page/fileadmin/offshore/documents/Case_Study_European_Offshore_Wind_Farms.pdf

  • GL (2005) Guidelines for the certification of offshore wind turbines. Germanischer Lloyd, Hamburg

    Google Scholar 

  • Hsu SA (2003) Estimating overwater friction velocity and exponent of power-law wind profile from gust factor during storms. J Water Port Coast Ocean Eng 129(4):–174, 177. ASCE

    Article  Google Scholar 

  • Kühn M (2001) Dynamics and design optimisation of offshore wind energy conversion systems. PhD dissertation, Delft University of Technology, Delft

    Google Scholar 

  • Lange B, Højstrup J (1999) The influence of waves on the offshore wind resource. In: Proceedings of 1991 European wind energy conference, Nice

    Google Scholar 

  • Musial W (2007) Offshore wind electricity: a viable energy option for the coastal United States. Mar Technol Soc J 41(3):32–43. Columbia, MD

    Article  Google Scholar 

  • Twidell J, Gaudiosi G (2009) Offshore wind power. Multi-Science Publishing Co Ltd, Brentwood

    Google Scholar 

  • Van der Tempel J (2006) Design of support structures for offshore wind turbines. PhD dissertation, Delft University of Technology, Delft

    Google Scholar 

  • Veldkamp D (2006) Chances in wind energy: a probabilistic approach to wind turbine fatigue design. PhD dissertation, Delft University of Technology, Delft

    Google Scholar 

  • Westinghouse Electric Corp (1979) Design study and economic assessment of multi-unit offshore wind energy conversion systems application, DOE WASH-2830-78/4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Manwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Manwell, J.F. (2018). Offshore Wind Energy Technology Trends, Challenges, and Risks. In: Bronicki, L. (eds) Power Stations Using Locally Available Energy Sources. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7510-5_697

Download citation

Publish with us

Policies and ethics