Skip to main content

Sustainability and Renewability of Geothermal Power Capacity

  • Reference work entry
  • First Online:
Power Stations Using Locally Available Energy Sources
  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Sustainability Science and Technology, © Springer Science+Business Media LLC 2017

Glossary

Discharge:

A measure of the flow rate of steam, water, or heat discharged at or near the ground surface from a subsurface geothermal reservoir.

Geothermal:

The naturally occurring heat found beneath the surface of the Earth, ultimately originating from the internal magmatic processes of the Earth’s core. A geothermal energy project utilizes the hot water or steam found within certain large bodies of rock, referred to as a geothermal reservoir.

Power capacity:

The amount of energy produced per unit time, or the amount of the electric power capacity that a power generation facility is designed to produce.

Recharge:

Natural influx of hot fluids into a geothermal system.

Renewable:

A natural energy resource that is inexhaustible or can replenish itself over time.

Specific heat:

The amount of heat required, in calories, to raise the temperature of 1 g of a substance by 1 Â°C.

Sustainable:

A natural energy resource which, if managed carefully, will provide the needs of a community or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

Primary Literature

  1. Axelsson G, Stefansson V, Björnsson G (2004) Sustainable utilization of geothermal resources. In: Proceedings of the twenty­ninth workshop on geothermal reservoir engineering. Stanford University, Stanford, pp 26–28

    Google Scholar 

  2. Rybach L (2003) Sustainable use of geothermal resources: renewability aspects. In: IGC 2003 short course. UNU Geothermal Training Programme, Iceland

    Google Scholar 

  3. Axelsson G, Gudmundsson A, Steingrimsson B, Palmason G, Armannsson H, Tulinius H, Flovenz OG, Bjornsson S, Stefansson V (2001) Sustainable production of geothermal energy: suggested definition. IGA­News Quarterly, no. 43. pp 1–2

    Google Scholar 

  4. Stefansson V (2000) The renewability of geothermal energy. In: Proceedings world geothermal congress. Kyushu­Tohoku, 28 May–10 June 2000

    Google Scholar 

  5. Rybach L, Mégel T, Eugster WJ (1999) How renewable are geothermal resources? Trans Geotherm Res Counc 23:563–566

    Google Scholar 

  6. Wright PM (1995) The sustainability of production from geothermal resources. In: Proceedings of the world geothermal congress. Florence, 18–31 May 1995

    Google Scholar 

  7. Sanyal S (2005) Sustainability and renewability of geothermal power capacity. In: Proceedings of the World geothermal congress, Antalya, Turkey, 24–29 Apr 2005

    Google Scholar 

  8. Pritchett JW (1998) Modeling post­abandonment electrical capacity recovery for a two­phase geothermal reservoir. Trans Geotherm Res Counc 22:521–528

    Google Scholar 

  9. Parini M, Cappetti G, Laudiano M, Bertani R, Monterrosa M (1995) Reservoir modeling study modeling study of the Ahuachapan geothermal field (El Salvador) in the frame of a generation stabilization project. In: Proceedings of world geothermal congress. Florence, 18–31 May 1995

    Google Scholar 

  10. Butler SJ, Sanyal SK, Robertson-Tait A, Lovekin JW, Benoit D (2001) A case history of numerical modeling of a fault­controlled geothermal system at Beowawe, Nevada. In: Proceedings of the twenty­sixth workshop on geothermal reservoir engineering. Stanford University, Stanford, 29–31 Jan 2001

    Google Scholar 

  11. Butler SJ, Sanyal SK, Henneberger RC, Klein CW, Gutiérrez H, de León JS (2000) Numerical modeling of the Cerro Prieto geothermal field, Mexico. In: Proceedings of the world geothermal congress. Kyushu­Tohoku, 28 May–10 June 2000

    Google Scholar 

  12. Wisian KW, Blackwell DD, Richards M (2001) Correlation of surface heat loss and total energy production for geothermal systems. Trans Geotherm Res Counc 25:331–336

    Google Scholar 

  13. Lippmann MJ, Bodvarsson GS (1985) The Heber geothermal field, California: natural state and exploitation modeling studies. J Geophys Res 90(B1):745–758

    Article  Google Scholar 

  14. McGuinness M, White S, Young R, Ishizaki H, Ikeuchi K, Yoshida Y (1995) A model of the Kakkonda geothermal reservoir. Geothermics 24:1–48

    Article  Google Scholar 

  15. White SP, Kissling WM, McGuinness MJ (1997) Models of the Kawareu geothermal reservoir. Trans Geotherm Res Counc 21:33–39

    Google Scholar 

  16. Tulinius H, Sigurdsson O (1989) Two­dimensional simulation of the Krafla­Hvitholar geothermal field, Iceland. In: Proceedings of the fourteenth workshop on geothermal reservoir engineering. Stanford University, Stanford, 24–26 Jan 1989

    Google Scholar 

  17. Sorey ML (1985) Evolution and present state of the hydrothermal system in the Long Valley caldera. J Geophys Res 90:11219–11228

    Article  Google Scholar 

  18. Esberto MB, Sarmiento ZF (1999) Numerical modeling of the Mt. Apo geothermal reservoir. In: Proceedings of the twenty­fourth workshop on geothermal reservoir engineering. Stanford University, Stanford, 25–27 Jan 1999

