Epigenetics and Its Applications to the Progression Model of Pancreatic Cancer

Reference work entry

Abstract

Defined as heritable changes in gene expression, which are not due to any alteration in the DNA sequence, epigenetic pathways have come to the forefront of research in disease, and in particular, cancer. In fact, these pathways are more prevalently altered in cancer than genetic alterations and most important, can be reversible, lending themselves as attractive therapeutic targets. This chapter will cover the basic aspects of transcriptional gene regulation, epigenetics, and chromatin dynamics and then focus on the intricacies of its application to pancreatic cancer biology and potential therapeutics. In addition, a model for better understanding pancreatic cancer is outlined to expand the highly provocative and productive “mutation centric” progression model, as defined by Hruban and colleagues, into a current model that formally includes chromatin-induced and noncoding RNA-induced epigenetic changes, as well as other alterations that result from changes in nuclear shape. This model offers a compass for further considerations aimed at illuminating the field of pancreatic cancer biology, diagnosis, therapeutics, and chemoprevention, in a similar, prolific manner as the original model.

Keywords

Epigenetics Transcription Chromatin dynamics DNA methylation Histone Non-coding RNAs Nucleus Nuclear shape Pancreatic cancer 

Notes

Acknowledgments

Work in the authors’ laboratories is supported by NIH DK52913 (to RU), NIH CA178627 (to GL), ChiRhoClin, Research Institute (to RU and GL), as well as the Mayo Clinic SPORE in Pancreatic Cancer (P50 CA102701).

