Pancreatic Cancer pp 1241-1272 | Cite as

Development of Novel Diagnostic Pancreatic Tumor Biomarkers

  • Lucy Oldfield
  • Rohith Rao
  • Lawrence N. Barrera
  • Eithne Costello
Reference work entry

Abstract

As the incidence of pancreatic ductal adenocarcinoma cancer (PDAC) increases, the need to improve the outcome for patients with this deadly disease becomes all the more pressing. Earlier detection of PDAC has the potential to improve survival, and biomarkers that enable earlier diagnosis are sought after. Some of the challenges associated with developing new diagnostic biomarkers for PDAC are reviewed here, including the need for appropriate control groups and the necessity to account for established confounding factors such as obstructive jaundice. High-risk groups, including individuals with new-onset diabetes, are discussed, and the findings of studies utilizing samples from pre-diagnostic cohorts to monitor changes in biomarker levels occurring in the weeks and months prior to diagnosis of PDAC are appraised. Progress toward identification of specific biomarker types is provided, and a variety of sources of biomarkers are examined, including blood, urine, pancreatic juice, gut lavage fluid, and extracellular vesicles. Additionally, a range of biomarker types are reviewed, including protein biomarkers, circulating tumor cells, circulating tumor DNA, and microRNAs. New developments with respect to emerging biomarkers, such as metabolites, are also examined. While progress to date has been slow, clear advances are being made, and the promise of biomarkers with clinical utility is in reach.

Keywords

Pancreatic cancer Biomarkers New-onset diabetes Obstructive jaundice Early detection 

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.PubMedCrossRefGoogle Scholar
  2. 2.
    Lesko LJ, Atkinson AJ Jr. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol. 2001;41:347–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Locker GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24(33):5313–27.CrossRefPubMedGoogle Scholar
  4. 4.
    Wong D, Ko AH, Hwang J, Venook AP, Bergsland EK, Tempero MA. Serum CA19-9 decline compared to radiographic response as a surrogate for clinical outcomes in patients with metastatic pancreatic cancer receiving chemotherapy. Pancreas. 2008;37(3):269–74.CrossRefPubMedGoogle Scholar
  5. 5.
    Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, Stebbings LA, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature. 2010;467(7319):1109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Sener SF, Fremgen A, Menck HR, Winchester DP. Pancreatic cancer: a report of treatment and survival trends for 100,313 patients diagnosed from 1985–1995, using the National Cancer Database. J Am Coll Surg. 1999;189(1):1–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Yan L, Tonack S, Smith R, Dodd S, Jenkins RE, Kitteringham N, et al. Confounding effect of obstructive jaundice in the interpretation of proteomic plasma profiling data for pancreatic cancer. J Proteome Res. 2009;8(1):142–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Tonack S, Jenkinson C, Cox T, Elliott V, Jenkins RE, Kitteringham NR, et al. iTRAQ reveals candidate pancreatic cancer serum biomarkers: influence of obstructive jaundice on their performance. Br J Cancer. 2013;108(9):1846–53.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Nie S, Lo A, Wu J, Zhu J, Tan Z, Simeone DM, et al. Glycoprotein biomarker panel for pancreatic cancer discovered by quantitative proteomics analysis. J Proteome Res. 2014;13(4):1873–84.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6B):1113–24.PubMedCrossRefGoogle Scholar
  12. 12.
    Menon U, Gentry-Maharaj A, Ryan A, Sharma A, Burnell M, Hallett R, et al. Recruitment to multicentre trials – lessons from UKCTOCS: descriptive study. BMJ. 2008;337:a2079.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Menon U, Gentry-Maharaj A, Hallett R, Ryan A, Burnell M, Sharma A, et al. Sensitivity and specificity of multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers: results of the prevalence screen of the UK Collaborative trial of ovarian cancer screening (UKCTOCS). Lancet Oncol. 2009;10(4):327–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Jenkinson C, Elliott V, Menon U, Apostolidou S, Fourkala OE, Gentry-Maharaj A, et al. Evaluation in pre-diagnosis samples discounts ICAM-1 and TIMP-1 as biomarkers for earlier diagnosis of pancreatic cancer. J Proteome. 2014;9:305–315.Google Scholar
  15. 15.
