Advertisement

Geochemistry of Hydrothermal Systems

  • David Nieva
  • Rosa María Barragán
  • Víctor Arellano
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)

Glossary

Adiabatic process

A process undergone by a system during which there is no heat exchange between the system and its surroundings.

Enthalpy

Thermodynamic potential (akin to the internal energy) of a system that remains constant when the system undergoes an adiabatic process at constant pressure and composition.

Geothermal reservoir engineering

Branch of engineering that applies scientific principles to the problems arising during the extraction of mass and heat from a geothermal resource.

Geothermal resource

Unless otherwise specified, in this article the meaning is restricted to a hydrothermal system selected for exploitation with the purpose of extracting usable heat.

Magma chamber

Large accumulation of molten rock found beneath the surface of the Earth.

Definition of the Subject

In its most ample definition, geochemistry involves the study of the abundance, distribution, transformation, and transport of the elements, and their isotopes and compounds in the Earth and other...

Bibliography

Primary Literature

  1. 1.
    von Knebel W (1906) Studien in den Thermengebieten Islands. Naturwissenschaftliche RundschauGoogle Scholar
  2. 2.
    Thorkelsson T (1910) The hot springs of Iceland. Det kongelige danske Videnskabernes Seleskabs SkrifterGoogle Scholar
  3. 3.
    Ingersoll LR, Zobel OJ (1913) Mathematical theory of heat conduction. Ginn, WalthamzbMATHGoogle Scholar
  4. 4.
    Einarsson T (1942) Ueber das Wesen der heissen Quellen Islands. Soc Sci Islandica 42:91Google Scholar
  5. 5.
    White DE (1957) Magmatic, connate and metamorphic waters. Geol Soc Am Bull 69:1659–1682CrossRefGoogle Scholar
  6. 6.
    Ellis AJ, Wilson SH (1960) The geochemistry of alkali metal ions in the Wairakei hydrothermal system. N Z J Geol Geophys 3:593–617CrossRefGoogle Scholar
  7. 7.
    Ellis AJ, Mahon WAJ (1977) Chemistry and geothermal systems. Academic, New York, p 392Google Scholar
  8. 8.
    White DE (1967) Some principles of geyser activity, mainly from Steamboat Springs, Nevada. Am J Sci 265:641–684CrossRefGoogle Scholar
  9. 9.
    Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765CrossRefGoogle Scholar
  10. 10.
    Giggenbach WF, Le Guern F (1976) The chemistry of magmatic gases from Erta’Ale Ethiopia. Geochim Cosmochim Acta 40:25–30CrossRefGoogle Scholar
  11. 11.
    Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161CrossRefGoogle Scholar
  12. 12.
    Giggenbach WF (1990) Water and gas chemistry of Lake Nyos and its bearing on the eruptive process. J Volcanol Geotherm Res 42:337–362CrossRefGoogle Scholar
  13. 13.
    Truesdell AH, Fournier RO (1977) conditions in the deeper parts of the hot spring systems of Yellowstone National Park, Wyoming, US Geological Survey open-file report no. 76-428. US Geological Survey, RestonGoogle Scholar
  14. 14.
    Truesdell AH, Nathenson M, Rye RO (1977) The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. J Geophys Res 82:3694–3704CrossRefGoogle Scholar
  15. 15.
    Giggenbach WF (1978) The isotopic composition of waters from the El Tatio geothermal field. Northern Chile. Geochim Cosmochim Acta 42:979–988CrossRefGoogle Scholar
  16. 16.
    Nieva D, Verma MP, Santoyo E, Portugal E, Campos A (1997) Geochemical exploration of the Chipilapa geothermal field, El Salvador. Geothermics 26:589–612CrossRefGoogle Scholar
  17. 17.
    Mercado (1975) Movement of geothermal fluids and temperature distribution in the Cerro Prieto geothermal field, Baja California, Mexico. In: United Nations symposium on the development and use of geothermal resources, San Francisco, vol 1. U. S. Government Printing Office, Washington, DC, pp 487–494Google Scholar
  18. 18.
    Ellis AJ, Mahon WAJ (1967) Natural hydrothermal systems and experimental hot water/rock interactions (part II). Geochim Cosmochim Acta 31:519–538CrossRefGoogle Scholar
  19. 19.
    Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275CrossRefGoogle Scholar
  20. 20.
    Truesdell AH (1975) Geochemical techniques in exploration. In: National Energy Authority (ed) Proceedings 2nd UN symposium on the development and use of geothermal resources, San Francisco, vol 1. National Energy Authority, Reykjavik, pp 53–86Google Scholar
  21. 21.
    Arnorsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland III. Chemical geothermometry in geothermal investigations. Geochim Cosmochim Acta 42:567–577CrossRefGoogle Scholar
  22. 22.
    Fournier RO (1979) A revised equation for the Na/K geothermometer. Geoth Res Council Trans 3:221–224Google Scholar
  23. 23.
    Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH (1983) Isotopic and chemical composition of Parbati Valley geothermal discharges, NW-Himalaya, India. Geothermics 12:199–222CrossRefGoogle Scholar
  24. 24.
    Nieva D, Nieva R (1987) Developments in geothermal energy in Mexico – part twelve. A cationic composition geothermometer for prospecting of geothermal resources. Heat Recover Syst CHP 7:243–258CrossRefGoogle Scholar
  25. 25.
    Bowers TS, Jackson KI, Helgeson HC (1984) Equilibrium activity diagrams. Springer, BerlinCrossRefGoogle Scholar
  26. 26.
    Fournier RO (1991) Water geothermometers applied to geothermal energy. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development, Series of technical guides on the use of geothermal energy. UNITAR/UNDP, New York, p 37Google Scholar
  27. 27.
    Paces T (1975) A systematic deviation from Na-K-Ca geothermometer below 75°C and above 10−4 atm PCO2. Geochim Cosmochim Acta 39:541–544CrossRefGoogle Scholar
  28. 28.
    Fouillac C, Michard G (1977) Sodium, potassium, calcium relationships in hot springs of massif central. In: Pacquet H, Tardy Y (eds) Proceedings 2nd. International Symposium on water-rock interaction, Strasbourg, 17–25 August 1977, vol 3. Université Louis Pasteur, Strasbourg, pp 109–116Google Scholar
  29. 29.
    Fournier RO, Potter RW (1979) Magnesium correction to the Na-K-Ca chemical geothermometer. Geochim Cosmochim Acta 43:1543–1550CrossRefGoogle Scholar
  30. 30.
    Truesdell AH, Nakanishi S (2005) Chemistry of neutral and acid production fluids from the Onikobe geothermal field, Miyagi prefecture, Honshu, Japan. In: IAEA (ed) Use of isotope techniques to trace the origin of acidic fluids in geothermal systems, technical document 1448. IAEA, Vienna, p 197Google Scholar
  31. 31.
    Baca Gómez A, Segovia N, Martínez Miranda V, Armienta MA, Barragán Reyes RM, Iturbe García JL, López Muñoz BE, Seidel JL (2006) Physical, chemical, bacteriological and radioisotopic parameters from springs and wells around Jocotitlán volcano, Mexico. Int J Environ Pollut 26:266–283CrossRefGoogle Scholar
  32. 32.
    Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCollon TH (eds) Thermal history of sedimentary basins. Springer, New York, pp 99–117CrossRefGoogle Scholar
  33. 33.
    Fouillac C, Michard G (1981) Sodium/lithium ratios in water applied to geothermometry of geothermal reservoirs. Geothermics 10:55–70CrossRefGoogle Scholar
  34. 34.
    Fournier RO, Rowe JJ (1966) Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. Am J Sci 264:685–697CrossRefGoogle Scholar
  35. 35.
    Kennedy GC (1950) A portion of the system silica-water. Econ Geol 45:629–653CrossRefGoogle Scholar
  36. 36.
    Morey GW, Fournier RO, Rowe JJ (1962) The solubility of quartz in water in the temperature interval 25 °C to 30 °C. Geochim Cosmochim Acta 26:1029–1043CrossRefGoogle Scholar
  37. 37.
    Fournier RO, Potter RW (1982) A revised and expanded silica (quartz) geothermometer. Geoth Res Council Bull 11:3–12Google Scholar
  38. 38.
    Truesdell AH, Fournier RO (1977) Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy. USGS J Res 5:49–52Google Scholar
  39. 39.
    Fournier RO (1973) Silica in thermal waters: laboratory and field investigations. In: Ingerson E (ed) Proceedings: international symposium on hydrogeochemistry and biogeochemistry, Tokyo, 7–9 September 1970, vol 1. Clarke, Washington, DC, pp 122–139Google Scholar
  40. 40.
    Rimstidt JD, Barnes HL (1980) The kinetics of silica-water reaction. Geochim Cosmochim Acta 44:1683–1699CrossRefGoogle Scholar
  41. 41.
    Giggenbach WF, Goguel RL (1989) Collection and analysis of geothermal and volcanic water and gas samples, report no. CD 2387. DSIR, Petone, p 53Google Scholar
  42. 42.
    Nieva D, Quijano León JL (1991) Applications of geochemistry to the study of geothermal resources in Mexico: case study of los Azufres field. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development, Series of technical guides on the use of geothermal energy. UNITAR/UNDP, New York, pp 299–316Google Scholar
