Skip to main content

Geochemistry of Hydrothermal Systems

  • Reference work entry
  • First Online:
Power Stations Using Locally Available Energy Sources
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2017

Glossary

Adiabatic process:

A process undergone by a system during which there is no heat exchange between the system and its surroundings.

Enthalpy:

Thermodynamic potential (akin to the internal energy) of a system that remains constant when the system undergoes an adiabatic process at constant pressure and composition.

Geothermal reservoir engineering:

Branch of engineering that applies scientific principles to the problems arising during the extraction of mass and heat from a geothermal resource.

Geothermal resource:

Unless otherwise specified, in this article the meaning is restricted to a hydrothermal system selected for exploitation with the purpose of extracting usable heat.

Magma chamber:

Large accumulation of molten rock found beneath the surface of the Earth.

Definition of the Subject

In its most ample definition, geochemistry involves the study of the abundance, distribution, transformation, and transport of the elements, and their isotopes and compounds in the Earth and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. von Knebel W (1906) Studien in den Thermengebieten Islands. Naturwissenschaftliche Rundschau

    Google Scholar 

  2. Thorkelsson T (1910) The hot springs of Iceland. Det kongelige danske Videnskabernes Seleskabs Skrifter

    Google Scholar 

  3. Ingersoll LR, Zobel OJ (1913) Mathematical theory of heat conduction. Ginn, Waltham

    MATH  Google Scholar 

  4. Einarsson T (1942) Ueber das Wesen der heissen Quellen Islands. Soc Sci Islandica 42:91

    Google Scholar 

  5. White DE (1957) Magmatic, connate and metamorphic waters. Geol Soc Am Bull 69:1659–1682

    Article  Google Scholar 

  6. Ellis AJ, Wilson SH (1960) The geochemistry of alkali metal ions in the Wairakei hydrothermal system. N Z J Geol Geophys 3:593–617

    Article  Google Scholar 

  7. Ellis AJ, Mahon WAJ (1977) Chemistry and geothermal systems. Academic, New York, p 392

    Google Scholar 

  8. White DE (1967) Some principles of geyser activity, mainly from Steamboat Springs, Nevada. Am J Sci 265:641–684

    Article  Google Scholar 

  9. Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  10. Giggenbach WF, Le Guern F (1976) The chemistry of magmatic gases from Erta’Ale Ethiopia. Geochim Cosmochim Acta 40:25–30

    Article  Google Scholar 

  11. Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    Article  Google Scholar 

  12. Giggenbach WF (1990) Water and gas chemistry of Lake Nyos and its bearing on the eruptive process. J Volcanol Geotherm Res 42:337–362

    Article  Google Scholar 

  13. Truesdell AH, Fournier RO (1977) conditions in the deeper parts of the hot spring systems of Yellowstone National Park, Wyoming, US Geological Survey open-file report no. 76-428. US Geological Survey, Reston

    Google Scholar 

  14. Truesdell AH, Nathenson M, Rye RO (1977) The effects of subsurface boiling and dilution on the isotopic compositions of Yellowstone thermal waters. J Geophys Res 82:3694–3704

    Article  Google Scholar 

  15. Giggenbach WF (1978) The isotopic composition of waters from the El Tatio geothermal field. Northern Chile. Geochim Cosmochim Acta 42:979–988

    Article  Google Scholar 

  16. Nieva D, Verma MP, Santoyo E, Portugal E, Campos A (1997) Geochemical exploration of the Chipilapa geothermal field, El Salvador. Geothermics 26:589–612

    Article  Google Scholar 

  17. Mercado (1975) Movement of geothermal fluids and temperature distribution in the Cerro Prieto geothermal field, Baja California, Mexico. In: United Nations symposium on the development and use of geothermal resources, San Francisco, vol 1. U. S. Government Printing Office, Washington, DC, pp 487–494

    Google Scholar 

  18. Ellis AJ, Mahon WAJ (1967) Natural hydrothermal systems and experimental hot water/rock interactions (part II). Geochim Cosmochim Acta 31:519–538

    Article  Google Scholar 

  19. Fournier RO, Truesdell AH (1973) An empirical Na-K-Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Article  Google Scholar 

  20. Truesdell AH (1975) Geochemical techniques in exploration. In: National Energy Authority (ed) Proceedings 2nd UN symposium on the development and use of geothermal resources, San Francisco, vol 1. National Energy Authority, Reykjavik, pp 53–86

    Google Scholar 

  21. Arnorsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland III. Chemical geothermometry in geothermal investigations. Geochim Cosmochim Acta 42:567–577

