Skip to main content

EGFR (ErbB) Signaling Pathways in Pancreatic Cancer Pathogenesis

  • Reference work entry
  • First Online:
Pancreatic Cancer

Abstract

The epidermal growth factor receptor (EGFR/ErbB) signaling axis influences the development, maintenance, and disease of tissues throughout the body. Effects have been demonstrated on normal cell proliferation, migration, differentiation, adhesion, and apoptosis in pancreas as well as heart, muscle, nervous system, and a wide variety of organ epithelia. In addition, alterations in the epidermal growth factor (EGF) pathway, including overexpression of the ErbB family of receptor tyrosine kinases, mutations in downstream mediators (e.g., Ras), as well as aberrant signaling, are present in the vast majority of pancreatic and other solid tissue tumors. The importance of the ErbB signaling axis to cancer is illustrated by the number of articles and reviews published on this topic to date (>20,000 and >3000, respectively). In line with the importance of ErbB signaling to cancer, several anticancer therapies have been developed targeting various parts of the ErbB signaling axis and are currently in use, with more undergoing intense development and investigation. Presently, the NIH currently cites an extensive list of clinical studies of ErbB signaling in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reynolds VH, Boehm FH, Cohen S. Enhancement of chemical carcinogenesis by an epidermal growth factor. Surg Forum. 1965;16:108–9.

    CAS  PubMed  Google Scholar 

  2. Debray C, Reversat R. Antiulcer extracts taken from the gastrointestinal mucosa and the urine. Sem Hop. 1950;26(50):2419–29.

    CAS  PubMed  Google Scholar 

  3. Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci. 2008;65(10):1566–84.

    Article  CAS  Google Scholar 

  4. Kritzik MR, et al. Expression of ErbB receptors during pancreatic islet development and regrowth. J Endocrinol. 2000;165(1):67–77.

    Article  CAS  Google Scholar 

  5. Means A, et al. Overexpression of heparin-binding EGF-like growth factor in mouse pancreas results in fibrosis and epithelial metaplasia. Gastroenterology. 2003;124(4):1020–36.

    Article  CAS  Google Scholar 

  6. Burtness B. Her signaling in pancreatic cancer. Expert Opin Biol Ther. 2007;7(6):823–9.

    Article  CAS  Google Scholar 

  7. Pryczynicz A, et al. Expression of EGF and EGFR strongly correlates with metastasis of pancreatic ductal carcinoma. Anticancer Res. 2008;28(2B):1399–404.

    PubMed  Google Scholar 

  8. Harris RC, Chung E, Coffey RJ. EGF receptor ligands. Exp Cell Res. 2003;284(1):2–13.

    Article  CAS  Google Scholar 

  9. Blobel CP, Carpenter G, Freeman M. The role of protease activity in ErbB biology. Exp Cell Res. 2009;315(4):671–82.

    Article  CAS  Google Scholar 

  10. Swindle CS, et al. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol. 2001;154(2):459–68.

    Article  CAS  Google Scholar 

  11. Tzahar E, et al. Pathogenic poxviruses reveal viral strategies to exploit the ErbB signaling network. EMBO J. 1998;17(20):5948–63.

    Article  CAS  Google Scholar 

  12. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12(18):5268–72.

    Article  CAS  Google Scholar 

  13. Jones RB, et al. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature. 2006;439(7073):168–74.

    Article  CAS  Google Scholar 

  14. Carpenter G. ErbB-4: mechanism of action and biology. Exp Cell Res. 2003;284(1):66–77.

    Article  CAS  Google Scholar 

  15. Citri A, Skaria KB, Yarden Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res. 2003;284(1):54–65.

    Article  CAS  Google Scholar 

  16. Massie C, Mills IG. The developing role of receptors and adaptors. Nat Rev Cancer. 2006;6(5):403–9.

    Article  CAS  Google Scholar 

  17. Bardeesy N, DePinho RA. Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002;2(12):897–909.

    Article  CAS  Google Scholar 

  18. Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008;9(2):162–76.

    Article  CAS  Google Scholar 

  19. Carpenter CL, et al. Phosphoinositide 3-kinase is activated by phosphopeptides that bind to the SH2 domains of the 85-kDa subunit. J Biol Chem. 1993;268(13):9478–83.

    CAS  PubMed  Google Scholar 

  20. Sjolander A, et al. Association of p21ras with phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A. 1991;88(18):7908–12.

