Advertisement

Pancreatic Cancer pp 1379-1400 | Cite as

Metabolism in Pancreatic Cancer

  • Ioannis Poursaitidis
  • Richard F. Lamb
Reference work entry

Abstract

Despite knowledge of an increasing number of genetic changes present in pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, it remains one of the cancers with the poorest prognosis, and the development of novel therapies that target its unusual biology and metabolic features is imminently required. Pancreatic tumor cells are thought to evolve under the conditions of limited oxygen and nutrient supply due to high levels of stromally produced extracellular matrix and associated poor blood supply. The prevalence of oncogenic KRAS mutations in PDAC, together with inactivation of TP53, CDKN2A, and SMAD4, predicates the engagement of distinct adaptive metabolic features that maximize the uptake and utilization of limiting oxygen and nutrients. Rewiring of the metabolism of glucose, amino acids, and lipids provides biosynthetic/metabolic intermediates required to maintain proliferation and survival, while the induction of autophagy and macropinocytosis permits repurposing of nutrients by PDAC tumor cells. Finally, PDAC tumor cells affect their neighboring cells, activating pancreatic stellate cells to produce a dense fibrotic stroma and provide nutrients in a paracrine manner, while inhibiting an effective antitumor immune response by restriction of nutrients from immune effector cells. It is hoped that by targeting such aberrant metabolism and nutrient utilization additional therapeutic options might soon be available in PDAC.