    Article  Google Scholar 

  22. Fournier RO (1979) A revised equation for the Na/K geothermometer. Geoth Res Council Trans 3:221–224

    Google Scholar 

  23. Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH (1983) Isotopic and chemical composition of Parbati Valley geothermal discharges, NW-Himalaya, India. Geothermics 12:199–222

    Article  Google Scholar 

  24. Nieva D, Nieva R (1987) Developments in geothermal energy in Mexico – part twelve. A cationic composition geothermometer for prospecting of geothermal resources. Heat Recover Syst CHP 7:243–258

    Article  Google Scholar 

  25. Bowers TS, Jackson KI, Helgeson HC (1984) Equilibrium activity diagrams. Springer, Berlin

    Book  Google Scholar 

  26. Fournier RO (1991) Water geothermometers applied to geothermal energy. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development, Series of technical guides on the use of geothermal energy. UNITAR/UNDP, New York, p 37

    Google Scholar 

  27. Paces T (1975) A systematic deviation from Na-K-Ca geothermometer below 75°C and above 10−4 atm PCO2. Geochim Cosmochim Acta 39:541–544

    Article  Google Scholar 

  28. Fouillac C, Michard G (1977) Sodium, potassium, calcium relationships in hot springs of massif central. In: Pacquet H, Tardy Y (eds) Proceedings 2nd. International Symposium on water-rock interaction, Strasbourg, 17–25 August 1977, vol 3. Université Louis Pasteur, Strasbourg, pp 109–116

    Google Scholar 

  29. Fournier RO, Potter RW (1979) Magnesium correction to the Na-K-Ca chemical geothermometer. Geochim Cosmochim Acta 43:1543–1550

    Article  Google Scholar 

  30. Truesdell AH, Nakanishi S (2005) Chemistry of neutral and acid production fluids from the Onikobe geothermal field, Miyagi prefecture, Honshu, Japan. In: IAEA (ed) Use of isotope techniques to trace the origin of acidic fluids in geothermal systems, technical document 1448. IAEA, Vienna, p 197

    Google Scholar 

  31. Baca Gómez A, Segovia N, Martínez Miranda V, Armienta MA, Barragán Reyes RM, Iturbe García JL, López Muñoz BE, Seidel JL (2006) Physical, chemical, bacteriological and radioisotopic parameters from springs and wells around Jocotitlán volcano, Mexico. Int J Environ Pollut 26:266–283

    Article  Google Scholar 

  32. Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCollon TH (eds) Thermal history of sedimentary basins. Springer, New York, pp 99–117

    Chapter  Google Scholar 

  33. Fouillac C, Michard G (1981) Sodium/lithium ratios in water applied to geothermometry of geothermal reservoirs. Geothermics 10:55–70

    Article  Google Scholar 

  34. Fournier RO, Rowe JJ (1966) Estimation of underground temperatures from the silica content of water from hot springs and wet-steam wells. Am J Sci 264:685–697

    Article  Google Scholar 

  35. Kennedy GC (1950) A portion of the system silica-water. Econ Geol 45:629–653

    Article  Google Scholar 

  36. Morey GW, Fournier RO, Rowe JJ (1962) The solubility of quartz in water in the temperature interval 25 °C to 30 °C. Geochim Cosmochim Acta 26:1029–1043

    Article  Google Scholar 

  37. Fournier RO, Potter RW (1982) A revised and expanded silica (quartz) geothermometer. Geoth Res Council Bull 11:3–12

    Google Scholar 

  38. Truesdell AH, Fournier RO (1977) Procedure for estimating the temperature of a hot-water component in a mixed water by using a plot of dissolved silica versus enthalpy. USGS J Res 5:49–52

    Google Scholar 

  39. Fournier RO (1973) Silica in thermal waters: laboratory and field investigations. In: Ingerson E (ed) Proceedings: international symposium on hydrogeochemistry and biogeochemistry, Tokyo, 7–9 September 1970, vol 1. Clarke, Washington, DC, pp 122–139

    Google Scholar 

  40. Rimstidt JD, Barnes HL (1980) The kinetics of silica-water reaction. Geochim Cosmochim Acta 44:1683–1699

    Article  Google Scholar 

  41. Giggenbach WF, Goguel RL (1989) Collection and analysis of geothermal and volcanic water and gas samples, report no. CD 2387. DSIR, Petone, p 53

    Google Scholar 

  42. Nieva D, Quijano León JL (1991) Applications of geochemistry to the study of geothermal resources in Mexico: case study of los Azufres field. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development, Series of technical guides on the use of geothermal energy. UNITAR/UNDP, New York, pp 299–316