References

  1. 1.
    Hruban RH, Goggins M, Parsons J, Kern SE. Progression model for pancreatic cancer. Clin Cancer Res. 2000;6:2969–72.PubMedGoogle Scholar
  2. 2.
    Kuhn TS. The structure of scientific revolutions. 1st ed. Chicago: University of Chicago Press; 1996.CrossRefGoogle Scholar
  3. 3.
    Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961;3:318–56.PubMedCrossRefGoogle Scholar
  4. 4.
    McClure WR. Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem. 1985;54:171–204.PubMedCrossRefGoogle Scholar
  5. 5.
    Ebright RH. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J Mol Biol. 2000;304:687–98.PubMedCrossRefGoogle Scholar
  6. 6.
    Roeder RG, Rutter WJ. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature. 1969;224:234–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Chambon P. Eukaryotic nuclear RNA polymerases. Annu Rev Biochem. 1975;44:613–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Roeder RG. Eukaryotic nuclear RNA polymerases. In: Losick R, Chamberlin M, editors. RNA polymerase. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1976. p. 285–329.Google Scholar
  9. 9.
    Koleske AJ, Young RA. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem Sci. 1995;20:113–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Orphanides G, Lagrange T, Reinberg D. The general transcription factors of RNA polymerase II. Genes Dev. 1996;10:2657–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Li Y, Flanagan PM, Tschochner H, Kornberg RD. RNA polymerase II initiation factor interactions and transcription start site selection. Science. 1994;263:805–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Myers LC, Kornberg RD. Mediator of transcriptional regulation. Annu Rev Biochem. 2000;69:729–49.PubMedCrossRefGoogle Scholar
  13. 13.
    Istrail S, Davidson EH. Logic functions of the genomic cis-regulatory code. Proc Natl Acad Sci U S A. 2005;102:4954–9.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cook T, Gebelein B, Mesa K, Mladek A, Urrutia R. Molecular cloning and characterization of TIEG2 reveals a new subfamily of transforming growth factor-beta -inducible Sp1-like zinc finger-encoding genes involved in the regulation of cell growth. J Biol Chem. 1998;273:25929–36.PubMedCrossRefGoogle Scholar
  15. 15.
    Rose SD, Swift GH, Peyton MJ, Hammer RE, MacDonald RJ. The role of PTF1-P48 in pancreatic acinar gene expression. J Biol Chem. 2001;276:44018–26.PubMedCrossRefGoogle Scholar
  16. 16.
    Jan J. Gene regulatory factors in pancreatic development. Dev Dyn. 2004;229:176–200.CrossRefGoogle Scholar
  17. 17.
    Jones N. Structure and function of transcription factors. Semin Cancer Biol. 1990;1:5–17.PubMedGoogle Scholar
  18. 18.
    Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989;245:371–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Kadonaga JT. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell. 2004;116:247–57.PubMedCrossRefGoogle Scholar
  20. 20.
    Glozak MA, Seto E. Histone deacetylases and cancer. Oncogene. 2007;26:5420–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Manal M, Chandrasekar MJN, Gomathi Priya J, Nanjan MJ. Inhibitors of histone deacetylase as antitumor agents: a critical review. Bioorg Chem. 2016;67:18–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Pazin MJ, Kadonaga JT. What's up and down with histone deacetylation and transcription? Cell. 1997;89:325–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000;64:435–59.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kornberg RD. Chromatin structure: a repeating unit of histones and DNA. Science. 1974;184:868–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell. 1999;98:285–94.PubMedCrossRefGoogle Scholar
  26. 26.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Rizzo PJ. Basic chromosomal proteins in lower eukaryotes: relevance to the evolution and function of histones. J Mol Evol. 1976;8:79–94.PubMedCrossRefGoogle Scholar
  28. 28.
    Luger K, Richmond TJ. The histone tails of the nucleosome. Curr Opin Genet Dev. 1998;8:140–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Copeland RA. Molecular pathways: protein methyltransferases in cancer. Clin Cancer Res. 2013;19:6344.PubMedCrossRefGoogle Scholar
  30. 30.
    Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by Polycomb and Trithorax proteins. Cell. 2007;128:735–45.PubMedCrossRefGoogle Scholar
  31. 31.