Keywords

PDAC Metabolism KRAS p53 Hypoxia HIF Desmoplasia 

References

  1. 1.
    Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, et al. Pancreatic cancer. Nat Rev Dis Primers. 2016;2:22.CrossRefGoogle Scholar
  2. 2.
    Kanda M, Matthaei H, Wu J, Hong SM, Yu J, Borges M, et al. Presence of somatic mutations in most early-stage pancreatic intraepithelial neoplasia. Gastroenterology. 2012;142(4):730–3.e9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Chan A, Diamandis EP, Blasutig IM. Strategies for discovering novel pancreatic cancer biomarkers. J Proteomics. 2013;81:126–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature. 2010;467(7319):1114–7.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell. 1988;53(4):549–54.CrossRefPubMedGoogle Scholar
  6. 6.
    Jones S, Zhang XS, Parsons DW, Lin JCH, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 2008;321(5897):1801–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yachida S, Iacobuzio-Donahue CA. Evolution and dynamics of pancreatic cancer progression. Oncogene. 2013;32(45):5253–60.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Collins MA, Pasca di Magliano M. Kras as a key oncogene and therapeutic target in pancreatic cancer. Front Physiol. 2014;4:407.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov. 2014;13(11):828–51.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Perera RM, Bardeesy N. Pancreatic cancer metabolism: breaking it down to build it back up. Cancer Discov. 2015;5(12):1247–61.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Sousa CM, Kimmelman AC. The complex landscape of pancreatic cancer metabolism. Carcinogenesis. 2014;35(7):1441–50.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Habrook CJ, Lyssiotis CA. Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell. 2017;31(1):5–19.CrossRefGoogle Scholar
  13. 13.
    Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell. 2012;21(3):418–29.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Feig C, Gopinathan A, Neesse A, Chan DS, Cook N, Tuveson DA. The pancreas cancer microenvironment. Clin Cancer Res. 2012;18(16):4266–76.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu WY, Grabocka E, et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 2015;75(3):544–53.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Yan LJ, Lamb RF. Amino acid sensing and regulation of mTORC1. Semin Cell Dev Biol. 2012;23(6):621–5.PubMedCrossRefGoogle Scholar
  17. 17.
    Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 2016;26(3):190–201.PubMedCrossRefGoogle Scholar
  18. 18.
    Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–90.PubMedCrossRefGoogle Scholar
  19. 19.
    Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 2008;30(2):214–26.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000;150(6):1507–13.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331(6016):456–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Toyama EQ, Herzig S, Courchet J, Lewis TL Jr, Loson OC, Hellberg K, et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351(6270):275–81.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, et al. Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys. 2000;48(4):919–22.CrossRefPubMedGoogle Scholar
  24. 24.
    Rabinowitz JD, White E. Autophagy and metabolism. Science. 2010;330(6009):1344–8.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41.PubMedCrossRefGoogle Scholar
  26. 26.
    Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, et al. Mammalian autophagy: how does it work? Annu Rev Biochem. 2016;85:685–713.PubMedCrossRefGoogle Scholar
  27. 27.
    Cheong H, Lindsten T, Wu J, Lu C, Thompson CB. Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci U S A. 2011;108(27):11121–6.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Guo JY, Xia B, White E. Autophagy-mediated tumor promotion. Cell. 2013;155(6):1216–9.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, Chen HY, et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell. 2009;137(6):1062–75.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kimmelman AC. The dynamic nature of autophagy in cancer. Genes Dev. 2011;25(19):1999–2010.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Yang SH, Wang XX, Contino G, Liesa M, Sahin E, Ying HQ, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011;25(7):717–29.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Fujii S, Mitsunaga S, Yamazaki M, Hasebe T, Ishii G, Kojima M, et al. Autophagy is activated in pancreatic cancer cells and correlates with poor patient outcome. Cancer Sci. 2008;99(9):1813–9.PubMedGoogle Scholar
  33. 33.
    Viale A, Pettazzoni P, Lyssiotis CA, Ying HQ, Sanchez N, Marchesini M, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature. 2014;514(7524):628–32.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Perera R, Stoykova S, Nicolay BN, Ross KN, Fitamant J, Boukhali M, et al. Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature. 2015;524(7565):361–5. U251.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, et al. A gene network regulating lysosomal biogenesis and function. Science. 2009;325(5939):473–7.PubMedGoogle Scholar
  36. 36.
    Roczniak-Ferguson A, Petit CS, Froehlich F, Qian S, Ky J, Angarola B, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal. 2012;5(228):ra42.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chook YM, Suel KE. Nuclear import by karyopherin-betas: recognition and inhibition. Biochim Biophys Acta. 2011;1813(9):1593–606.PubMedCrossRefGoogle Scholar
