Role of Tumor-Stromal Interactions in Pancreatic Cancer Invasion and Metastases

  • Rachel L. O. Olson
  • Judith V. Forner
  • Pilar Navarro
  • Martin E. Fernandez-Zapico
  • Ahmed M. Elamir
Reference work entry

Abstract

Pancreatic cancer tumor microenvironment (TME), simply defined as the noncancerous desmoplastic reaction, is considered a key player in all aspects of tumor growth, and progression. The dismal prognosis of pancreatic cancer and disappointing clinical trials has drawn our attention to the TME, particularly to the tumor-stromal interactions. While a myriad of molecular, pathological, and clinical features contribute to the lethality of pancreatic cancer, local invasiveness and distant metastases is a hallmark and leading cause of mortality and morbidity in this ominous cancer. Cancer-associated stromal cells including stellate cells have been implicated in epithelial mesenchymal transition (EMT), a process involved in invasion and metastases. In addition, the pre-metastatic niche, immune evasion, and enhancement of angiogenesis have been attributed to these cells. Interactions of the tumor stromal complex operate as a command and logistics center for pancreatic cancer cells, triggering and maintaining invasiveness and metastases. Understanding and modulating these interactions is a promising strategy to tame one of the most aggressive human cancers to date.

Keywords

Pancreatic cancer Tumor microenvironment Cancer-associated fibroblast Pancreatic cancer stellate cells Tumor-cell interaction Metastasis 

Notes

Acknowledgment

We would like to acknowledge the contributions of the authors of the excellent research studies and comprehensive reviews that were cited herein. We apologize to any authors whose work we omitted due to space limitations. We are grateful to Mohamed Mohameden Ibrahim Elamir for his unwavering support, and motivation. This work was supported by the NIH/NCI CA136526, Mayo Clinic Pancreatic SPORE P50 CA102701, and Mayo Clinic Center for Cell Signaling in Gastroenterology P30 DK84567 and Mayo Clinic Cancer.

