Skip to main content

Geothermal Power Conversion Technology

  • Reference work entry
  • First Online:
Power Stations Using Locally Available Energy Sources
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2017

Glossary

Ambient:

Natural condition of the environment at any given time.

Baseload:

The lowest level of power production needs during a season or year.

Baseload plants:

Electricity-generating units that are operated to meet the constant or minimum load on the system. The cost of energy from such units is usually the lowest available to the system.

Binary geothermal power station:

A power station in which the geothermal fluid is not used in the turbine, it only transfers its heat vaporizing an organic fluid which drives the organic vapor turbine. Only the power station is binary, the turbine (or the unit) is not binary.

Binary power station:

A geothermal electricity-generating station employing a closed-loop heat exchange system in which the heat of the geothermal fluid (the “primary fluid”) is transferred to a different fluid (“motive,” “secondary,” or “working” fluid), which is thereby vaporized and used to drive a turbine/generator set. When the motive fluid is organic, then it is an...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. U.S. Department of Energy (2008) The price of geothermal power. Geothermal Tomorrow 2008, pp 19–21. http://www1.eere.energy.gov/geothermal/pdfs/geothermal_tomorrow_2008.pdf

  2. California Energy Commission (2007) Comparative costs of California Central Station Electricity Generation Technologies. Document #: CEC-200-2007-011-SF. http://www.energy.ca.gov/2007publications4CEC-200-2007-011/CEC-200-2007-011-SF.pdf

  3. Emerging Energy Research (2009) Global geothermal markets and strategies: 2009–2020. Section 3: geothermal technology and cost trends. http://www.emerging-energy.com/Content/Document-Details/4/Global-Geothermal-Markets-and-Strategies-20092020/280.aspx

  4. Glacier Partners (2009) Geothermal economics 101 – economics of a 35 MW ORC geothermal plant. http://www.glacierny.com/geothermal.php

  5. Public Utilities Commission of Nevada (PUCN) (2010) Docket # 10-02009 “Application of Nevada Power Company d/b/a NV energy for approval of its 2010–2029 triennial integrated resource plan.” NV Energy PPA Pricing Info. http://pucweb1.state.nv.us/pucn/DktInfo.aspx?Util=Electric

  6. International Energy Agency (IEA) (2010) Renewable energy essentials: geothermal. http://www.iea.org/papers/2010/Geothermal_Essentials.pdf

  7. California Energy Commission (2009) Renewable energy cost of generation update. Document #: CEC-500-2009-084. http://www.energy.ca.gov/2009publications/CEC-500-2009-084/CEC-500-2009-084.PDF

  8. Remo AR (2010) EDC to put up geothermal plants worth $1B. Philippine Daily Inquirer. http://business.inquirer.net/money/topstories/view/20100729-283909/EDC-to-put-up-geothermal-plants-worth-1B

  9. Kema, Inc., California Energy Commission (2009) Renewable energy cost of generation update. Document #: CEC-500-2009-084, pp 52–72; Appendix A, pp 206–215. http://www.energy.ca.gov/2009publications/CEC-500-2009-084/CEC-500-2009-084.PDF

  10. California Public Utilities Commission (CPUC) (2010) RPS project status table – July update.. http://www.cpuc.ca.gov/NR/rdonlyres/A5406F32-B0D0-409E-AA92-0EA79E97BECC/0/RPS_Project_Status_Table_2010_July.xls

  11. Cappetti G et al (2000) Italy country update report 1995–1999. In: Proceedings world geothermal congress 2000, Kyushu, Tohoku, 28 May–10 June 2000

    Google Scholar 

  12. Calpine Geothermal. http://www.ncpageo.com/about.htm

  13. The Geysers. http://www.geysers.com/

  14. Rhinehart JS (1980) Geysers and geothermal energy. Springer, New York

    Book  Google Scholar 

  15. Kestin J (1980) Sourcebook on the production of electricity from geothermal energy. DOE, RA/4051-1. US Government Printing Office, Washington, DC