    Jenkinson C, Elliott VL, Evans A, Oldfield L, Jenkins RE, O'Brien DP, et al. Decreased serum thrombospondin-1 levels in pancreatic cancer patients up to 24 months prior to clinical diagnosis: association with diabetes mellitus. Clin Cancer Res. 2016;22(7):1734–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Capello M, Cappello P, Linty FC, Chiarle R, Sperduti I, Novarino A, et al. Autoantibodies to Ezrin are an early sign of pancreatic cancer in humans and in genetically engineered mouse models. J Hematol Oncol. 2013;6:67.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148(1–2):349–61.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Huang Z, Liu F. Diagnostic value of serum carbohydrate antigen 19-9 in pancreatic cancer: a meta-analysis. Tumour Biol. 2014;35:5501–5514.PubMedCrossRefGoogle Scholar
  19. 19.
    Rosty C, Goggins M. Early detection of pancreatic carcinoma. Hematol Oncol Clin North Am. 2002;16(1):37–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Nolen BM, Brand RE, Prosser D, Velikokhatnaya L, Allen PJ, Zeh HJ, et al. Prediagnostic serum biomarkers as early detection tools for pancreatic cancer in a large prospective cohort study. PLoS One. 2014;9(4):e94928.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gold DV, Gaedcke J, Ghadimi BM, Goggins M, Hruban RH, Liu M, et al. PAM4 enzyme immunoassay alone and in combination with CA 19-9 for the detection of pancreatic adenocarcinoma. Cancer. 2013;119(3):522–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Brand RE, Nolen BM, Zeh HJ, Allen PJ, Eloubeidi MA, Goldberg M, et al. Serum biomarker panels for the detection of pancreatic cancer. Clin Cancer Res. 2011;17(4):805–16.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Pan S, Chen R, Brand RE, Hawley S, Tamura Y, Gafken PR, et al. Multiplex targeted proteomic assay for biomarker detection in plasma: a pancreatic cancer biomarker case study. J Proteome Res. 2012;11(3):1937–48.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Tiernan JP, Perry SL, Verghese ET, West NP, Yeluri S, Jayne DG, et al. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting. Br J Cancer. 2013;108(3):662–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Poruk KE, Gay DZ, Brown K, Mulvihill JD, Boucher KM, Scaife CL, et al. The clinical utility of CA 19-9 in pancreatic adenocarcinoma: diagnostic and prognostic updates. Curr Mol Med. 2013;13(3):340–51.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Keane MG, Horsfall L, Rait G, Pereira SP. A case-control study comparing the incidence of early symptoms in pancreatic and biliary tract cancer. BMJ Open. 2014;4(11):e005720.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Petersen GM. Familial Pancreatic Adenocarcinoma. Hematol Oncol Clin North Am. 2015;29(4):641–53.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sah RP, Nagpal SJ, Mukhopadhyay D, Chari ST. New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol. 2013;10(7):423–33.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Permert J, Ihse I, Jorfeldt L, von Schenck H, Arnqvist HJ, Larsson J. Pancreatic cancer is associated with impaired glucose metabolism. Eur J Surg. 1993;159(2):101–7.PubMedGoogle Scholar
  30. 30.
    Pannala R, Leirness JB, Bamlet WR, Basu A, Petersen GM, Chari ST. Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology. 2008;134(4):981–7.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Aggarwal G, Ramachandran V, Javeed N, Arumugam T, Dutta S, Klee GG, et al. Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in beta cells and mice. Gastroenterology. 2012;143(6):1510–7. e1PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hart PA, Baichoo E, Bi Y, Hinton A, Kudva YC, Chari ST. Pancreatic polypeptide response to a mixed meal is blunted in pancreatic head cancer associated with diabetes mellitus. Pancreatology. 2015;15(2):162–6.PubMedCrossRefGoogle Scholar
  33. 33.
    Huang H, Dong X, Kang MX, Xu B, Chen Y, Zhang B, et al. Novel blood biomarkers of pancreatic cancer-associated diabetes mellitus identified by peripheral blood-based gene expression profiles. Am J Gastroenterol. 2010;105(7):1661–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Hruban RH, Takaori K, Klimstra DS, Adsay NV, Albores-Saavedra J, Biankin AV, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2004;28(8):977–87.CrossRefPubMedGoogle Scholar
  35. 35.