  43. 43.
    Giggenbach WF (1980) Geothermal gas equilibria. Geochim Cosmochim Acta 44:2021–2032CrossRefGoogle Scholar
  44. 44.
    D’Amore F, Celati R (1983) Methodology for calculating steam quality in geothermal reservoirs. Geothermics 12:129–140CrossRefGoogle Scholar
  45. 45.
    Nieva D, Fausto J, González J, Garibaldi F (1982) Afluencia de vapor a la zona de alimentación de pozos de Cerro Prieto I. In: Fourth Symposium on the Cerro Prieto Field, Baja California, Mexico, vol 1, p 145Google Scholar
  46. 46.
    D’Amore F, Truesdell AH (1985) Calculation of geothermal reservoir temperatures and steam fraction from gas compositions. Geoth Res Council Trans 9(1):305–310Google Scholar
  47. 47.
    Arnorsson S, Gunnlaugsson E (1985) New gas geothermometers for geothermal exploration – calibration and application. Geochim Cosmochim Acta 49:1307–1325CrossRefGoogle Scholar
  48. 48.
    Taran Y (1986) Gas geothermometers for hydrothermal systems. Geochem Int 20:111–126CrossRefGoogle Scholar
  49. 49.
    Giggenbach WF (1991) Chemical techniques in geothermal exploration. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development, Series of technical guides on the use of geothermal energy. UNITAR/UNDP, New York, p 119Google Scholar
  50. 50.
    Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. The los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244CrossRefGoogle Scholar
  51. 51.
    Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485CrossRefGoogle Scholar
  52. 52.
    Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps dodge massive sulfide deposits, Matagami, Quebec. Econ Geol 82:1898–1911CrossRefGoogle Scholar
  53. 53.
    Battaglia S (1999) Applying X-ray geothermometer diffraction to a chlorite. Clay Clay Miner 47:54–63CrossRefGoogle Scholar
  54. 54.
    Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833CrossRefGoogle Scholar
  55. 55.
    Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  56. 56.
    Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883CrossRefGoogle Scholar
  57. 57.
    Craig H (1963) The isotopic geochemistry of water and carbon in geothermal areas. In: Tongiorgi E (ed) Nuclear geology on geothermal areas. Consiglio Nazionale della Richerche, Pisa, Spoleto, pp 17–53Google Scholar
  58. 58.
    Giggenbach WF (1989) The chemical and isotopic position of Ohaaki field within the Taupo vol canic zone. In: Proceedings of the 11th New Zealand geothermal workshop, Aukland, 1989, pp 81–88Google Scholar
  59. 59.
    Giggenbach WF (1991) Isotopic composition of geothermal water and steam discharges. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development, Series of technical guides on the use of geothermal energy. UNITAR/UNDP, New York, pp 253–273Google Scholar
  60. 60.
    Sakai H, Matsubaya O (1977) Stable isotope studies of Japanese geothermal systems. Geothermics 5:97–124CrossRefGoogle Scholar
  61. 61.
    Taran YA, Pokrovsky BG, Esikov AD (1988) Deuterium and oxygen-18 in fumarolic steam and amphiboles from some Kamchatka volcanoes: “Andesitic” waters. IAVC EI, Commission on the Chemistry of Volcanic Gases Newsletter No 1, pp 15–18Google Scholar
  62. 62.
    Fournier RO (1979) Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems. J Volcanol Geotherm Res 5:1–16CrossRefGoogle Scholar
  63. 63.
    Giggenbach WF, Stewart MK (1982) Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas. Geothermics 11:71–80CrossRefGoogle Scholar

Books and Reviews

  1. D’Amore F (ed) (1991) Application of geochemistry in geothermal reservoir development, Series of technical guides on the use of geothermal energy. UNITAR/UNDP, New YorkGoogle Scholar
  2. Henley RW, Truesdell AH, Barton PB Jr (eds) (1984) Fluid-mineral equilibria in hydrothermal systems. Reviews in Economic Geology, vol IGoogle Scholar
  3. IAEA (1983) Guidebook on nuclear techniques in hydrology, Technical report series no. 91. International Atomic Energy Agency, ViennaGoogle Scholar
  4. Valley JW, Taylor HP Jr, O’Neil JR (1986) Stable isotopes in high temperature geological processes, Reviews in mineralogy, vol 16. Mineralogical Society of America, Washington, DCGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • David Nieva
    • 1
  • Rosa María Barragán
    • 1
  • Víctor Arellano
    • 1
  1. 1.Instituto de Investigaciones EléctricasCuernavacaMexico

Personalised recommendations