    Lomberk G, Bensi D, Fernandez-Zapico ME, Urrutia R. Evidence for the existence of an HP1-mediated subcode within the histone code. Nat Cell Biol. 2006;8:407–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Harouz H, Rachez C, Meijer BM, Marteyn B, Donnadieu F, Cammas F, Muchardt C, Sansonetti P, Arbibe L. Shigella flexneri targets the HP1γ subcode through the phosphothreonine lyase OspF. EMBO J. 2014;33:2606.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Quénet D, Gasser V, Fouillen L, Cammas F, Sanglier-Cianferani S, Losson R, Dantzer F. The histone subcode: poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1β and the heterochromatin protein HP1α. FASEB J. 2008;22:3853–65.PubMedCrossRefGoogle Scholar
  34. 34.
    Guo A, Gu H, Zhou J, Mulhern D, Wang Y, Lee KA, Yang V, Aguiar M, Kornhauser J, Jia X, et al. Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics. 2014;13:372–87.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang R, Chen W, Adams PD. Molecular dissection of formation of senescence-associated heterochromatin foci. Mol Cell Biol. 2007;27:2343–58.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sampath SC, Marazzi I, Yap KL, Sampath SC, Krutchinsky AN, Mecklenbräuker I, Viale A, Rudensky E, Zhou M-M, Chait BT, et al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol Cell. 2007;27:596–608.PubMedCrossRefGoogle Scholar
  37. 37.
    Lusser A, Kadonaga JT. Chromatin remodeling by ATP-dependent molecular machines. BioEssays. 2003;25:1192–200.PubMedCrossRefGoogle Scholar
  38. 38.
    Kennison JA. The Polycomb and Trithorax group proteins of drosophila: trans-regulators of homeotic gene function. Annu Rev Genet. 1995;29:289–303.PubMedCrossRefGoogle Scholar
  39. 39.
    Elfring LK, Deuring R, McCallum CM, Peterson CL, Tamkun JW. Identification and characterization of drosophila relatives of the yeast transcriptional activator SNF2/SWI2. Mol Cell Biol. 1994;14:2225–34.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chiba H, Muramatsu M, Nomoto A, Kato H. Two human homologues of Saccharomyces Cerevisiae SWI2/SNF2 and Drosophila Brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res. 1994;22:1815–20.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wong AK. BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Res. 2000;60:6171–7.PubMedGoogle Scholar
  42. 42.
    Wu Q, Lian JB, Stein JL, Stein GS, Nickerson JA, Imbalzano AN. The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics. 2017;9:919–31.PubMedCrossRefGoogle Scholar
  43. 43.
    Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125:315–26.PubMedCrossRefGoogle Scholar
  44. 44.
    Park Y-J, Luger K. Histone chaperones in nucleosome eviction and histone exchange. Curr Opin Struct Biol. 2008;18:282–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Loyola A, Almouzni G. Marking histone H3 variants: how, when and why? Trends Biochem Sci. 2007;32:425–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Hake SB, Allis CD. Histone H3 variants and their potential role in indexing mammalian genomes: the ‘H3 barcode hypothesis’. Proc Natl Acad Sci USA. 2006;103:6428–35.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Warren C, Shechter D. Fly fishing for histones: catch and release by histone chaperone intrinsically disordered regions and acidic stretches. J Mol Biol. 2017;429:2401–26.PubMedCrossRefGoogle Scholar
  48. 48.
    Heard E, Bickmore W. The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol. 2007;19:311–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith ACM, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med. 2008;358:592–604.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gruenbaum Y, Wilson KL, Harel A, Goldberg M, Cohen M. Review: nuclear Lamins--structural proteins with fundamental functions. J Struct Biol. 2000;129:313–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Bell ES, Lammerding J. Causes and consequences of nuclear envelope alterations in tumour progression. Eur J Cell Biol. 2016;95:449–64.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hruban RH, Adsay NV, Albores-Saavedra J, Compton C, Garrett ES, Goodman SN, Kern SE, Klimstra DS, Kloppel G, Longnecker DS, et al. Pancreatic intraepithelial neoplasia: a new nomenclature and classification system for pancreatic duct lesions. Am J Surg Pathol. 2001;25:579–86.PubMedCrossRefGoogle Scholar
  53. 53.
    Lomberk GA, Urrutia R. The triple code model for pancreatic cancer: crosstalk among genetics, epigenetics, and nuclear structure. Surg Clin North Am. 2015;95:935–52.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61:759–67.PubMedCrossRefGoogle Scholar
  55. 55.
    Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H, Iacobuzio-Donahue CA, Rosty C, Goggins M. Frequent Hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res. 2003;63:4158–66.PubMedGoogle Scholar
  56. 56.
    Ueki T, Toyota M, Skinner H, Walter KM, Yeo CJ, Issa J-PJ, Hruban RH, Goggins M. Identification and characterization of differentially methylated CpG Islands in pancreatic carcinoma. Cancer Res. 2001;61:8540–6.PubMedGoogle Scholar