    Tanaka M, Fernández-del Castillo C, Adsay V, Chari S, Falconi M, Jang JY, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12(3):183–97.CrossRefPubMedGoogle Scholar
  36. 36.
    David A, Klibansky KMRL, Gordon SR, Gardner TB. The clinical relevance of the increasing incidence of intraductal papillary mucinous neoplasm. Clin Gastroenterol Hepatol. 2012;10(5):555–8.CrossRefGoogle Scholar
  37. 37.
    Chari ST, Kelly K, Hollingsworth MA, Thayer SP, Ahlquist DA, et al. Early detection of sporadic pancreatic cancer: summative review. Pancreas. 2015;44(5):693–712.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rhim AD. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148:349–61.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25(6):735–47.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Habbe N, Koorstra JB, Mendell JT, Offerhaus GJ, Ryu JK, Feldmann G, et al. MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biol Ther. 2009;8(4):340–6.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Caponi S, Funel N, Frampton AE, Mosca F, Santarpia L, Van der Velde AG, et al. The good, the bad and the ugly: a tale of miR-101, miR-21 and miR-155 in pancreatic intraductal papillary mucinous neoplasms. Ann Oncol. 2013;24(3):734–41.PubMedCrossRefGoogle Scholar
  42. 42.
    Permuth-Wey J, Chen YA, Fisher K, McCarthy S, Qu X, Lloyd MC, et al. A genome-wide investigation of microRNA expression identifies biologically-meaningful microRNAs that distinguish between high-risk and low-risk intraductal papillary mucinous neoplasms of the pancreas. PLoS One. 2015;10(1):e0116869.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Li A, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH, et al. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res. 2013;19(13):3600–10.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Tonack S, Aspinall-O'Dea M, Neoptolemos JP, Costello E. Pancreatic cancer: proteomic approaches to a challenging disease. Pancreatology. 2009;9(5):567–76.PubMedCrossRefGoogle Scholar
  45. 45.
    Jenkinson C, Elliott V, Menon U, Apostolidou S, Fourkala OE, Gentry-Maharaj A, et al. Evaluation in pre-diagnosis samples discounts ICAM-1 and TIMP-1 as biomarkers for earlier diagnosis of pancreatic cancer. J Proteome. 2014;113C:400–2.Google Scholar
  46. 46.
    Mirus JE, Zhang Y, Li CI, Lokshin AE, Prentice RL, Hingorani SR, et al. Cross-species antibody microarray interrogation identifies a 3-protein panel of plasma biomarkers for early diagnosis of pancreas cancer. Clin Cancer Res. 2015;21(7):1764–71.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Radon TP, Massat NJ, Jones R, Alrawashdeh W, Dumartin L, Ennis D, et al. Identification of a three-biomarker panel in urine for early detection of pancreatic adenocarcinoma. Clin Cancer Res. 2015;21(15):3512–21.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Park JY, Kim SA, Chung JW, Bang S, Park SW, Paik YK, et al. Proteomic analysis of pancreatic juice for the identification of biomarkers of pancreatic cancer. J Cancer Res Clin Oncol. 2011;  https://doi.org/10.1007/s00432-011-0992-2.
  49. 49.
    Okai T, Sawabu N, Takemori Y, Ohta H, Motoo Y, Kidani H. Levels of carcinoembryonic antigen and carbohydrate antigen (CA19-9) in pure pancreatic juice and sera in a patient with occult pancreatic cancer. J Clin Gastroenterol. 1992;15(2):162–4.PubMedCrossRefGoogle Scholar
  50. 50.
    Rocker JM, Tan MC, Thompson LW, Contreras CM, DiPalma JA, Pannell LK. Comparative proteomic analysis of whole-gut lavage fluid and pancreatic juice reveals a less invasive method of sampling pancreatic secretions. Clin Transl Gastroenterol. 2016;7:e174.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Tjensvoll K, Nordgard O, Smaaland R. Circulating tumor cells in pancreatic cancer patients: methods of detection and clinical implications. Int J Cancer. 2014;134(1):1–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904.PubMedCrossRefGoogle Scholar
  53. 53.
    Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 2012;106(3):508–16.CrossRefPubMedGoogle Scholar
  54. 54.
    Ankeny JS, Court CM, Hou S, Li Q, Song M, Wu D, et al. Circulating tumour cells as a biomarker for diagnosis and staging in pancreatic cancer. Br J Cancer. 2016;114(12):1367–75.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sun K, Jiang P, Chan KC, Wong J, Cheng YK, Liang RH, et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A. 2015;112(40):E5503–12.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Bettegowda C, Sausen M, Leary R, Kinde I, Agrawal N, Bartlett B, et al. Detection of circulating tumor DNA in early and late stage human malignancies. Cancer Res. 2014;6(19).  https://doi.org/10.1126/scitranslmed.3007094.
  57. 57.
    Jenkinson C, Earl J, Ghaneh P, Halloran C, Carrato A, Greenhalf W, et al. Biomarkers for early diagnosis of pancreatic cancer. Expert Rev Gastroenterol Hepatol. 2015;9(3):305–15.PubMedCrossRefGoogle Scholar
  58. 58.
    Earl J, Garcia-Nieto S, Martinez-Avila JC, Montans J, Sanjuanbenito A, Rodriguez-Garrote M, et al. Circulating tumor cells (Ctc) and kras mutant circulating free Dna (cfdna) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer. 2015;15.  https://doi.org/10.1186/s12885-015-1779-7.
  59. 59.
    Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem. 2013;59(12):1722–31.PubMedCrossRefGoogle Scholar
  60. 60.
    Kinugasa H, Nouso K, Miyahara K, Morimoto Y, Dohi C, Tsutsumi K, et al. Detection of K-ras gene mutation by liquid biopsy in patients with pancreatic cancer. Cancer. 2015;121(13):2271–80.CrossRefPubMedGoogle Scholar
  61. 61.
    Hadano N, Murakami Y, Uemura K, Hashimoto Y, Kondo N, Nakagawa N, et al. Prognostic value of circulating tumour DNA in patients undergoing curative resection for pancreatic cancer. Br J Cancer. 2016;115(1):59–65.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lin SB, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Neault M, Mallette FA, Richard S. miR-137 modulates a tumor suppressor network-inducing senescence in pancreatic cancer cells. Cell Rep. 2016;14(8):1966–78.PubMedCrossRefGoogle Scholar
  64. 64.
    Sun Y, Zhang TT, Wang CP, Jin XL, Jia CW, Yu SN, et al. MiRNA-615-5p functions as a tumor suppressor in pancreatic ductal adenocarcinoma by targeting AKT2. PLoS One. 2015;10(4):e0119783.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Srivastava SK, Bhardwaj A, Arora S, Tyagi N, Singh S, Andrews J, et al. MicroRNA-345 induces apoptosis in pancreatic cancer cells through potentiation of caspase-dependent and -independent pathways. Br J Cancer. 2015;113(4):660–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Li J, Wu H, Li W, Yin L, Guo S, Xu X, et al. Downregulated miR-506 expression facilitates pancreatic cancer progression and chemoresistance via SPHK1/Akt/NF-kappaB signaling. Oncogene. 2016.Google Scholar
  67. 67.
    Cote GA, Gore AJ, McElyea SD, Heathers LE, Xu H, Sherman S, et al. A pilot study to develop a diagnostic test for pancreatic ductal adenocarcinoma based on differential expression of select miRNA in plasma and bile. Am J Gastroenterol. 2014;109(12):1942–52.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Morimura R, Komatsu S, Ichikawa D, Takeshita H, Tsujiura M, Nagata H, et al. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer. Br J Cancer. 2011;105(11):1733–40.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26(5):745–52.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Li AG, Yu J, Kim H, Wolfgang CL, Canto MI, Hruban RH, et al. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res. 2013;19(13):3600–10.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Schultz NA, Dehlendorff C, Jensen BV, Bjerregaard JK, Nielsen KR, Bojesen SE, et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA. 2014;311(4):392–404.PubMedCrossRefGoogle Scholar
  72. 72.