    Article  CAS  Google Scholar 

  21. Currie RA, et al. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J. 1999;337(Pt 3):575–83.

    Article  CAS  Google Scholar 

  22. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.

    Article  CAS  Google Scholar 

  23. Abe K, et al. Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem. 2000;275(14):10141–9.

    Article  CAS  Google Scholar 

  24. Itoh RE, et al. Phosphorylation and activation of the Rac1 and Cdc42 GEF Asef in A431 cells stimulated by EGF. J Cell Sci. 2008;121(16):2635.

    Article  CAS  Google Scholar 

  25. Nobes CD, Hall A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995;81(1):53–62.

    Article  CAS  Google Scholar 

  26. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998;279(5350):509–14.

    Article  CAS  Google Scholar 

  27. Watanabe N, et al. Cooperation between mDia1 and ROCK in rho-induced actin reorganization. Nat Cell Biol. 1999;1(3):136–43.

    Article  CAS  Google Scholar 

  28. Schlessinger K, Hall A, Tolwinski N. Wnt signaling pathways meet rho GTPases. Genes Dev. 2009;23(3):265–77.

    Article  CAS  Google Scholar 

  29. Fernandez-Zapico ME, et al. Ectopic expression of VAV1 reveals an unexpected role in pancreatic cancer tumorigenesis. Cancer Cell. 2005;7(1):39–49.

    Article  CAS  Google Scholar 

  30. Caparello C, et al. FOLFIRINOX and translational studies: towards personalized therapy in pancreatic cancer. World J Gastroenterol. 2016;22(31):6987–7005.

    Article  CAS  Google Scholar 

  31. Chiorean EG, et al. Second-line therapy after nab-paclitaxel plus gemcitabine or after gemcitabine for patients with metastatic pancreatic cancer. Br J Cancer. 2016;115(2):188–94.

    Article  CAS  Google Scholar 

  32. Burris H, Storniolo AM. Assessing clinical benefit in the treatment of pancreas cancer: gemcitabine compared to 5-fluorouracil. Eur J Cancer. 1997;33(Suppl 1):S18–22.

    Article  CAS  Google Scholar 

  33. Rivera F, et al. Treatment of advanced pancreatic cancer: from gemcitabine single agent to combinations and targeted therapy. Cancer Treat Rev. 2009;35(4):335–9.

    Article  CAS  Google Scholar 

  34. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358(11):1160–74.

    Article  CAS  Google Scholar 

  35. Moore MJ, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6.

    Article  CAS  Google Scholar 

  36. Aranda E, et al. Phase II open-label study of erlotinib in combination with gemcitabine in unresectable and/or metastatic adenocarcinoma of the pancreas: relationship between skin rash and survival (Pantar study). Ann Oncol. 2012;23(7):1919–25.

    Article  CAS  Google Scholar 

  37. Van Cutsem E, et al. Dose escalation to rash for erlotinib plus gemcitabine for metastatic pancreatic cancer: the phase II RACHEL study. Br J Cancer. 2014;111(11):2067–75.

    Article  Google Scholar 

  38. Wang JP, et al. Erlotinib is effective in pancreatic cancer with epidermal growth factor receptor mutations: a randomized, open-label, prospective trial. Oncotarget. 2015;6(20):18162–73.

    PubMed  PubMed Central  Google Scholar 

  39. Mosquera C, Maglic D, Zervos EE. Molecular targeted therapy for pancreatic adenocarcinoma: a review of completed and ongoing late phase clinical trials. Cancer Genet. 2016;209(12):567–81.

    Article  CAS  Google Scholar 

  40. Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors[mdash]impact on future treatment strategies. Nat Rev Clin Oncol. 2010;7(9):493–507.

    Article  CAS  Google Scholar 

  41. Tebbutt N, Pedersen MW, Johns TG. Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer. 2013;13(9):663–73.

    Article  CAS  Google Scholar 

  42. Arteaga CL, Engelman JA, Receptors ERBB. From oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell. 2014;25(3):282–303.

    Article  CAS  Google Scholar 

  43. Kimura K, et al. Antitumor effect of trastuzumab for pancreatic cancer with high HER-2 expression and enhancement of effect by combined therapy with gemcitabine. Clin Cancer Res. 2006;12(16):4925.

    Article  CAS  Google Scholar 

  44. Harder J, et al. Multicentre phase II trial of trastuzumab and capecitabine in patients with HER2 overexpressing metastatic pancreatic cancer. Br J Cancer. 2012;106(6):1033–8.