    Google Scholar 

  43. Giggenbach WF (1980) Geothermal gas equilibria. Geochim Cosmochim Acta 44:2021–2032

    Article  Google Scholar 

  44. D’Amore F, Celati R (1983) Methodology for calculating steam quality in geothermal reservoirs. Geothermics 12:129–140

    Article  Google Scholar 

  45. Nieva D, Fausto J, González J, Garibaldi F (1982) Afluencia de vapor a la zona de alimentación de pozos de Cerro Prieto I. In: Fourth Symposium on the Cerro Prieto Field, Baja California, Mexico, vol 1, p 145

    Google Scholar 

  46. D’Amore F, Truesdell AH (1985) Calculation of geothermal reservoir temperatures and steam fraction from gas compositions. Geoth Res Council Trans 9(1):305–310

    Google Scholar 

  47. Arnorsson S, Gunnlaugsson E (1985) New gas geothermometers for geothermal exploration – calibration and application. Geochim Cosmochim Acta 49:1307–1325

    Article  Google Scholar 

  48. Taran Y (1986) Gas geothermometers for hydrothermal systems. Geochem Int 20:111–126

    Article  Google Scholar 

  49. Giggenbach WF (1991) Chemical techniques in geothermal exploration. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development, Series of technical guides on the use of geothermal energy. UNITAR/UNDP, New York, p 119

    Google Scholar 

  50. Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. The los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244

    Article  Google Scholar 

  51. Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485

    Article  Google Scholar 

  52. Kranidiotis P, MacLean WH (1987) Systematics of chlorite alteration at the Phelps dodge massive sulfide deposits, Matagami, Quebec. Econ Geol 82:1898–1911

    Article  Google Scholar 

  53. Battaglia S (1999) Applying X-ray geothermometer diffraction to a chlorite. Clay Clay Miner 47:54–63

    Article  Google Scholar 

  54. Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133:1833

    Article  Google Scholar 

  55. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  Google Scholar 

  56. Taylor HP (1974) The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol 69:843–883

    Article  Google Scholar 

  57. Craig H (1963) The isotopic geochemistry of water and carbon in geothermal areas. In: Tongiorgi E (ed) Nuclear geology on geothermal areas. Consiglio Nazionale della Richerche, Pisa, Spoleto, pp 17–53

    Google Scholar 

  58. Giggenbach WF (1989) The chemical and isotopic position of Ohaaki field within the Taupo vol canic zone. In: Proceedings of the 11th New Zealand geothermal workshop, Aukland, 1989, pp 81–88

    Google Scholar 

  59. Giggenbach WF (1991) Isotopic composition of geothermal water and steam discharges. In: D’Amore F (ed) Application of geochemistry in geothermal reservoir development, Series of technical guides on the use of geothermal energy. UNITAR/UNDP, New York, pp 253–273

    Google Scholar 

  60. Sakai H, Matsubaya O (1977) Stable isotope studies of Japanese geothermal systems. Geothermics 5:97–124

    Article  Google Scholar 

  61. Taran YA, Pokrovsky BG, Esikov AD (1988) Deuterium and oxygen-18 in fumarolic steam and amphiboles from some Kamchatka volcanoes: “Andesitic” waters. IAVC EI, Commission on the Chemistry of Volcanic Gases Newsletter No 1, pp 15–18

    Google Scholar 

  62. Fournier RO (1979) Geochemical and hydrologic considerations and the use of enthalpy-chloride diagrams in the prediction of underground conditions in hot-spring systems. J Volcanol Geotherm Res 5:1–16

    Article  Google Scholar 

  63. Giggenbach WF, Stewart MK (1982) Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas. Geothermics 11:71–80

    Article  Google Scholar 

Books and Reviews

  • D’Amore F (ed) (1991) Application of geochemistry in geothermal reservoir development, Series of technical guides on the use of geothermal energy. UNITAR/UNDP, New York

    Google Scholar 

  • Henley RW, Truesdell AH, Barton PB Jr (eds) (1984) Fluid-mineral equilibria in hydrothermal systems. Reviews in Economic Geology, vol I

    Google Scholar 

  • IAEA (1983) Guidebook on nuclear techniques in hydrology, Technical report series no. 91. International Atomic Energy Agency, Vienna

    Google Scholar 

  • Valley JW, Taylor HP Jr, O’Neil JR (1986) Stable isotopes in high temperature geological processes, Reviews in mineralogy, vol 16. Mineralogical Society of America, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Nieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nieva, D., Barragán, R.M., Arellano, V. (2018). Geochemistry of Hydrothermal Systems. In: Bronicki, L. (eds) Power Stations Using Locally Available Energy Sources. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7510-5_306

Download citation

Publish with us

Policies and ethics