    Akamatsu M, Makino N, Ikeda Y, Matsuda A, Ito M, Kakizaki Y, et al. Specific MAPK-associated microRNAs in serum differentiate pancreatic cancer from autoimmune pancreatitis. PLoS One. 2016;11(7):e0158669.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Trehoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. BBA-Mol Cell Res. 2015;1853(10):2392–403.Google Scholar
  74. 74.
    Botla SK, Savant S, Jandaghi P, Bauer AS, Mucke O, Moskalev EA, et al. Early epigenetic downregulation of microRNA-192 expression promotes pancreatic cancer progression. Cancer Res. 2016;76:4149–4159.PubMedCrossRefGoogle Scholar
  75. 75.
    Lu YH, Lu JJ, Li XH, Zhu H, Fan XJ, Zhu SJ, et al. MiR-200a inhibits epithelial-mesenchymal transition of pancreatic cancer stem cell. BMC Cancer. 2014;14.  https://doi.org/10.1186/1471-2407-14-85
  76. 76.
    Lahdaoui F, Delpu Y, Vincent A, Renaud F, Messager M, Duchene B, et al. miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene. 2015;34(6):780–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Wang CY, Liu PA, Wu HS, Cui PF, Li YF, Liu Y, et al. MicroRNA-323-3p inhibits cell invasion and metastasis in pancreatic ductal adenocarcinoma via direct suppression of SMAD2 and SMAD3. Oncotarget. 2016;7(12):14912–24.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Li X, Deng SJ, Zhu S, Jin Y, Cui SP, Chen JY, et al. Hypoxia-induced lncRNA-NUTF2P3-001 contributes to tumorigenesis of pancreatic cancer by derepressing the miR-3923/KRAS pathway. Oncotarget. 2016;7(5):6000–14.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Liu N, Sun YY, Zhang XW, Chen S, Wang Y, Zhang ZX, et al. Oncogenic miR-23a in pancreatic ductal adenocarcinogenesis via inhibiting APAF1. Dig Dis Sci. 2015;60(7):2000–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Li P, Xu Q, Zhang D, Li X, Han L, Lei J, et al. Upregulated miR-106a plays an oncogenic role in pancreatic cancer. FEBS Lett. 2014;588(5):705–12.PubMedCrossRefGoogle Scholar
  81. 81.
    Chen MY, Wang M, Xu SM, Guo XJ, Jiang JX. Upregulation of miR-181c contributes to chemoresistance in pancreatic cancer by inactivating the Hippo signaling pathway. Oncotarget. 2015;6(42):44466–79.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Liu H, Xu XF, Zhao Y, Tang MC, Zhou YQ, Lu J, et al. MicroRNA-191 promotes pancreatic cancer progression by targeting USP10. Tumour Biol. 2014;35(12):12157–63.PubMedCrossRefGoogle Scholar
  83. 83.
    Ren ZG, Dong SX, Han P, Qi J. miR-203 promotes proliferation, migration and invasion by degrading SIK1 in pancreatic cancer. Oncol Rep. 2016;35(3):1365–74.PubMedCrossRefGoogle Scholar
  84. 84.
    Keklikoglou I, Hosaka K, Bender C, Bott A, Koerner C, Mitra D, et al. MicroRNA-206 functions as a pleiotropic modulator of cell proliferation, invasion and lymphangiogenesis in pancreatic adenocarcinoma by targeting ANXA2 and KRAS genes. Oncogene. 2015;34(37):4867–78.PubMedCrossRefGoogle Scholar
  85. 85.
    Ma C, Nong K, Wu B, Dong B, Bai Y, Zhu H, et al. miR-212 promotes pancreatic cancer cell growth and invasion by targeting the hedgehog signaling pathway receptor patched-1. J Exp Clin Cancer Res. 2014;33(54).  https://doi.org/10.1186/1756-9966-33-54CrossRefGoogle Scholar
  86. 86.