  38. 38.
    Poole B, Ohkuma S. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J Cell Biol. 1981;90(3):665–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Yang A, Rajeshkumar NV, Wang XX, Yabuuchi S, Alexander BM, Chu GC, et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 2014;4(8):905–13.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Boone BA, Bahary N, Zureikat AH, Moser AJ, Normolle DP, Wu WC, et al. Safety and biologic response of pre-operative autophagy inhibition in combination with gemcitabine in patients with pancreatic adenocarcinoma. Ann Surg Oncol. 2015;22(13):4402–10.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tett SE, Cutler DJ, Day RO, Brown KF. A dose-ranging study of the pharmacokinetics of hydroxy-chloroquine following intravenous administration to healthy volunteers. Br J Clin Pharmacol. 1988;26(3):303–13.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    McAfee Q, Zhang Z, Samanta A, Levi SM, Ma XH, Piao S, et al. Autophagy inhibitor Lys05 has single-agent antitumor activity and reproduces the phenotype of a genetic autophagy deficiency. Proc Natl Acad Sci U S A. 2012;109(21):8253–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ma XH, Piao SF, Dey S, McAfee Q, Karakousis G, Villanueva J, et al. Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J Clin Invest. 2014;124(3):1406–17.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Racoosin EL, Swanson JA. Macropinosome maturation and fusion with tubular lysosomes in macrophages. J Cell Biol. 1993;121(5):1011–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature. 2013;497(7451):633–7.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kamphorst JJ, Cross JR, Fan J, de Stanchina E, Mathew R, White EP, et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc Natl Acad Sci U S A. 2013;110(22):8882–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112(8):2473–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Qian Y, Wang X, Liu Y, Li Y, Colvin RA, Tong L, et al. Extracellular ATP is internalized by macropinocytosis and induces intracellular ATP increase and drug resistance in cancer cells. Cancer Lett. 2014;351(2):242–51.PubMedCrossRefGoogle Scholar
  49. 49.
    Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep. 2015;5:10300.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zhao HY, Yang LF, Baddour J, Achreja A, Bernard V, Moss T, et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. Elife. 2016;5:e10250.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Sagar G, Sah RP, Javeed N, Dutta SK, Smyrk TC, Lau JS, et al. Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut. 2016;65(7):1165–74.PubMedCrossRefGoogle Scholar
  52. 52.
    Reyes-Reyes EM, Teng Y, Bates PJ. A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism. Cancer Res. 2010;70(21):8617–29.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Iglesias R, Koria P. Leveraging growth factor induced macropinocytosis for targeted treatment of lung cancer. Med Oncol. 2015;32(12):259.PubMedCrossRefGoogle Scholar
  54. 54.
    Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132(3):171–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Zhao M, Li H, Bu X, Lei C, Fang Q, Hu Z. Quantitative proteomic analysis of cellular resistance to the nanoparticle Abraxane. ACS Nano. 2015;9(10):10099–112.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhao M, Lei C, Yang Y, Bu X, Ma H, Gong H, et al. Abraxane, the nanoparticle formulation of paclitaxel can induce drug resistance by up-regulation of P-gp. PLoS One. 2015;10(7):e0131429.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Shi M, Cui J, Du J, Wei D, Jia Z, Zhang J, et al. A novel KLF4/LDHA signaling pathway regulates aerobic glycolysis in and progression of pancreatic cancer. Clin Cancer Res. 2014;20(16):4370–80.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Matsui A, Ikeda T, Enomoto K, Hosoda K, Nakashima H, Omae K, et al. Increased formation of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, in human breast cancer tissue and its relationship to GSTP1 and COMT genotypes. Cancer Lett. 2000;151(1):87–95.PubMedCrossRefGoogle Scholar
  59. 59.
    Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–67.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A. 2010;107(19):8788–93.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Du J, Nelson ES, Simons AL, Olney KE, Moser JC, Schrock HE, et al. Regulation of pancreatic cancer growth by superoxide. Mol Carcinog. 2013;52(7):555–67.PubMedCrossRefGoogle Scholar
  62. 62.
    Lei J, Huo X, Duan W, Xu Q, Li R, Ma J, et al. alpha-Mangostin inhibits hypoxia-driven ROS-induced PSC activation and pancreatic cancer cell invasion. Cancer Lett. 2014;347(1):129–38.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Fiorini C, Cordani M, Gotte G, Picone D, Donadelli M. Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner. Biochim Biophys Acta. 2015;1853(3):549–60.PubMedCrossRefGoogle Scholar
  64. 64.
    Ogrunc M, Di Micco R, Liontos M, Bombardelli L, Mione M, Fumagalli M, et al. Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ. 2014;21(6):998–1012.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Poursaitidis I, Wang X, Crighton T, Labuschagne C, Mason D, Cramer SL, et al. Oncogene-selective sensitivity to synchronous cell death following modulation of the amino acid nutrient cystine. Cell Rep. 2017;18(11):2547–56.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Edderkaoui M, Hong P, Vaquero EC, Lee JK, Fischer L, Friess H, et al. Extracellular matrix stimulates reactive oxygen species production and increases pancreatic cancer cell survival through 5-lipoxygenase and NADPH oxidase. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G1137–47.PubMedCrossRefGoogle Scholar