    Google Scholar 

  19. Haukwa C, Bodvarsson GS, Lippmann MJ, Mainieri A (1992) Preliminary reservoir engineering studies of the Miravalles geothermal field, Costa Rica. In: Proceedings of the seventeenth workshop on geothermal reservoir engineering. Stanford University, Stanford, 29–31 Jan 1991

    Google Scholar 

  20. Sakagawa Y, Takahashi M, Hanano M, Ishido T, Demboya N (1994) Numerical simulation of the Mori geothermal field, Japan. In: Nineteenth workshop on geothermal reservoir engineering. Stanford University, Stanford, 18–20 Jan 1994

    Google Scholar 

  21. Kiryukhin AV (2004) Modeling study of the Mutnovsky geothermal field (Dachny) in connection with the problem of steam supply for 50 MWe PP. In: Twenty­ninth workshop on geothermal reservoir engineering. Stanford University, Stanford, 26–28 Jan 2004

    Google Scholar 

  22. Steingrimsson B, Bodvarsson GS, Gunnlaugsson E, Gislason G, Sigurdsson O (2000) Modeling studies of the Nesjavellir geothermal field, Iceland. In: Proceedings of the world geothermal congress. Kyushu­Tohoku, 28 May­10 June 2000

    Google Scholar 

  23. McGuinness MJ (1998) Ngawha geothermal field – a review. In: Proceedings of the twentieth New Zealand geothermal workshop. University of Auckland, Auckland

    Google Scholar 

  24. Yamada M, Iguchi K, Nakanishi S, Todaka N (2000) Reservoir characteristics and development plan of the Oguni geothermal field, Kyushu, Japan. Geothermics 29:151–169

    Article  Google Scholar 

  25. Nakanishi S, Nobuyuki I (2000) Reservoir simulation study of the Onikobe geothermal field, Japan. In: Proceedings of the world geothermal congress. Kyushu­Tohoku, 28 May–10 June 2000

    Google Scholar 

  26. Yearsley E (1994) Roosevelt hot springs reservoir model applied to forecasting remaining field potential. Trans Geotherm Res Counc 18:617–622

    Google Scholar 

  27. Atmojo JP, Itoi R, Fukuda M, Tanaka T, Daud Y, Sudarman S (2001) Numerical modeling study of Sibayak geothermal reservoir, North Sumatra, Indonesia. In: Proceedings of the twenty­sixth workshop on geothermal reservoir engineering. Stanford University, Stanford, 29–31 Jan 2001

    Google Scholar 

  28. Pritchett JW, Garg SK, Ariki K, Kawano Y (1991) Numerical simulation of the Sumikawa geothermal field in the natural state. In: Proceedings of the sixteenth workshop on geothermal reservoir engineering. Stanford University, Stanford, 23–25 Jan 1991

    Google Scholar 

  29. Furuya S, Aoki M, Gotoh H, Takenaka T (2000) Takigami geothermal system, Northeastern Kyushu, Japan. Geothermics 29:191–211

    Article  Google Scholar 

  30. Butler SJ, Sanyal SK, Klein CW, Iwata S, Itoh M (2004) Numerical simulation and performance evaluation of the Uenotai geothermal field, Akita Prefecture. Jpn Trans Geotherm Res Counc 28:455–460

    Google Scholar 

  31. Bibby HM, Caldwell TG, Davey FJ, Webb TH (1995) Geophysical evidence on the structure of the Taupo volcanic zone and its hydrothermal circulation. J Volcanol Geotherm Res 68:29–58

    Article  Google Scholar 

  32. Sanyal SK, Pham M, Iwata S, Suzuki M (2000) Numerical simulation of the Wasabizawa geothermal field, Akita Prefecture. Jpn Trans Geotherm Res Counc 24:623–630

    Google Scholar 

  33. Menzies AJ, Granados EE, Sanyal SK, Mérida-I L, Caicedo AA (1991) Numerical modeling of the initial state and matching of well test data from the Zunil geothermal field, Guatemala. In: Proceedings of the sixteenth workshop on geothermal reservoir engineering. Stanford University, Stanford, 23–25 Jan 1991

    Google Scholar 

  34. Sanyal SK, Klein CW, Lovekin JW, Henneberger RC (2004) National assessment of U.S. geothermal resources – a perspective. Trans Geotherm Res Counc 28:355–362

    Google Scholar 

  35. Klein CW, Lovekin JW, Sanyal SK (2004) New geothermal site identification and quantification. In: California energy commission PIER consultant report. P500­04­051

    Google Scholar 

  36. Clotworthy A (2000) Response of Wairakei geothermal reservoir to 40 years of production. In: Proceedings of the world geothermal congress. Kyushu­Tohoku, 28 May–10 June 2000

    Google Scholar 

  37. MIT (2006) The future of geothermal energy – impact of enhanced geothermal systems (EGS) on the United States in the 21st century. An assessment by an MIT – Led interdisciplinary panel. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  38. Sanyal SK (2010) Future of geothermal energy. In: Proceedings of the thirty­fifth workshop on geothermal reservoir engineering. Stanford University, Stanford, 1–3 Feb 2010, SGP­TR­188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir K. Sanyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sanyal, S.K. (2018). Sustainability and Renewability of Geothermal Power Capacity. In: Bronicki, L. (eds) Power Stations Using Locally Available Energy Sources. Encyclopedia of Sustainability Science and Technology Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7510-5_229

Download citation

Publish with us

Policies and ethics