    Xu QH, Li P, Chen X, Zong L, Jiang ZD, Nan LG, et al. miR-221/222 induces pancreatic cancer progression through the regulation of matrix metalloproteinases. Oncotarget. 2015;6(16):14153–64.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Xia X, Zhang K, Cen G, Jiang T, Cao J, Huang K, et al. MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4. Oncotarget. 2015;6(25):21046–63.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    He D, Miao HL, Xu YM, Xiong LH, Wang Y, Xiang HX, et al. MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival. PLoS One. 2014;9(11):e112930.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ganepola GA, Rutledge JR, Suman P, Yiengpruksawan A, Chang DH. Novel blood-based microRNA biomarker panel for early diagnosis of pancreatic cancer. World J Gastrointest Oncol. 2014;6(1):22–33.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Johansen JS, Calatayud D, Albieri V, Schultz NA, Dehlendorff C, Werner J, et al. The potential diagnostic value of serum microRNA signature in patients with pancreatic cancer. Int J Cancer. 2016;  https://doi.org/10.1002/ijc.30291.
  91. 91.
    Vila-Navarro E, Vila-Casadesus M, Moreira L, Duran-Sanchon S, Sinha R, Gines A, et al. MicroRNAs for detection of pancreatic neoplasia: biomarker discovery by next-generation sequencing and validation in 2 independent cohorts. Ann Surg. 2016;265:1226–1234.PubMedCrossRefGoogle Scholar
  92. 92.
    Permuth-Wey J, Chen DT, Fulp WJ, Yoder SJ, Zhang YH, Georgeades C, et al. Plasma microRNAs as novel biomarkers for patients with intraductal papillary mucinous neoplasms of the pancreas. Cancer Prev Res. 2015;8(9):826–34.CrossRefGoogle Scholar
  93. 93.
    Humeau M, Torrisani J, Cordelier P. miRNA in clinical practice: pancreatic cancer. Clin Biochem. 2013;46(10–11):933–6.PubMedCrossRefGoogle Scholar
  94. 94.
    Weber JA, Baxter DH, Zhang SL, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56(11):1733–41.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Kahlert C, Melo SA, Protopopov A, Tang JB, Seth S, Koch M, et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J Biol Chem. 2014;289(7):3869–75.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Villarroya-Beltri C, Baixauli F, Gutierrez-Vazquez C, Sanchez-Madrid F, Mittelbrunn M. Sorting it out: regulation of exosome loading. Semin Cancer Biol. 2014;28:3–13.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, et al. Intercellular transfer of the oncogenic receptor EGFrvIII by microvesicles derived from tumour cells. Nat Cell Biol. 2008;10(5):619–U24.PubMedCrossRefGoogle Scholar
  98. 98.
    Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kosaka N, Yoshioka Y, Fujita Y, Ochiya T. Versatile roles of extracellular vesicles in cancer. J Clin Investig. 2016;126(4):1163–72.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Robinson SM, Fan L, White SA, Charnley RM, Mann J. The role of exosomes in the pathogenesis of pancreatic ductal adenocarcinoma. Int J Biochem Cell Biol. 2016;75:131–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Keller S, Ridinger J, Rupp AK, Janssen JWG, Altevogt P. Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med. 2011;9.  https://doi.org/10.1186/1479-5876-9-86PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem. 2013;288(37):26888–97.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Jin Y, Chen K, Wang Z, Wang Y, Liu J, Lin L, et al. DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer. 2016;16(1):753.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–U209.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Cheng L, Sharples RA, Scicluna BJ, Hill AF. Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles. 2014;3.  https://doi.org/10.3402/jev.v3.23743CrossRefGoogle Scholar
  106. 106.
    Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S. Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip. 2014;14(11):1891–900.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 2015;523(7559):177–U82.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Greening DW, Kapp EA, Ji H, Speed TP, Simpson RJ. Colon tumour secretopeptidome: insights into endogenous proteolytic cleavage events in the colon tumour microenvironment. Biochim Biophys Acta. 2013;1834(11):2396–407.PubMedCrossRefGoogle Scholar
  109. 109.
    Lai X, Wang M, McElyea SD, Sherman S, House M, Korc M. A microRNA signature in circulating exosomes is superior to exosomal glypican-1 levels for diagnosing pancreatic cancer. Cancer Lett. 2017;393:86–93.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Javeed N, Sagar G, Dutta SK, Smyrk TC, Lau JS, Bhattacharya S, et al. Pancreatic cancer-derived exosomes cause paraneoplastic beta-cell dysfunction. Clin Cancer Res. 2015;21(7):1722–33.CrossRefPubMedGoogle Scholar
  111. 111.