  57. 57.
    Ueki T, Toyota M, Sohn T, Yeo CJ, Issa J-PJ, Hruban RH, Goggins M. Hypermethylation of multiple genes in pancreatic adenocarcinoma. Cancer Res. 2000;60:1835–9.PubMedGoogle Scholar
  58. 58.
    Frese KK, Tuveson DA. Maximizing mouse cancer models. Nat Rev Cancer. 2007;7:654–8.CrossRefGoogle Scholar
  59. 59.
    Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148–59.PubMedCrossRefGoogle Scholar
  60. 60.
    Singh M, Maitra A. Precursor lesions of pancreatic cancer: molecular pathology and clinical implications. Pancreatology. 2007;7:9–19. Epub 2007 Apr 2018PubMedCrossRefGoogle Scholar
  61. 61.
    Fernandez-Zapico ME, Gonzalez-Paz NC, Weiss E, Savoy DN, Molina JR, Fonseca R, Smyrk TC, Chari ST, Urrutia R, Billadeau DD. Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell. 2005;7:39–49.PubMedCrossRefGoogle Scholar
  62. 62.
    Rosty C, Geradts J, Sato N, Wilentz RE, Roberts H, Sohn T, Cameron JL, Yeo CJ, Hruban RH, Goggins M. p16 inactivation in pancreatic intraepithelial neoplasias (PanINs) arising in patients with chronic pancreatitis. Am J Surg Pathol. 2003;27:1495–501.PubMedCrossRefGoogle Scholar
  63. 63.
    Sato N, Fukushima N, Maitra A, Matsubayashi H, Yeo CJ, Cameron JL, Hruban RH, Goggins M. Discovery of novel targets for aberrant methylation in pancreatic carcinoma using high-throughput microarrays. Cancer Res. 2003;63:3735–42.PubMedGoogle Scholar
  64. 64.
    Zhao Y, Sun J, Zhang H, Guo S, Gu J, Wang W, Tang N, Zhou X, Yu J. High-frequency aberrantly methylated targets in pancreatic adenocarcinoma identified via global DNA methylation analysis using methylCap-seq. Clin Epigenetics. 2014;6:18.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Vincent A, Omura N, Hong S-M, Jaffe A, Eshleman J, Goggins M. Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res. 2011;17:4341.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kisiel JB, Raimondo M, Taylor WR, Yab TC, Mahoney DW, Sun Z, Middha S, Baheti S, Zou H, Smyrk TC, et al. New DNA methylation markers for pancreatic cancer: discovery, tissue validation, and pilot testing in pancreatic juice. Clin Cancer Res. 2015;21:4473.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Henriksen SD, Madsen PH, Larsen AC, Johansen MB, Drewes AM, Pedersen IS, Krarup H, Thorlacius-Ussing O. Cell-free DNA promoter hypermethylation in plasma as a diagnostic marker for pancreatic adenocarcinoma. Clin Epigenetics. 2016;8:117.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Allis C, Jenuwein T, Reinberg D, Capparros ML, editors. Epigenetics, 1st edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2007.Google Scholar
  69. 69.
    Privalsky M, editor. Transcriptional corepressors: mediators of eukaryotic gene expression, volume 254. New York: Springer-Verlag; 2001.Google Scholar
  70. 70.
    Cress W, Seto E. Histone deacetylases, transcriptional control, and cancer. J Cell Physiol. 2000;184:1–16.PubMedCrossRefGoogle Scholar
  71. 71.
    Blasco F, Peñuelas S, Cascalló M, Hernández JL, Alemany C, Masa M, Calbó J, Soler M, Nicolás M, Pérez-Torras S, et al. Expression profiles of a human pancreatic cancer cell line upon induction of apoptosis search for modulators in cancer therapy. Oncology. 2004;67:277–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Ouaïssi M, Sielezneff I, Silvestre R, Sastre B, Bernard J-P, Lafontaine J, Payan M, Dahan L, Pirrò N, Seitz J, et al. High histone deacetylase 7 (HDAC7) expression is significantly associated with adenocarcinomas of the pancreas. Ann Surg Oncol. 2008;15:2318–28.PubMedCrossRefGoogle Scholar
  73. 73.
    Giaginis C, Damaskos C, Koutsounas I, Zizi-Serbetzoglou A, Tsoukalas N, Patsouris E, Kouraklis G, Theocharis S. Histone deacetylase (HDAC)-1, −2, −4 and −6 expression in human pancreatic adenocarcinoma: associations with clinicopathological parameters, tumor proliferative capacity and patients’ survival. BMC Gastroenterol. 2015;15:148.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zhao S, Venkatasubbarao K, Li S, Freeman JW. Requirement of a specific Sp1 site for histone deacetylase-mediated repression of transforming growth factor {beta} type II receptor expression in human pancreatic cancer cells. Cancer Res. 2003;63:2624–30.PubMedGoogle Scholar
  75. 75.
    Truty MJ, Lomberk G, Fernandez-Zapico ME, Urrutia R. Silencing of the TGFbeta receptor II by kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling. J Biol Chem. 2008.  https://doi.org/10.1074/jbc.M807791200.
  76. 76.
    Lomberk G, Zhang J, Truty M, Urrutia R. A new molecular model for regulating the TGF[beta] receptor II promoter in pancreatic cells. Pancreas. 2008;36:222–3.CrossRefGoogle Scholar