References

  1. 1.
    Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 2014;74(11):2913–21.CrossRefGoogle Scholar
  2. 2.
    Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.  https://doi.org/10.3322/caac.21208. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24399786%0A.CrossRefPubMedGoogle Scholar
  3. 3.
    Konstantinidis IT, Warshaw AL, Allen JN, Blaszkowsky LS, Castillo C F-d, Deshpande V, Hong TS, Kwak EL, Lauwers GY, Ryan DP, Je M. Is there a survival difference for R1 resections versus locally advanced Unresectable tumors? What is a “true” R0 resection? Ann Surg. 2013;257(4):2–7.CrossRefGoogle Scholar
  4. 4.
    Hishinuma S, Ogata Y, Tomikawa M, Ozawa I, Hirabayashi K, Igarashi S. Patterns of recurrence after curative resection of pancreatic cancer, based on autopsy findings. J Gastrointest Surg. 2006;10(4):511–8.CrossRefGoogle Scholar
  5. 5.
    Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med. 2004;350(12):1200–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15028824%5Cn, http://www.nejm.org/doi/pdf/10.1056/NEJMoa032295.CrossRefGoogle Scholar
  6. 6.
    Das S, Batra SK. Pancreatic cancer metastasis: are we being pre-EMTed? Curr Pharm Des. 2015;21(10):1249–55.CrossRefGoogle Scholar
  7. 7.
    Farrow B, Albo D, Berger DH. The role of the tumor microenvironment in the progression of pancreatic cancer. J Surg Res. 2008;149(2):319–28.CrossRefGoogle Scholar
  8. 8.
    Wilson JS, Pirola RC, Apte MV. Stars and stripes in pancreatic cancer: role of stellate cells and stroma in cancer progression. Front Physiol. 2014;5 FEB(February):1–11.Google Scholar
  9. 9.
    Nielsen MFB, Mortensen MB, Detlefsen S. Key players in pancreatic cancer-stroma interaction: cancer-associated fibroblasts, endothelial and inflammatory cells. World J Gastroenterol. 2016;22:2678.CrossRefGoogle Scholar
  10. 10.
    Pandol SJ, Edderkaoui M. What are the macrophages and stellate cells doing in pancreatic adenocarcinoma? Front Physiol. 2015;6(May):125. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4432577&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Xu Z, Pothula SP, Wilson JS, Apte MV. Pancreatic cancer and its stroma: a conspiracy theory. World J Gastroenterol. 2014;20(32):11216–29.CrossRefGoogle Scholar
  12. 12.
    Wörmann SM, Diakopoulos KN, Lesina M, Algül H. The immune network in pancreatic cancer development and progression. Oncogene. 2014;33(23):2956–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23851493.CrossRefGoogle Scholar
  13. 13.
    Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y, et al. Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci. 2013;104(2):157–64.CrossRefGoogle Scholar
  14. 14.
    Sarkar FH, Li Y, Wang Z, Kong D. Pancreatic cancer stem cells and EMT in drug resistance and metastasis. Minerva Chir. 2009;64(5):489–500.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Amit M, Gil Z. Macrophages increase the resistance of pancreatic adenocarcinoma cells to gemcitabine by upregulating cytidine deaminase. Oncoimmunology. 2013;2(12):e27231. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24498570%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3912006.CrossRefGoogle Scholar
  16. 16.
    Apte MV, Xu Z, Pothula S, Goldstein D, Pirola RC, Wilson JS. Pancreatic cancer: the microenvironment needs attention too. Pancreatology. 2015;15(4):S32–8.CrossRefGoogle Scholar
  17. 17.
    Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The pancreas cancer microenvironment. Clin Cancer Res. 2012;18(16):4266–76.CrossRefGoogle Scholar
  18. 18.
    Horimoto Y, Polanska UM, Takahashi Y, Orimo A. Emerging roles of the tumor-associated stroma in promoting tumor metastasis. Cell Adhes Migr. 2012;6(3):193–202.CrossRefGoogle Scholar
  19. 19.
    von Ahrens D, Bhagat TD, Nagrath D, Maitra A, Verma A. The role of stromal cancer-associated fibroblasts in pancreatic cancer. J Hematol Oncol. 2017;10(1):76. Available from: http://jhoonline.biomedcentral.com/articles/10.1186/s13045-017-0448-5.CrossRefGoogle Scholar