    Google Scholar 

  16. Dipippo R (1998) Geothermal power systems, Section 8.2. In: Elliot TC, Chen K, Swanecamp RC (eds) Standard handbook of power plant engineering, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  17. Chacko J et al (1998) Gulf coast geopressured-geothermal program summary report compilation. U.S. Department of Energy, Contract no. DE-FG07-95ID 13366

    Google Scholar 

  18. Duchane D et al (2002) Hot Dry Rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico. GHC Bull 32:13–19

    Google Scholar 

  19. Lund JW (2007) Characteristics, development and utilization of geothermal resources. GHC Bull 28:1–9. http://geoheat.oit.edu/bulletin/bull28-2/art1.pdf

    Google Scholar 

  20. Dippipo R (2008) Geothermal power plants: principles, applications and case studies. Elsevier, Oxford. Chapters 6 & 9

    Google Scholar 

  21. Ellis AJ, Mahon WAJ (1977) Chemistry and geothermal systems. Academic, New York

    Google Scholar 

  22. Mitsubishi Jukogyo Kabushiki Kaisho (1984) Geothermal power generation, rev edn. Mitsubishi Heavy Industries, Tokyo

    Google Scholar 

  23. Fuji Brochure (1988) Information data on geothermal power plant. Fuji Electric, Tokyo

    Google Scholar 

  24. Grassiani M (1994) Advances in materials selection for geothermal power production application. In: Coutsouradis D et al (eds) Materials for advanced power engineering. Kluwer, Dordrecht, pp 1677–1684

    Google Scholar 

  25. DiPippo R (2008) Geothermal power plants: principles, applications, case studies and environmental impact, 2nd edn. Elsevier, Oxford

    Google Scholar 

  26. Kestin J (1980) Available work in geothermal energy, Chapter 3. In: Sourcebook on the production of electricity from geothermal energy, RA/4051-1. US Government Printing Office, Washington, DC

    Google Scholar 

  27. White DE (1973) Characteristics of geothermal resources, Chapter 4. In: Kruger P, Otte C (eds) Geothermal energy: resources, production, stimulation. Stanford University Press, Stanford, pp 69–94

    Google Scholar 

  28. James R (1968) Pipeline transmission of steam-water mixtures for geothermal power. NZ Eng 23:55–61

    Google Scholar 

  29. Baumann K (1921) Some recent developments in large steam turbine practice. J Inst Electr Eng 59:565

    Google Scholar 

  30. http://www.thermoflow.com/ConvSteamCycle_TFX.htm

  31. Keenan JH, Keyes EG, Hill PG, Moore JG (1969) Steam tables: thermodynamic properties of water including vapor, liquid, and solid phases (international edition – metric units). Wiley, New York

    Google Scholar 

  32. Wagner W, Kretzschmar H-J (2008) International steam tables: properties of water and steam based on industrial formulation IAPWS_IF97. Springer, Berlin

    Book  Google Scholar 

  33. DiPippo R (1998) Geothermal power systems, Sect. 8.2. In: Elliott TC, Chen K, Swanekamp RC (eds) Standard handbook of power plant engineering, 2nd edn. McGraw-Hill, New York, pp 8.27–8.60

    Google Scholar 

  34. Bronicki LY (2008) Advanced power cycles for enhancing geothermal sustainability 1,000 MW deployed worldwide. In: IEEE PES general meeting, Pittsburg. McGraw-Hill, New York, pp 8.27–8.60

    Google Scholar 

  35. Incropera PP, DeWitt DR (1996) Fundamentals of heat and mass transfer, 4th edn. Wiley, New York

    Google Scholar 

  36. Tabor H, Bronicki LY (1962) Vapor turbines. US Patent 3,040,528, 26 June 1962

    Google Scholar 

  37. Gallagher JS, Linsky D, Morrison G, Levelt Sengers JMH (1987) Thermodynamic properties of a geothermal working fluid; 90% isobutane 10% isopentane, NBS Technical Note 1234. National Bureau of Standards, U.S. Government Printing Office, Washington, DC

    Google Scholar 

  38. Krieger Z et al (1986) Cascaded power plant using low and medium temperature source fluid. US Patent 4,578,953, 01 Apr 1986