  67. 67.
    Vaquero EC, Edderkaoui M, Pandol SJ, Gukovsky I, Gukovskaya AS. Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem. 2004;279(33):34643–54.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Trachootham D, Lu WQ, Ogasawara MA, Valle NRD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10(8):1343–74.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sawai H, Funahashi H, Okada Y, Matsuo Y, Sakamoto M, Yamamoto M, et al. Interleukin-1alpha enhances IL-8 secretion through p38 mitogen-activated protein kinase and reactive oxygen species signaling in human pancreatic cancer cells. Med Sci Monit. 2005;11(10):BR343–50.PubMedGoogle Scholar
  70. 70.
    Hiraga R, Kato M, Miyagawa S, Kamata T. Nox4-derived ROS signaling contributes to TGF-beta-induced epithelial-mesenchymal transition in pancreatic cancer cells. Anticancer Res. 2013;33(10):4431–8.PubMedGoogle Scholar
  71. 71.
    Binker MG, Binker-Cosen AA, Richards D, Oliver B, Cosen-Binker LI. EGF promotes invasion by PANC-1 cells through Rac1/ROS-dependent secretion and activation of MMP-2. Biochem Biophys Res Commun. 2009;379(2):445–50.PubMedCrossRefGoogle Scholar
  72. 72.
    De Nicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475(7354):106–9. U28.CrossRefGoogle Scholar
  73. 73.
    Lister A, Nedjadi T, Kitteringham NR, Campbell F, Costello E, Lloyd B, et al. Nrf2 is overexpressed in pancreatic cancer: implications for cell proliferation and therapy. Mol Cancer. 2011;10:37.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23(1):27–47.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Warburg O. Note on the metabolism of tumours. Biochem Z. 1930;228:257–8.Google Scholar
  76. 76.
    Warburg O. Origin of cancer cells. Science. 1956;123(3191):309–14.PubMedCrossRefGoogle Scholar
  77. 77.
    Kitasato Y, Yasunaga M, Okuda K, Kinoshita H, Tanaka H, Okabe Y, et al. Maximum standardized uptake value on 18F-fluoro-2-deoxy-glucose positron emission tomography/computed tomography and glucose transporter-1 expression correlates with survival in invasive ductal carcinoma of the pancreas. Pancreas. 2014;43(7):1060–5.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ying HQ, Kimmelman AC, Lyssiotis CA, Hua SJ, Chu GC, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012;149(3):656–70.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Berkers CR, Maddocks ODK, Cheung EC, Mor I, Vousden KH. Metabolic regulation by p53 family members. Cell Metab. 2013;18(5):617–33.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Baek G, Tse YF, Hu ZP, Cox D, Buboltz N, McCue P, et al. MCT4 defines a glycolytic subtype of pancreatic cancer with poor prognosis and unique metabolic dependencies. Cell Rep. 2014;9(6):2233–49.PubMedCrossRefGoogle Scholar
  81. 81.
    Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496(7443):101–5.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123(9):3664–71.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Boros LG, Puigjaner J, Cascante M, Lee WNP, Brandes JL, Bassilian S, et al. Oxythiamine and dehydroepiandrosterone inhibit the nonoxidative synthesis of ribose and tumor cell proliferation. Cancer Res. 1997;57(19):4242–8.PubMedGoogle Scholar
  84. 84.
    Slawson C, Copeland RJ, Hart GW. O-GlcNAc signaling: a metabolic link between diabetes and cancer? Trends Biochem Sci. 2010;35(10):547–55.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ma ZY, Vocadlo DJ, Vosseller K. Hyper-O-GlcNAcylation is anti-apoptotic and maintains constitutive NF-kappa B activity in pancreatic cancer cells. J Biol Chem. 2013;288(21):15121–30.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezene P, et al. Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2013;110(10):3919–24.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell. 2013;23(4):464–76.PubMedCrossRefGoogle Scholar
  88. 88.
    Hutcheson J, Balaji U, Porembka MR, Wachsmann MB, McCue PA, Knudsen ES, et al. Immunologic and metabolic features of pancreatic ductal adenocarcinoma define prognostic subtypes of disease. Clin Cancer Res. 2016;22(14):3606–17.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Goetze K, Walenta S, Ksiazkiewicz M, Kunz-Schughart LA, Mueller-Klieser W. Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release. Int J Oncol. 2011;39(2):453–63.PubMedGoogle Scholar
  90. 90.
    Gottfried E, Kunz-Schughart LA, Ebner S, Mueller-Klieser W, Hoves S, Andreesen R, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression. Blood. 2006;107(5):2013–21.PubMedCrossRefGoogle Scholar
  91. 91.
    Fischer K, Hoffmann P, Voelkl S, Meidenbauer N, Ammer J, Edinger M, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood. 2007;109(9):3812–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Constant JS, Feng JJ, Zabel DD, Yuan H, Suh DY, Scheuenstuhl H, et al. Lactate elicits vascular endothelial growth factor from macrophages: a possible alternative to hypoxia. Wound Repair Regen. 2000;8(5):353–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Stern R, Shuster S, Neudecker BA, Formby B. Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited. Exp Cell Res. 2002;276(1):24–31.PubMedCrossRefGoogle Scholar
  94. 94.
    Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM, et al. Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A. 2010;107(5):2037–42.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Martinez GV, Le A, et al. Therapeutic targeting of the Warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res. 2015;75(16):3355–64.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013;123(9):3678–84.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Schnelldorfer T, Gansauge S, Gansauge F, Schlosser S, Beger HG, Nussler AK. Glutathione depletion causes cell growth inhibition and enhanced apoptosis in pancreatic cancer cells. Cancer. 2000;89(7):1440–7.PubMedCrossRefGoogle Scholar
  98. 98.
    Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22(1):66–79.PubMedCrossRefGoogle Scholar
  99. 99.
    Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284(20):13291–5.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Chio II, Jafarnejad SM, Ponz-Sarvise M, Park Y, Rivera K, Palm W, et al. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell. 2016;166(4):963–76.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Li W, Cao L, Han L, Xu Q, Ma Q. Superoxide dismutase promotes the epithelial-mesenchymal transition of pancreatic cancer cells via activation of the H2O2/ERK/NF-kappaB axis. Int J Oncol. 2015;46(6):2613–20.PubMedCrossRefGoogle Scholar
  102. 102.
    Yao X, Zeng M, Wang H, Fei S, Rao S, Ji Y. Metabolite detection of pancreatic carcinoma by in vivo proton MR spectroscopy at 3T: initial results. Radiol Med. 2012;117(5):780–8.PubMedCrossRefGoogle Scholar
  103. 103.
    Philip B, Roland CL, Daniluk J, Liu Y, Chatterjee D, Gomez SB, et al. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice. Gastroenterology. 2013;145(6):1449–58.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Bracci PM. Obesity and pancreatic cancer: overview of epidemiologic evidence and biologic mechanisms. Mol Carcinog. 2012;51(1):53–63.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Wang F, Kumagai-Braesch M, Herrington MK, Larsson J, Permert J. Increased lipid metabolism and cell turnover of MiaPaCa2 cells induced by high-fat diet in an orthotopic system. Metabolism. 2009;58(8):1131–6.PubMedCrossRefGoogle Scholar
  106. 106.
    Bian Y, Yu Y, Wang S, Li L. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer. Biochem Biophys Res Commun. 2015;463(4):612–7.PubMedCrossRefGoogle Scholar
  107. 107.
    Chu GC, Kimmelman AC, Hezel AF, DePinho RA. Stromal biology of pancreatic cancer. J Cell Biochem. 2007;101(4):887–907.CrossRefPubMedGoogle Scholar
  108. 108.
    Ying HQ, Dey P, Yao WT, Kimmelman AC, Draetta GF, Maitra A, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 2016;30(4):355–85.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Apte MV, Wilson JS. Dangerous liaisons: pancreatic stellate cells and pancreatic cancer cells. J Gastroenterol Hepatol. 2012;27:69–74.PubMedCrossRefGoogle Scholar
  110. 110.
    Zhang WW, Erkan M, Abiatari I, Giese NA, Felix K, Kayed H, et al. Expression of extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) in pancreatic neoplasm and pancreatic stellate cells. Cancer Biol Ther. 2007;6(2):218–27.PubMedCrossRefGoogle Scholar
  111. 111.
    Tape CJ, Ling S, Dimitriadi M, McMahon KM, Worboys JD, Leong HS, et al. Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell. 2016;165(4):910–20.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Sousa CM, Biancur DE, Wang XX, Halbrook CJ, Sherman MH, Zhang L, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536(7617):479–83.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348(6230):69–74.PubMedCrossRefGoogle Scholar
  114. 114.
    Tassi E, Gavazzi F, Albarello L, Senyukov V, Longhi R, Dellabona P, et al. Carcinoembryonic antigen-specific but not antiviral CD4(+) T cell immunity is impaired in pancreatic carcinoma patients. J Immunol. 2008;181(9):6595–603.PubMedCrossRefGoogle Scholar
  115. 115.
    Ostrand-Rosenberg S. Immune surveillance: a balance between protumor and antitumor immunity. Curr Opin Genet Dev. 2008;18(1):11–8.CrossRefGoogle Scholar
  116. 116.
    Nummer D, Suri-Payer E, Schmitz-Winnenthal H, Bonertz A, Galindo L, Antolovich D, et al. Role of tumor endothelium in CD4(+)CD25(+) regulatory T cell infiltration of human pancreatic carcinoma. J Natl Cancer Inst. 2007;99(15):1188–99.PubMedCrossRefGoogle Scholar
  117. 117.
    Byrne WL, Mills KHG, Lederer JA, O’Sullivan GC. Targeting regulatory T cells in cancer. Cancer Res. 2011;71(22):6915–20.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res. 2007;67(19):9518–27.CrossRefPubMedGoogle Scholar
  119. 119.
    Frauwirth KA, Thompson CB. Regulation of T lymphocyte metabolism. J Immunol. 2004;172(8):4661–5.PubMedCrossRefGoogle Scholar
  120. 120.
    Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162(6):1229–41.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Daemen A, Peterson D, Sahu N, McCord R, Du XN, Liu BN, et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc Natl Acad Sci U S A. 2015;112(32):E4410–7.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, Luengo A, et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 2016;23(3):517–28.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun WJ, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science. 2011;331(6024):1612–6.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Health SciencesLiverpool Hope University, Hope Park CampusLiverpoolUK
  2. 2.Department of Molecular and Clinical Cancer Medicine, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK

Personalised recommendations