    Article  CAS  Google Scholar 

  45. Wu Z, et al. Phase II study of lapatinib and capecitabine in second-line treatment for metastatic pancreatic cancer. Cancer Chemother Pharmacol. 2015;76(6):1309–14.

    Article  CAS  Google Scholar 

  46. Joshi M, Rizvi SM, Belani CP. Afatinib for the treatment of metastatic non-small cell lung cancer. Cancer Manag Res. 2015;7:75–82.

    Article  CAS  Google Scholar 

  47. Yu HA, Pao W. Targeted therapies: afatinib – new therapy option for EGFR-mutant lung cancer. Nat Rev Clin Oncol. 2013;10(10):551–2.

    Article  CAS  Google Scholar 

  48. Huguet F, et al. Afatinib, an irreversible EGFR family inhibitor, shows activity toward pancreatic cancer cells, alone and in combination with radiotherapy, independent of KRAS status. Target Oncol. 2016;11(3):371–81.

    Article  Google Scholar 

  49. Zhang H, et al. ErbB receptors: from oncogenes to targeted cancer therapies. J Clin Invest. 2007;117(8):2051–8.

    Article  CAS  Google Scholar 

  50. Takezawa K, et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR mutant lung cancers that lack the second-site EGFR T790M mutation. Cancer Discov. 2012;2(10):922–33.

    Article  CAS  Google Scholar 

  51. Larbouret C, et al. Combined cetuximab and trastuzumab are superior to gemcitabine in the treatment of human pancreatic carcinoma xenografts. Ann Oncol. 2010;21(1):98–103.

    Article  CAS  Google Scholar 

  52. Assenat E, et al. Dual targeting of HER1/EGFR and HER2 with cetuximab and trastuzumab in patients with metastatic pancreatic cancer after gemcitabine failure: results of the “THERAPY”phase 1-2 trial. Oncotarget. 2015;6(14):12796–808.

    Article  Google Scholar 

  53. Bennouna J, Moreno Vera SR. Afatinib-based combination regimens for the treatment of solid tumors: rationale, emerging strategies and recent progress. Future Oncol. 2015;12(3):355–72.

    Article  Google Scholar 

  54. Chung KY, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol. 2005;23(9):1803–10.

    Article  CAS  Google Scholar 

  55. Bonine-Summers AR, et al. Epidermal growth factor receptor plays a significant role in hepatocyte growth factor mediated biological responses in mammary epithelial cells. Cancer Biol Ther. 2007;6(4):561–70.

    Article  CAS  Google Scholar 

  56. Jo M, et al. Cross-talk between epidermal growth factor receptor and c-Met signal pathways in transformed cells. J Biol Chem. 2000;275(12):8806–11.

    Article  CAS  Google Scholar 

  57. Velpula KK, et al. EGFR and c-Met cross talk in glioblastoma and its regulation by human cord blood stem cells. Transl Oncol. 2012;5(5):379–IN18.

    Article  Google Scholar 

  58. Liska D, et al. HGF rescues colorectal cancer cells from EGFR inhibition via MET activation. Clin Cancer Res. 2011;17(3):472.

    Article  CAS  Google Scholar 

  59. Corso S, et al. Activation of HER family members in gastric carcinoma cells mediates resistance to MET inhibition. Mol Cancer. 2010;9(1):121.

    Article  Google Scholar 

  60. Riedemann J, et al. The EGF receptor interacts with the type 1 IGF receptor and regulates its stability. Biochem Biophys Res Commun. 2007;355(3):707–14.

    Article  CAS  Google Scholar 

  61. Chakravarti A, Loeffler JS, Dyson NJ. Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res. 2002;62(1):200.

    CAS  PubMed  Google Scholar 

  62. Truty MJ, Urrutia R. Basics of TGF-ß and pancreatic cancer. Pancreatology. 2007;7(5):423–35.

    Article  CAS  Google Scholar 

  63. Zhang YE. Non-Smad pathways in TGF-[beta] signaling. Cell Res. 2009;19(1):128–39.

    Article  CAS  Google Scholar 

  64. Ellenrieder V. TGFβ-regulated gene expression by Smads and Sp1/KLF-like transcription factors in cancer. Anticancer Res. 2008;28(3A):1531–9.