    Google Scholar 

  39. Khalifa HE, Rhodes BW (1985) Analysis of power cycles for geothermal wellhead conversion systems, EPRI AP-4070. Electric Power Research Institute, Palo Alto

    Google Scholar 

  40. Bliem CJ, Walrath LR (1983) Raft river ORC-cycle geothermal pilot power plant final report, EGG-2208. Idaho National Engineering Laboratory, Idaho Falls

    Book  Google Scholar 

  41. Tester JW, Milora SL (1976) Geothermal energy as a source of electric power. In: 16th annual symposium, New Mexico Section, American Society of Mechanical Engineering, Albuquerque, 26–27 Feb 1976

    Google Scholar 

  42. Tabor H, Bronicki LY (1961) Small turbines for solar energy package. In: United Nations conference on new sources of energy, Rome

    Google Scholar 

  43. Tabor H, Bronicki LY (1964) Establishing criteria for fluids for small vapor turbines, SAE Power 931C

    Google Scholar 

  44. Reynolds WC (1979) Thermodynamic properties in Sl: graphs, tables and computational equations for 40 substances. Stanford, Department of Mechanical Engineering, Stanford University

    Google Scholar 

  45. Berning J et al (1988) Heber binary geothermal demonstration power plant; half load testing. Special report EPRI AP-5787-SR. Electric Power Research Institute, Palo Alto

    Google Scholar 

  46. Demuth OJ, Bliem CJ, Mines GL, Swank WD (1975) Supercritical binary geothermal experiments with mixed-hydrocarbon working fluids and a vertical, in-tube, counter-flow condenser, EGG-EP-7076. Idaho National Engineering Laboratory, Idaho Falls

    Google Scholar 

  47. IAPWS (2003) Guideline on the Tabular Taylor Series Expansion (TTSE) method for calculation of thermodynamic properties of water and steam. Applied to IAPWS-95 as an example. International Association for the Properties of Water and Steam, Vejie

    Google Scholar 

  48. Milora SL, Tester JW (1976) Geothermal energy as a source of electric power: thermodynamic and economic criteria. MIT Press, Cambridge, MA

    Google Scholar 

  49. Anonymous (1997) ASHRAE handbook fundamentals, Chapter 18. American Society of Heating, Refrigeration and Air-Conditioning Engineers, Atlanta

    Google Scholar 

  50. DiPippo R (1990) Geothermal power cycle selection guidelines, part 2 of geothermal information series. DCN 90-213-142-02-02. Electric Power Research Institute, Palo Alto

    Google Scholar 

  51. Kestin J (ed in chief), DiPippo R, Khalifa HE, Ryley DJ (eds) (1980) Sourcebook on the production of electricity from geothermal energy. U.S. Department of Energy, DOE/RA/4051-1. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  52. McKetta JJ (1992) Piping design handbook. Marcel Dekker, New York. Originally Encyclopedia of chemical processing and design, 1991

    Google Scholar 

  53. Salomon L (1999) Two-phase flow in complex systems. Wiley, New York

    Google Scholar 

  54. Cheremisinoff NP (ed) (1986) Encyclopedia of fluid mechanics. Gas-liquid flows, vol 3. Gulf, Houston

    MATH  Google Scholar 

  55. Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York

    Google Scholar 

  56. Lazalde-Crabtree H (1984) Design approach of steam-water separators and steam dryers for geothermal applications. Geotherm Res Counc Bull 13(8):11–20

    Google Scholar 

  57. http://www.htri.net/articles/htri_xchanger_suite

  58. Holm A, Blodgett L, Jennejohn D, Gawell K (2010) Geothermal energy: international market update. GEA, Washington, DC

    Google Scholar 

  59. Bronicki LY (1995) Innovative geothermal power plants, fifteen years of experience. In: World geothermal conference, Florence

    Google Scholar 

  60. Blaydes PE (1994) Environmental advantages of the binary power plants can enhance development opportunities. Trans Geotherm Res Counc 18:121–125