  77. 77.
    Wolpin BM, Rizzato C, Kraft P, Kooperberg C, Petersen GM, Wang Z, Arslan AA, Beane-Freeman L, Bracci PM, Buring J, et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet. 2014;46:994–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Edderkaoui M, Xu S, Chheda C, Morvaridi S, Hu RW, Grippo PJ, Mascariñas E, Principe DR, Knudsen B, Xue J, et al. HDAC3 mediates smoking-induced pancreatic cancer. Oncotarget. 2016;7:7747–60.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Tchio Mantho CI, Harbuzariu A, Gonzalez-Perez RR. Histone deacetylases, microRNA and leptin crosstalk in pancreatic cancer. World Journal of Clinical Oncology. 2017;8:178–89.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.PubMedCrossRefGoogle Scholar
  81. 81.
    Grzenda AL, Lomberk G, Urrutia R. Different EZH2 isoforms are expressed in pancreatic cells: evidence for a polycomb-mediated subcode within the context of the histone code. Pancreas. 2007;35:404.CrossRefGoogle Scholar
  82. 82.
    Wei Y, Xia W, Zhang Z, Liu J, Wang H, Adsay N, Albarracin C, Yu D, Abbruzzese J, Mills G, et al. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog. 2008;47:701–6.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ougolkov AV, Bilim VN, Billadeau DD. Regulation of pancreatic tumor cell proliferation and Chemoresistance by the histone methyltransferase enhancer of Zeste homologue 2. Clin Cancer Res. 2008;14:6790–6.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gao L, Antic T, Hyjek E, Gong C, Mueller J, Waxman I, DeMay RM, Reeves W. Immunohistochemical analysis of E-cadherin and zeste homolog 2 expression in endoscopic ultrasound-guided fine-needle aspiration of pancreatic adenocarcinoma. Cancer Cytopathol. 2013;121:644–52.PubMedCrossRefGoogle Scholar
  85. 85.
    Mallen-St. Clair J, Soydaner-Azeloglu R, Lee KE, Taylor L, Livanos A, Pylayeva-Gupta Y, Miller G, Margueron R, Reinberg D, Bar-Sagi D. EZH2 couples pancreatic regeneration to neoplastic progression. Genes Dev. 2012;26:439–44.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Jin X, Yang C, Fan P, Xiao J, Zhang W, Zhan S, Liu T, Wang D, Wu H. CDK5/FBW7-dependent ubiquitination and degradation of EZH2 inhibits pancreatic cancer cell migration and invasion. J Biol Chem. 2017;292:6269–80.PubMedCrossRefGoogle Scholar
  87. 87.
    Chen J, Xu H, Zou X, Wang J, Zhu Y, Chen H, Shen B, Deng X, Zhou A, Chin YE, et al. Snail recruits Ring1B to mediate transcriptional repression and cell migration in pancreatic cancer cells. Cancer Res. 2014;74:4353.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Karamitopoulou E, Pallante P, Zlobec I, Tornillo L, Carafa V, Schaffner T, Borner M, Diamantis I, Esposito F, Brunner T, et al. Loss of the CBX7 protein expression correlates with a more aggressive phenotype in pancreatic cancer. Eur J Cancer. 2010;46:1438–44.PubMedCrossRefGoogle Scholar
  89. 89.
    Ni S, Wang H, Zhu X, Wan C, Xu J, Lu C, Xiao L, He J, Jiang C, Wang W, et al. CBX7 suppresses cell proliferation, migration, and invasion through the inhibition of PTEN/Akt signaling in pancreatic cancer. Oncotarget. 2017;8:8010–21.PubMedGoogle Scholar
  90. 90.
    Proctor E, Waghray M, Lee CJ, Heidt DG, Yalamanchili M, Li C, Bednar F, Simeone DM. Bmi1 enhances Tumorigenicity and cancer stem cell function in pancreatic adenocarcinoma. PLoS One. 2013;8:e55820.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wang M-C, Jiao M, Wu T, Jing L, Cui J, Guo H, Tian T, Ruan Z-p, Wei Y-C, Jiang L-L, et al. Polycomb complex protein BMI-1 promotes invasion and metastasis of pancreatic cancer stem cells by activating PI3K/AKT signaling, an ex vivo, in vitro, and in vivo study. Oncotarget. 2016;7:9586–99.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Bednar F, Schofield HK, Collins MA, Yan W, Zhang Y, Shyam N, Eberle JA, Almada LL, Olive KP, Bardeesy N, et al. Bmi1 is required for the initiation of pancreatic cancer through an Ink4a-independent mechanism. Carcinogenesis. 2015;36:730–8.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y. pRB family proteins are required for H3K27 trimethylation and Polycomb repression complexes binding to and silencing p16INK4a tumor suppressor gene. Genes Dev. 2007;21:49–54.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden J-M, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006;439:871–4.PubMedCrossRefGoogle Scholar
  95. 95.