    Que RS, Ding GP, Chen JH, Cao LP. Analysis of serum exosomal microRNAs and clinicopathologic features of patients with pancreatic adenocarcinoma. World J Surg Oncol. 2013;11.  https://doi.org/10.1186/1477-7819-11-219.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Joshi GK, Deitz-McElyea S, Liyanage T, Lawrence K, Mali S, Sardar R, et al. Label-free nanoplasmonic-based short noncoding RNA sensing at attomolar concentrations allows for quantitative and highly specific assay of microRNA-10b in biological fluids and circulating exosomes. ACS Nano. 2015;9(11):11075–89.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Madhavan B, Yue SJ, Galli U, Rana S, Gross W, Muller M, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer. 2015;136(11):2616–27.PubMedCrossRefGoogle Scholar
  114. 114.
    Machida T, Tomofuji T, Maruyama T, Yoneda T, Ekuni D, Azuma T, et al. miR1246 and miR4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol Rep. 2016;36(4):2375–81.PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang P, He M, Zeng Y. Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip. 2016;16(16):3033–42.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Cho S, Jo W, Heo Y, Kang JY, Kwak R, Park J. Isolation of extracellular vesicle from blood plasma using electrophoretic migration through porous membrane. Sens Actuat B Chem. 2016;233:289–97.CrossRefGoogle Scholar
  117. 117.
    Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014;3:26913.PubMedCrossRefGoogle Scholar
  118. 118.
    Lee ES, Lee JM. Imaging diagnosis of pancreatic cancer: a state-of-the-art review. World J Gastroenterol. 2014;20(24):7864–77.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Zhang J, Zuo CJ, Jia NY, Wang JH, Hu SP, Yu ZF, et al. Cross-modality PET/CT and contrast-enhanced CT imaging for pancreatic cancer. World J Gastroenterol. 2015;21(10):2988–96.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Xu YP, Yang M. Advancement in treatment and diagnosis of pancreatic cancer with radiopharmaceuticals. World J Gastrointest Oncol. 2016;8(2):165–72.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Herrmann K, Erkan M, Dobritz M, Schuster T, Siveke JT, Beer AJ, et al. Comparison of 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography (FLT PET) and FDG PET/CT for the detection and characterization of pancreatic tumours. Eur J Nucl Med Mol Imaging. 2012;39(5):846–51.PubMedCrossRefGoogle Scholar
  122. 122.
    Di Gangi IM, Mazza T, Fontana A, Copetti M, Fusilli C, Ippolito A, et al. Metabolomic profile in pancreatic cancer patients: a consensus-based approach to identify highly discriminating metabolites. Oncotarget. 2016;7(5):5815–29.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Ritchie SA, Akita H, Takemasa I, Eguchi H, Pastural E, Nagano H, et al. Metabolic system alterations in pancreatic cancer patient serum: potential for early detection. BMC Cancer. 2013;13:416.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Ritchie SA, Chitou B, Zheng Q, Jayasinghe D, Jin W, Mochizuki A, et al. Pancreatic cancer serum biomarker PC-594: diagnostic performance and comparison to CA19-9. World J Gastroenterol. 2015;21(21):6604–12.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Mayerle J, Kalthoff H, Reszka R, Kamlage B, Peter E, Schniewind B, et al. Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gut. 2017;  https://doi.org/10.1136/gutjnl-2016-312432.
  126. 126.
    Fukutake N, Ueno M, Hiraoka N, Shimada K, Shiraishi K, Saruki N, et al. A novel multivariate index for pancreatic cancer detection based on the plasma free amino acid profile. PLoS One. 2015;10(7):e0132223.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Mayers JR, Wu C, Clish CB, Kraft P, Torrence ME, Fiske BP, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med. 2014;20(10):1193–8.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011;17(4):448–U83.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ransohoff DF, Gourlay ML. Sources of bias in specimens for research about molecular markers for cancer. J Clin Oncol. 2010;28(4):698–704.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Lucy Oldfield
    • 1
  • Rohith Rao
    • 1
  • Lawrence N. Barrera
    • 1
  • Eithne Costello
    • 1
  1. 1.Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK

Personalised recommendations