    Google Scholar 

  61. Flynn T (1997) Geothermal sustainability, heat utilization and advanced organic Rankine cycle. Trans Geotherm Res Counc 26(9):224–229

    Google Scholar 

  62. Sanyal SK (2005) Sustainability and renewability of geothermal power capacity. In: Proceedings world geothermal congress 2005, Anatalya, 24–29 Apr 2005

    Google Scholar 

  63. History of geothermal energy. http://www1.eere.energy.gov/geothermal/history.html

  64. LeConte JL (1855) Account of some volcanic springs in the desert of the Colorado, in Southern California. Am J Sci Art Second Ser 19:1–6

    Google Scholar 

  65. Lombard GL (1978) Operational experience at the San Diego gas & electric ERDA Niland geothermal loop experimental facility. In: Proceedings of the EPRI annual geothermal program project review and workshops EPRI ER-660-SR. Electric Power Research Institute, Palo Alto, pp 3-11–3-16

    Google Scholar 

  66. Featherstone J, Butler S, Bonham E (1995) Comparison of crystallizer reactor clarifier and pH mod technologies at the Salton Sea geothermal field. In: Proceedings world geothermal congress 1995, vol 4. International Geothermal Association, pp 2391–2396

    Google Scholar 

  67. Anonymous (2001) CalEnergy Company, Inc., U.S.A. Salton Sea Unit 5 Geothermal Power-Plant 1 X 58.32 MW, Brochure GEC 82-14. Fuji Electric, Tokyo

    Google Scholar 

  68. Gallup DL (1993) Control of salt precipitation from geothermal brine. US Patent 5,256,301, 26 Oct 1993

    Google Scholar 

  69. Kits KR (1997) pH modification of geothermal brine with sulfur-containing acid. US Patent 5,656,172, 12 Aug 1997

    Google Scholar 

  70. DiPippo R (2016) Geothermal power plants: principles, applications, case studies and environmental impact, 4th edn. Elsevier, Oxford, p 321

    Book  Google Scholar 

  71. Clutter TJ (2000) Mining economic benefits from geothermal brine. GHC Bull 21:1–3

    Google Scholar 

  72. Calenergy Publication. http://www.calenergy.com/projects2d.aspx

  73. Anonymous (1989) East Mesa 18.5 MW × 2 double flash cycle geothermal power plant. Mitsubishi Heavy Industries, Tokyo

    Google Scholar 

  74. Tabor H, Bronicki L (1962) Vapor turbines. US Patent 3,040,528, 26 June 1962

    Google Scholar 

  75. Kaplan U (1997) Method and apparatus for producing power using geothermal fluid. US Patent 5,664,419, 9 Sept 1997

    Google Scholar 

  76. DiPippo R (2016) Geothermal power generation. Elsevier, London

    Google Scholar 

  77. Bronicki LY (1985) Geothermal power plant and method utilizing the same. US Patent 4,542,625, 24 Sept 1985

    Google Scholar 

  78. Legman H, Sullivan P (2003) The 30 MW Rotokawa I geothermal project five years of operation, IGC −20034164-2003

    Google Scholar 

  79. Lienau PJ (1996) Sudurnes regional heating corporation, geo-heat center. GHC Bull 17(4):14–16

    Google Scholar 

  80. Hinrichs TC, Dambly BW (1980) East mesa magmamax power process geothermal generating plant: a preliminary analysis, EPRI TC-80-907. In: Proceedings fourth annual geothermal conference and workshop. Electric Power Research Institute, Palo Alto, pp 5-1–5-14

    Google Scholar 

  81. Hinrichs TC (1984) Magmamax power plant – success at east mesa, EPRI AP-3686. In: Proceedings eighth annual geothermal conference and workshop. Electric Power Research Institute, Palo Alto, pp 6-21–6-30

    Google Scholar 

  82. Ferdinand C (1850) http://www.probrewer.com/resources/refrigeration/history.php

  83. Kalina A (1986) Method and apparatus for implementing a thermodynamic cycle using a fluid of changing concentration. US Patent 4,586,340, 6 May 1986