    Lomberk G, Wallrath L, Urrutia R. The heterochromatin protein 1 family. Genome Biol. 2006;7:228.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Dialynas GK, Vitalini MW, Wallrath LL. Linking heterochromatin protein 1 (HP1) to cancer progression. Mutat Res. 2008;647:13–20.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Masaki Y, Oka M, Ogura Y, Ueno T, Nishihara K, Tangoku A, Takahashi M, Yamamoto M, Irimura T. Sialylated MUC1 mucin expression in normal pancreas, benign pancreatic lesions, and pancreatic ductal adenocarcinoma. Hepato-Gastroenterology. 1999;46:2240–5.PubMedGoogle Scholar
  98. 98.
    Mukherjee P, Basu GD, Tinder TL, Subramani DB, Bradley JM, Arefayene M, Skaar T, De Petris G. Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J Immunol. 2009;182:216–24.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Yamada N, Nishida Y, Tsutsumida H, Hamada T, Goto M, Higashi M, Nomoto M, Yonezawa S. MUC1 expression is regulated by DNA methylation and histone H3 lysine 9 modification in cancer cells. Cancer Res. 2008;68:2708–16.PubMedCrossRefGoogle Scholar
  100. 100.
    Smallwood A, Esteve P-O, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 2007;21:1169–78.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Baumgart S, Glesel E, Singh G, Chen N-M, Reutlinger K, Zhang J, Billadeau DD, Fernandez-Zapico ME, Gress TM, Singh SK, et al. Restricted heterochromatin formation links NFATc2 repressor activity with growth promotion in pancreatic cancer. Gastroenterology. 2012;142:388–98. e381-387PubMedCrossRefGoogle Scholar
  102. 102.
    McDonald OG, Li X, Saunders T, Tryggvadottir R, Mentch SJ, Warmoes MO, Word AE, Carrer A, Salz TH, Natsume S, et al. Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis. Nat Genet. 2017;49:367–76.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Yuan Y, Wang Q, Paulk J, Kubicek S, Kemp MM, Adams DJ, Shamji AF, Wagner BK, Schreiber SL. A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chem Biol. 2012;7:1152–7.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Mathison A, Salmonson A, Missfeldt M, Bintz J, Williams M, Kossak S, Nair A, de Assuncao TM, Christensen T, Buttar N, et al. Combined AURKA and H3K9 methyltransferase targeting inhibits cell growth by inducing mitotic catastrophe. In: Molecular cancer research; 2017.Google Scholar
  105. 105.
    Lomberk G, Urrutia R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem J. 2005;392:1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Waddell N, Pajic M, Patch A-M, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Yamamoto K, Tateishi K, Kudo Y, Sato T, Yamamoto S, Miyabayashi K, Matsusaka K, Asaoka Y, Ijichi H, Hirata Y, et al. Loss of histone demethylase KDM6B enhances aggressiveness of pancreatic cancer through downregulation of C/EBPα. Carcinogenesis. 2014;35:2404–14.PubMedCrossRefGoogle Scholar
  108. 108.
    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–14.PubMedCrossRefGoogle Scholar
  109. 109.
    Lee E, Gusev Y, Jiang J, Nuovo G, Lerner M, Frankel W, Morgan D, Postier R, Brackett D, Schmittgen T. Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 2007;120:1046–54.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Szafranska AE, Davison TS, John J, Cannon T, Sipos B, Maghnouj A, Labourier E, Hahn SA. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene. 2007;26:4442–52.PubMedCrossRefGoogle Scholar
  111. 111.
    Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu C-G, Bhatt D, Taccioli C, Croce CM. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA. 2007;297:1901–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A. 2008;105:10513–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Xu J, Cao Z, Liu W, You L, Zhou L, Wang C, Lou W, Sun B, Miao Y, Liu X, et al. Plasma miRNAs effectively distinguish patients with pancreatic cancer from controls: a Multicenter study. Ann Surg. 2016;263:1173–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Pei Z, Liu S-M, Huang J-T, Zhang X, Yan D, Xia Q, Ji C, Chen W, Zhang X, Xu J, et al. Clinically relevant circulating microRNA profiling studies in pancreatic cancer using meta-analysis. Oncotarget. 2017;8:22616–24.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Franklin O, Jonsson P, Billing O, Lundberg E, Öhlund D, Nyström H, Lundin C, Antti H, Sund M. Plasma micro-RNA alterations appear late in pancreatic cancer. Annals of Surgery. 2017.  https://doi.org/10.1097/SLA.0000000000002124.
  116. 116.
    Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.PubMedCrossRefGoogle Scholar
  117. 117.
    Peng J-F, Zhuang Y-Y, Huang F-T, Zhang S-N. Noncoding RNAs and pancreatic cancer. World J Gastroenterol. 2016;22:801–14.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Research, Department of SurgeryMedical College of WisconsinMilwaukeeUSA
  2. 2.Division of Research, Department of Surgery and Genomic Sciences and Precision Medicine Center (GSPMC)Medical College of WisconsinMilwaukeeUSA

Personalised recommendations