  20. 20.
    Galvan JA, et al. Expression of E-cadherin repressors SNAIL, ZEB1 and ZEB2 by tumour and stromal cells influences tumour-budding phenotype and suggests heterogeneity of stromal cells in pancreatic cancer. Brit J Cancer. 2015;112(12):1944–50.CrossRefGoogle Scholar
  21. 21.
    Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fi broblast within the tumor microenvironment. Adv Drug Deliv Rev. 2016;99:186–96.  https://doi.org/10.1016/j.addr.2015.07.007.CrossRefPubMedGoogle Scholar
  22. 22.
    Lunardi S, Muschel RJ, Brunner TB. The stromal compartments in pancreatic cancer: are there any therapeutic targets? Cancer Lett. 2014;343(2):147–55.  https://doi.org/10.1016/j.canlet.2013.09.039.CrossRefPubMedGoogle Scholar
  23. 23.
    Pillarisetty VG. The pancreatic cancer microenvironment: an immunologic battleground. Oncoimmunology. 2014;3(8):e950171.  https://doi.org/10.4161/21624011.2014.950171%5Cn. Available from: http://www.tandfonline.com/doi/full/10.4161/21624011.2014.950171?mobileUi=0&#.VNzp0JjF9ZI%5Cn, http://www.tandfonline.com/doi/pdf/10.4161/21624011.2014.950171.CrossRefGoogle Scholar
  24. 24.
    Mielgo A, Schmid MC. Impact of tumour associated macrophages in pancreatic cancer. BMB Rep. 2013;46(3):131–8.CrossRefGoogle Scholar
  25. 25.
    Porembka MR, Mitchem JB, Belt BA, Hsieh C-S, Lee H-M, Herndon J, et al. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother. 2012;61(9):1373–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22215137%5Cn, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3697836.CrossRefGoogle Scholar
  26. 26.
    Greten TF. Myeloid-derived suppressor cells in pancreatic cancer: more than a hidden barrier for antitumour immunity? Gut. 2014;63(11):2014–6.CrossRefGoogle Scholar
  27. 27.
    Maity G, Mehta S, Haque I, Dhar K, Sarkar S, Banerjee SK, et al. Pancreatic tumor cell secreted CCN1/Cyr61 promotes endothelial cell migration and aberrant neovascularization. Sci Rep. 2014;4:4995. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24833309.CrossRefGoogle Scholar
  28. 28.
    Xie D, Xie K. Pancreatic cancer stromal biology and therapy. Genes Dis. 2015;2(2):133–43.  https://doi.org/10.1016/j.gendis.2015.01.002.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kleeff J, Beckhove P, Esposito I, Herzig S, Huber PE, Löhr JM, et al. Pancreatic cancer microenvironment. Int J Cancer. 2007;121(4):699–705.CrossRefGoogle Scholar
  30. 30.
    Grzesiak JJ, Ho JC, Moossa AR, Bouvet M. The integrin-extracellular matrix axis in pancreatic cancer. Pancreas. 2007;35(4):293–301.CrossRefGoogle Scholar
  31. 31.
    Neesse A, Algül H, Tuveson DA, Gress TM. Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut. 2015;64(9):1476–84. Available from: http://gut.bmj.com/lookup/doi/10.1136/gutjnl-2015-309304%5Cn, http://www.ncbi.nlm.nih.gov/pubmed/25994217.CrossRefGoogle Scholar
  32. 32.
    Whipple CA. Tumor talk: understanding the conversation between the tumor and its microenvironment. Cancer Cell Microenviron. 2015;2(2):e773.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Hamada S, Masamune A, Shimosegawa T. Alteration of pancreatic cancer cell functions by tumor-stromal cell interaction. Front Physiol. 2013;4 NOV(November):1–7.Google Scholar
  34. 34.
    Mihaljevic AL, Michalski CW, Friess H, Kleeff J. Molecular mechanism of pancreatic cancer – understanding proliferation, invasion, and metastasis. Langenbeck’s Arch Surg. 2010;395:295–308.CrossRefGoogle Scholar
  35. 35.
    Schlitter AM, Segler A, Steiger K, Michalski CW, Jäger C, Konukiewitz B, et al. Molecular, morphological and survival analysis of 177 resected pancreatic ductal adenocarcinomas (PDACs): identification of prognostic subtypes. Sci Rep. 2017;7(December 2016):41064. Available from: http://www.nature.com/articles/srep41064.CrossRefGoogle Scholar
  36. 36.