    Google Scholar 

  84. Bliem CJ, Mines GL (1991) Advanced binary performance power plants: limits of performance. EGG-EP-9207. Idaho National Engineering Laboratory, Idaho Falls

    Google Scholar 

  85. DiPippo R (2002) Second low basis for efficient power generation from industrial wasteheat. Report made for Ormat International Inc, Sparks

    Google Scholar 

  86. Bombarda P et al (2010) Heat recovery from diesel engines: a thermodynamic comparison between Kalina and ORC cycles. Appl Therm Eng 30:212–219

    Article  Google Scholar 

  87. Gulf Coast Geopressured-Geothermal program summary report compilation work performed under U.S. Department of Energy Contract No. DE-FG07-95ID 13366

    Google Scholar 

  88. Griggs J (2004) A re-evaluation of geopressured-geothermal aquifers as an energy resource. Master’s thesis, Louisiana State University, Craft and Hawkins Department of Petroleum Engineering

    Google Scholar 

  89. Nitschke GS, Harris JA (1991) Production of fresh water and power from geopressured- geothermal reservoirs. In: Indirect solar, geothermal and nuclear energy. Nova Science, New York

    Google Scholar 

  90. Árpási M, Lorberer Á, Pap S (2000) High pressure and temperature (geopressured) geothermal reservoirs in Hungary. In: Proceedings world geothermal congress 2000. International Geothermal Association, pp 2511–2514

    Google Scholar 

  91. He L, Xiong L (2000) Extensional model for the formation of geopressured geothermal resources in the Yinggehai Basin, South China Sea. In: Proceedings world geothermal congress 2000. International Geothermal Association, pp 1211–1216

    Google Scholar 

  92. Anonymous (1924) Recent developments in the utilization of the earth’s heat. Mech Eng 46(8):448–449

    Google Scholar 

  93. DiPippo R (1978) An analysis of an early hybrid fossil-geothermal power plant proposal. Geotherm Energy Mag 6(3):31–36

    Google Scholar 

  94. Janes J (1984) Evaluation of a superheater enhanced geothermal steam power plant in the geysers area. Report P700-84-003. California Energy Commission, Sitting and Environmental Division

    Google Scholar 

  95. Kestin J, DiPippo R, Khalifa HE (1978) Hybrid geothermal-fossil power plants. Mech Eng 100:28–35

    Google Scholar 

  96. DiPippo R, Khalifa HE, Correia RJ, Kestin J (1979) Fossil superheating in geothermal steam power plants. Geotherm Energy Mag 7(1):17–23

    Google Scholar 

  97. Chang I, Williams JR (1985) Thermodynamic analysis of a geopressured geothermal hybrid wellhead power system. Final report. DOE/NV/10355-1

    Google Scholar 

  98. Future of geothermal energy, MIT report. http://geothermal.inel.gov/publications/future_of_geothermal_energy.pdf

  99. Vuataz FD (2004) Hijiori hot dry rock project, northern Japan. Swiss Deep Heat Mining Project, Steinmaur. http://www.dhm.ch/imaH00hijiori.html

  100. New Energy and Industrial Technology Development Organization (2004) Development of a hot dry rock power generation system. New Energy and Industrial Technology Development Organization, Kanagawa. http://www.nedo.go.jp/chinetsu/hdr/indexe.htm

  101. Vuataz FD (2004) Ogachi hot dry rock project, northern Japan, June 2000. Swiss Deep Heat Mining Project. Steinmaur. http://www.dhm.ch/imaOG00ogachi.html

  102. Kruger P, Karasawa H, Tenma N, Kitano K (2000) Analysis of heat extraction from the Hijiori and Ogachi HDR geothermal resources in Japan. In: Proceedings world geothermal congress 2000, International Geothermal Association, pp 2677–2682

    Google Scholar 

  103. Brown DW (1996) 1995 reservoir flow testing at Fenton Hill, New Mexico. In: Proceeding of the 3rd international HDR forum, Santa Fe, pp 34–37

    Google Scholar 

  104. MacDonald P, Stedman A, Symons G (1992) The UK geothermal HDR R&D programme. In: Proceedings seventeenth workshop on geothermal reservoir engineering, SGP-TR-141. Stanford University, Stanford, 29–31 Jan 1992