    Grage-Griebenow E, Schäfer H, Sebens S. The fatal alliance of cancer and T cells: how pancreatic tumor cells gather immunosuppressive T cells. Oncoimmunology. 2014;3(June):e29382. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4126073&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  37. 37.
    Clark CE, et al. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67(19):9518–27.CrossRefGoogle Scholar
  38. 38.
    Mace TA, Ameen Z, Collins A, Wojcik S, Mair M, Young GS, Fuchs JR, Eubank TD, Frankel WL, Bekaii-Saab T, Bloomston M, Lesinski GB. Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3- dependent manner. Cancer Res. 2013;73(10):3007–18.CrossRefGoogle Scholar
  39. 39.
    Masamune A, Shimosegawa T. Pancreatic stellate cells: a dynamic player of the intercellular communication in pancreatic cancer. Clin Res Hepatol Gastroenterol. 2015;39:S98–103.  https://doi.org/10.1016/j.clinre.2015.05.018.CrossRefPubMedGoogle Scholar
  40. 40.
    Ene-Obong A, Clear AJ, Watt J, Wang J, Fatah R, Riches JC, et al. Activated pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration of the juxtatumoral compartment of pancreatic ductal adenocarcinoma. Gastroenterology. 2013;145(5):1121–32.  https://doi.org/10.1053/j.gastro.2013.07.025.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Karnevi E, Andersson R, Rosendahl AH. Tumour-educated macrophages display a mixed polarisation and enhance pancreatic cancer cell invasion. Immunol Cell Biol. 2014;92(6): 543–52.  https://doi.org/10.1038/icb.2014.22.CrossRefPubMedGoogle Scholar
  42. 42.
    Hu J, Jo M, Eastman BM, Gilder AS, Bui JD, Gonias SL. UPAR induces expression of transforming growth factor β And interleukin-4 in cancer cells to promote tumor-permissive conditioning of macrophages. Am J Pathol. 2014;184(12):3384–93.  https://doi.org/10.1016/j.ajpath.2014.08.003.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ma Y, Hwang RF, Logsdon CD, Ullrich SE. Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res. 2013;73(13):3927–37.CrossRefGoogle Scholar
  44. 44.
    Sainz B, Martín B, Tatari M, Heeschen C, Guerra S. ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res. 2014;74(24):7309–20.CrossRefGoogle Scholar
  45. 45.
    Panni RZ, Sanford DE, Belt BA, Mitchem JB, Worley LA, Goetz BD, et al. Tumor-induced STAT3 activation in monocytic myeloid-derived suppressor cells enhances stemness and mesenchymal properties in human pancreatic cancer. Cancer Immunol Immunother. 2014;63(5):513–28.CrossRefGoogle Scholar
  46. 46.
    Grage-Griebenow E, Jerg E, Gorys A, Wicklein D, Wesch D, Freitag-Wolf S, et al. L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic cancer correlating with malignant progression. Mol Oncol. 2014;8(5):982–97.CrossRefGoogle Scholar
  47. 47.
    Lutz ER, Kinkead H, Jaffee EM, Zheng L. Priming the pancreatic cancer tumor microenvironment for checkpoint-inhibitor immunotherapy. Oncoimmunology. 2014;3(11):e962401. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4292514&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  48. 48.
    Ma Y, Ullrich SE. Intratumoral mast cells promote the growth of pancreatic cancer. Oncoimmunology. 2013;2(October):10–2.Google Scholar
  49. 49.
    Martínez-Bosch N, Fernández-Barrena MG, Moreno M, Ortiz-Zapater E, André S, Gabius H-J, Hwang RF, Poirier F, Munné-Collado J, Iglesias M, Navas C, Guerra C, Fernández-Zapico ME, Navarro P. Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and hedgehog signaling activation Neus. Cancer Res. 2014;74(13):3512–24.CrossRefGoogle Scholar
  50. 50.
    Martínez-Bosch N, Navarro P. Targeting Galectin-1 in pancreatic cancer: immune surveillance on guard. Oncoimmunology. 2014;3(8):e952201. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4292238&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  51. 51.
    Mace TA, Bloomston M, Lesinski GB. Pancreatic cancer-associated stellate cells: a viable target for reducing immunosuppression in the tumor microenvironment. Oncoimmunology. 2013;2(7):e24891. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3782129&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  52. 52.
    Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25(1):76–84. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:new+england+journal#2.
  53. 53.
    Grosse-Steffen T, et al. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: the role of neutrophils and neutrophil-derived elastase. Clin Dev Immunol. 2012.Google Scholar
  54. 54.
    Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.Google Scholar
  55. 55.
    Hamid O, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.Google Scholar
  56. 56.
    Soares KC, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother. 2015;38(1):1–11.CrossRefGoogle Scholar
  57. 57.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8.CrossRefGoogle Scholar
  58. 58.
    Hamada S, et al. Regulators of epithelial mesenchymal transition in pancreatic cancer. Front Physiol. 2012;3:254.Google Scholar
  59. 59.
    Kikuta K, et al. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells. Biochem Biophys Res Commun. 2010;403(3–4):380–4.CrossRefGoogle Scholar
  60. 60.
    Froeling FEM, et al. Organotypic culture model of pancreatic cancer demonstrates that stromal cells modulate E-cadherin, beta-catenin, and Ezrin expression in tumor cells. Am J Pathol. 2009;175(2):636–48.CrossRefGoogle Scholar
  61. 61.
    Beuran M, et al. The epithelial to mesenchymal transition in pancreatic cancer: a systematic review. Pancreatology. 2015;15(3):217–25.CrossRefGoogle Scholar
  62. 62.
    Yamada S, Fuchs BC, Fujii T, Shimoyama Y, Sugimoto H, Nomoto S, et al. Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer. Surgery (United States). 2013;154(5):946–54.  https://doi.org/10.1016/j.surg.2013.05.004.CrossRefGoogle Scholar
  63. 63.
    Karnevi E, Rosendahl AH, Hilmersson KS, Saleem MA, Andersson R. Impact by pancreatic stellate cells on epithelial-mesenchymal transition and pancreatic cancer cell invasion: adding a third dimension in vitro. Exp Cell Res. 2016;346(2):206–15.  https://doi.org/10.1016/j.yexcr.2016.07.017.CrossRefPubMedGoogle Scholar
  64. 64.
    Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148(1–2):349–61.  https://doi.org/10.1016/j.cell.2011.11.025.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.CrossRefGoogle Scholar
  66. 66.
    Guan J, Zhang H, Wen Z, Gu Y, Cheng Y, Sun Y, et al. Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. Cancer Lett. 2014;345(1):132–9.  https://doi.org/10.1016/j.canlet.2013.12.006.CrossRefPubMedGoogle Scholar
  67. 67.
    Xia X, Wu W, Huang C, Cen G, Jiang T, Cao J, et al. SMAD4 and its role in pancreatic cancer. Tumor Biol. 2014;36(1):111–9.CrossRefGoogle Scholar
  68. 68.
    Lohr M, et al. Transforming growth factor-beta 1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res. 2001;61(2):550–5.PubMedGoogle Scholar
  69. 69.
    Yamada S, Fujii T, Shimoyama Y. SMAD4 expression predicts local spread and treatment failure in resected pancreatic cancer. Pancreas. 2015;44:1–5.CrossRefGoogle Scholar
  70. 70.
    Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, Henderson CM, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 2009;27(11):1806–13. Available from: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19273710.CrossRefGoogle Scholar
  71. 71.
    Hagopian MM, Brekken RA. Stromal TGFβR2 signaling: a gateway to progression for pancreatic cancer. Mol Cell Oncol. 2015;2(3).  http://doi.org/10.4161/23723556.2014.975606.CrossRefGoogle Scholar
  72. 72.
    Nagathihalli NS, Castellanos JA, Vansaun MN, Dai X, Ambrose M, Guo Q, et al. Pancreatic stellate cell secreted IL-6 stimulates STAT3 dependent invasiveness of pancreatic intraepithelial neoplasia and cancer cells. Oncotarget. 2016;7(40):1–11.CrossRefGoogle Scholar
  73. 73.
    Birtolo C, Pham H, Morvaridi S, Chheda C, Go VLW, Ptasznik A, et al. Cadherin-11 is a cell surface marker up-regulated in activated pancreatic stellate cells and is involved in pancreatic cancer cell migration. Am J Pathol. 2017;187(1):146–55.  https://doi.org/10.1016/j.ajpath.2016.09.012.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Ohuchida K, Mizumoto K, Murakami M, Qian L, Sato N, Nagai E, et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal. Interactions. 2004;1:3215–22.Google Scholar
  75. 75.
    Heinrich EL, Arrington AK, Ko ME, Luu C, Lee W, Lu J, et al. Paracrine activation of chemokine receptor CCR9 enhances the invasiveness of pancreatic cancer cells. Cancer Microenviron. 2013;6(3):241–5.CrossRefGoogle Scholar
  76. 76.
    Lu J, Zhou S, Siech M, Habisch H, Seufferlein T, Bachem MG. Pancreatic stellate cells promote hapto-migration of cancer cells through collagen I-mediated signalling pathway. Br J Cancer. 2014;110(2):409–20. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3899756&tool=pmcentrez&rendertype=abstract.CrossRefGoogle Scholar
  77. 77.
    Leca J, Martinez S, Lac S, Nigri J, Secq V, Rubis M, et al. Cancer-associated fibroblast-derived annexin A6+ extracellular vesicles support pancreatic cancer aggressiveness. J Clin Invest. 2016;126(9):1–17.Google Scholar
  78. 78.
    Schneiderhan W, Diaz F, Fundel M, Zhou S, Siech M, Hasel C, et al. Pancreatic stellate cells are an important source of MMP-2 in human pancreatic cancer and accelerate tumor progression in a murine xenograft model and CAM assay. J Cell Sci. 2007;120(Pt 3):512–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17227797.CrossRefGoogle Scholar
  79. 79.
    Deryugina EI, Quigley JP. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory functions. Biochim Biophys Acta. 2010;1803(1):103–20.CrossRefGoogle Scholar
  80. 80.
    Nagakawa Y, Aoki T, Kasuya K, Tsuchida A, Koyanagi Y. Histologic features of venous invasion, expression of vascular endothelial growth factor and matrix metalloproteinase-2 and matrix metalloproteinase-9, and the relation with liver metastasis in pancreatic cancer. Pancreas. 2002;24(11854622):169–78. Available from: http://www.hubmed.org/display.cgi?uids=11854622.CrossRefGoogle Scholar
  81. 81.
    Tjomsland V, Pomianowska E, Aasrum M, Sandnes D, Verbeke CS, Gladhaug IP. Profile of MMP and TIMP expression in human pancreatic stellate cells: regulation by IL-1α and TGFβ and implications for migration of pancreatic cancer cells. Neoplasia (United States). 2016;18(7):447–56.  https://doi.org/10.1016/j.neo.2016.06.003.CrossRefGoogle Scholar
  82. 82.
    Tjomsland V, Sandnes D, Pomianowska E, Aasrum M, Christoffersen T, Gladhaug IP. TGFβ/IL-1R1 regulation of human pancreatic stellate cells: reduced MMP activity and inhibition of migration of pancreatic cancer cells in a collagen matrix model. Pancreatology. 2015;15(3):S17. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1424390315001921.Google Scholar
  83. 83.
    Xu Z, Vonlaufen A, Phillips PA, Fiala-Beer E, Zhang X, Yang L, et al. Role of pancreatic stellate cells in pancreatic cancer metastasis. Am J Pathol. 2010;177(5):2585–96. Available from: http://www.sciencedirect.com/science/article/pii/S0002944010603082.CrossRefGoogle Scholar
  84. 84.
    Gong H. Analysis of intercellular signal transduction in the tumor microenvironment. BMC Syst Biol. 2013;7 Suppl 3:S5.CrossRefGoogle Scholar
  85. 85.
    Storck H, et al. Ion channels in control of pancreatic stellate cell migration. Oncotarget. 2017;8(1):769–84.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rachel L. O. Olson
    • 1
    • 2
  • Judith V. Forner
    • 1
    • 3
  • Pilar Navarro
    • 3
  • Martin E. Fernandez-Zapico
    • 1
  • Ahmed M. Elamir
    • 4
  1. 1.Schulze Center for Novel TherapeuticsMayo ClinicRochesterUSA
  2. 2.Center for Learning InnovationUniversity of Minnesota RochesterRochesterUSA
  3. 3.Cancer Research ProgrammeHospital del Mar Medical Research Institute (IMIM)BarcelonaSpain
  4. 4.Clinical Oncology Department, Faculty of MedicineCairo UniversityCairoEgypt

Personalised recommendations