    Google Scholar 

  105. Opportunities in the upper Rhine Valley. http://www.energy-base.org/fileadmin/media/regioner/docs/geothermal-energy-rhine-valley_FINAL.pdf

  106. Baria R, Baumgaertner J, Teza D, Michelet S (2005) Reservoir stimulation and testing techniques for EGS systems (Soultz). Presented at EGS workshop, Massachusetts Institute of Technology, Cambridge, MA, 10 Nov 2005

    Google Scholar 

  107. Smith IK (1993) Development of the trilateral flash cycle system. Part 1: fundamental considerations. Proc Inst Mech Eng A 207(A3):179–194

    Article  Google Scholar 

  108. Austin AL, Lundberg AW (1978) The LLL geothermal energy program: a status report on the development of the total-flow concept. UCRL-500-77. Lawrence Livermore Laboratory, Livermore

    Google Scholar 

  109. McKay R (1982) Helical screw expander evaluation project: final report. DOE/ET-28329-1, JPL publication 82-5. Jet Propulsion Laboratory, Pasadena

    Google Scholar 

  110. Carey B (1983) Total flow power generation from geothermal resources using a helical screw expander. In: Proceeding of the 5th New Zealand geothermal workshop, pp 127–132

    Google Scholar 

  111. Cerini DJ, Record J (1983) Rotary separator turbine performance and endurance test results. In: Proceedings of the seventh annual geothermal conference and workshop, EPRI AP-3271. Electric Power Research Institute, Palo Alto, pp 5-75–5-86

    Google Scholar 

  112. Hayes L (2011) Demonstration of a variable phase turbine. http://energent.net

  113. Hughes EE (1986) Summary report: rotary separator turbine. Final report, EPRI AP-4718. Electric Power Research Institute, Palo Alto

    Google Scholar 

  114. IEA (2017) Renewable energy medium term report 2016, IEA Paris 2016. http://www.iea.org/bookshop/734-Medium-Term_Renewable_Energy_Market_Report_2016

  115. EIA. US Energy Information Administration annual energy outlook 2016. http://www.eia.gov/forecasts/aeo/index.cfm

  116. Bertani R (2015) Geothermal power generation in the world 2010–2015 update report. In: Proceedings world geothermal congress 2015, Melbourne, 17–22 Apr 2015

    Google Scholar 

  117. IEA-GIA (2012) Trends in geothermal applications – a publication of the International Energy Agency Geothermal Implementing Agreement. http://iea-gia.org/category/publications

  118. Toshiba. www.toshiba.com/

  119. Mitsubishi. www.mitsubishielectric.com/

  120. Fuji. www.fujielectric.com/

  121. Alstom. www.alstom.com/

  122. Ormat. http://www.ormat.com/

  123. Turboden. www.turboden.eu/

  124. Exergy. www.exergy-orc.com

  125. Atlas Copco. www.atlascopco.com

  126. GE. www.gepower.com/

  127. Sprankle R (1986) Helical screw expander power plant model 76-1 test result analysis. In: Proceedings of a topical meeting on small scale geothermal power plants and geothermal power projects, 12–13 Feb 1986. Hydrothermal Power, Reno Nevada, pp 39–58

    Google Scholar 

  128. King Hubbert M (1975) Survey of world energy resources. In: Symposium on energy sources for the future, Oak Ridge, 7–25 July 1975

    Google Scholar 

  129. Tester JW, Milora SL (1975) Geothermal energy. In: Symposium on energy sources for the future, Oak Ridge, 7–25 July 1975

    Google Scholar 

  130. Bertani R (2010) Geothermal power generation in the world 2005–2010 update report. In: Proceedings world geothermal congress 2010, Bali, 25–29 Apr 2010

    Google Scholar 

  131. Geothermal Energy Association. Geothermal basics potential use. http://www.geo-energy.org/PotentialUse.aspx

  132. Western Governors Association (WGA) (2006) Geothermal task force report. http://www.westgov.org/wga/initiatives/cdeac/Geothermal-full.pdf

  133. Lund JW, Bertani R (2010) Worldwide geothermal utilization 2010. In: Geothermal resources council annual meeting 2010, Sacramento, 25–27 Oct 2010. GRC transactions, vol 34, pp 195–198

    Google Scholar 

  134. The future of geothermal energy, impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st century (2006). MIT Press. http://www1.eere.energy.gov/geothermal/egs_technology.html

  135. Holm A, Blodgett L, Jennejohn D, Gawell K (2010) Geothermal energy: international market update. Geothermal Energy Association, Washington, DC

    Google Scholar 

  136. Sanyal SK (2010) Future of geothermal energy. In: Proceedings, thirty-fifth workshop on geothermal reservoir engineering, SGP-TR-188. Stanford University, Stanford, 1–3 Feb 2010

    Google Scholar 

  137. Johanson TB, Goldenberg J (2004) World energy assessment overview 2004 update. UNDP 2005, http://www.undp.org/energy/weaover2004.htm

  138. Tester J, DiPippo R (2007) The future of geothermal energy structure and outcome of the analysis. Presentation at the DOE geothermal program workshop, Washington, DC, 7 June 2007

    Google Scholar 

  139. DOE Geothermal Technologies program use EERE website. http://www1.eere.energy.gov/geothermal/

  140. Bertani R (2009) Long term projection of geothermal electricity development in the world. In: Geotherm 2009 expo & congress, Offenburg, 5–6 Mar 2009. http://www.iea-gia.org/documents/LongTermGeothermElecDevelopWorldBertanioffenburg23Feb09.pdf

  141. Fridleifsson IB, Bertani R, Huenges E, Lund JW, Ragnarsson A, Ryback L (2008) The possible role and contribution of geothermal energy to the mitigation of climate change. In: IPCC scoping meeting on renewable energy sources, Luebeck, 21–25 Jan 2008

    Google Scholar 

  142. Council of Europe, Doc. 11740, 10 October 2008. Geothermal energy: a solution for the future? Motion for a resolution presented by Mrs Bjarnadottir and others

    Google Scholar 

  143. Council of Europe, Doc. 12249, 6 May 2010. Geothermal energy – a local answer to a hot topic? Report by: Mr René ROUQUET, France, Committee on the Environment, Agriculture and Local and Regional Affairs. http://assembly.coe.int/ASP/Doc/DocListingDetails_E.asp?DocID=13060

  144. EGEC (2010) The future of geothermal development, European Geothermal Energy Council (EGEC) projections. www.egec.org

  145. European Commission Research. Future prospects, hurdles. http://ec.europa.eu/research/energy/eu/research/geothermal/background/index_en.htm

  146. Brown LR (2009) Stabilizing climate: shifting to renewable energy, Chapter 5. In: Plan B 4.0: mobilizing to save civilization. W.W. Norton, New York. www.earthpolicy.org/index.php?/books/pb4

  147. Geothermal Energy Association. http://geo-energy.org/geo_basics_plant_cost.aspx

  148. Wilson SS, Radwanm MS (1977) Appropriate thermodynamics for heat engine analysis & design. Int J Mech Eng 5:68–82

    Google Scholar 

  149. Krieger Z, Moritz A (1986) Cascaded power plant using low and medium temperature source fluid. US Patent 4,578,953, 01 Apr 1986

    Google Scholar 

  150. Bronicki LY (1981) Practical experience and potential of organic vapor turbines for onsite electricity production from small local energy resources. UNITAR, Los Angeles

    Google Scholar 

  151. IEA-GIA Geothermal-annual-report. 2017. http://iea-gia.org/wp-ontent/uploads/2017/02/2015-IEA-Geothermal-Annual-Report.pdf

  152. Macchi E, Astolfi M (2017) ORC power systems. Elsevier, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucien Y. Bronicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bronicki, L.Y. (2018). Geothermal Power Conversion Technology. In: Bronicki, L. (eds) Power Stations Using Locally Available Energy Sources. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7510-5_233

Download citation

Publish with us

Policies and ethics