    CAS  PubMed  Google Scholar 

  65. Seton-Rogers SE, et al. Cooperation of the ErbB2 receptor and transforming growth factor β in induction of migration and invasion in mammary epithelial cells. Proc Natl Acad Sci U S A. 2004;101(5):1257–62.

    Article  CAS  Google Scholar 

  66. Muraoka RS, et al. Increased malignancy of neu-induced mammary tumors overexpressing active transforming growth factor β1. Mol Cell Biol. 2003;23(23):8691–703.

    Article  CAS  Google Scholar 

  67. Muraoka-Cook RS, et al. Activated type I TGF[beta] receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene. 2005;25(24):3408–23.

    Article  Google Scholar 

  68. Ueda Y, et al. Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor β-induced cell motility. J Biol Chem. 2004;279(23):24505–13.

    Article  CAS  Google Scholar 

  69. Deharvengt S, Marmarelis M, Korc M. Concomitant targeting of EGF receptor, TGF-beta and Src points to a novel therapeutic approach in pancreatic cancer. PLoS One. 2012;7(6):e39684.

    Article  CAS  Google Scholar 

  70. Fernández-Zapico ME. Primers on molecular pathways GLI: more than just hedgehog? Pancreatology. 2008;8(3):227–9.

    Article  Google Scholar 

  71. Schnidar H, et al. Epidermal growth factor receptor signaling synergizes with hedgehog/GLI in oncogenic transformation via activation of the MEK/ERK/JUN pathway. Cancer Res. 2009;69(4):1284.

    Article  CAS  Google Scholar 

  72. Eberl M, et al. Hedgehog-EGFR cooperation response genes determine the oncogenic phenotype of basal cell carcinoma and tumour-initiating pancreatic cancer cells. EMBO Mol Med. 2012;4(3):218.

    Article  CAS  Google Scholar 

  73. Götschel F, et al. Synergism between hedgehog-GLI and EGFR signaling in hedgehog-responsive human medulloblastoma cells induces downregulation of canonical hedgehog-target genes and stabilized expression of GLI1. PLoS One. 2013;8(6):e65403.

    Article  Google Scholar 

  74. Heo JS, Lee MY, Han HJ. Sonic hedgehog stimulates mouse embryonic stem cell proliferation by cooperation of Ca2+/protein kinase C and epidermal growth factor receptor as well as Gli1 activation. Stem Cells. 2007;25(12):3069–80.

    Article  CAS  Google Scholar 

  75. Whisenant TC, et al. Computational prediction and experimental verification of new MAP kinase docking sites and substrates including gli transcription factors. PLoS Comput Biol. 2010;6(8):e1000908.

    Article  Google Scholar 

  76. Pasca di Magliano M, et al. Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev. 2006;20(22):3161–73.

    Article  CAS  Google Scholar 

  77. Hu W-G, et al. Blockade of sonic hedgehog signal pathway enhances antiproliferative effect of EGFR inhibitor in pancreatic cancer cells. Acta Pharmacol Sin. 2007;28(8):1224–30.

    Article  CAS  Google Scholar 

  78. Civenni G, Holbro T, Hynes NE. Wnt1 and Wnt5a induce cyclin D1 expression through ErbB1 transactivation in HC11 mammary epithelial cells. EMBO Rep. 2003;4(2):166.

    Article  CAS  Google Scholar 

  79. Krejci P, et al. Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation. PLoS One. 2012;7(4):e35826.

    Article  CAS  Google Scholar 

  80. Lu Z, et al. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell. 2003;4(6):499–515.

    Article  CAS  Google Scholar 

  81. Avila JL, Kissil JL. Notch signaling in pancreatic cancer: oncogene or tumor suppressor? Trends Mol Med. 2013;19(5):320–7.

    Article  CAS  Google Scholar 

  82. Dong Y, et al. Synthetic lethality through combined notch–epidermal growth factor receptor pathway inhibition in basal-like breast cancer. Cancer Res. 2010;70(13):5465.

    Article  CAS  Google Scholar 

  83. Miyamoto Y, et al. Notch mediates TGFbeta-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell. 2003;3(6):565–76.

    Article  CAS  Google Scholar 

  84. De La O J-P, et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia. Proc Natl Acad Sci. 2008;105(48):18907–12.

    Article  CAS  Google Scholar 

  85. Hanlon L, et al. Notch1 functions as a tumor suppressor in a model of K-ras–induced pancreatic ductal adenocarcinoma. Cancer Res. 2010;70(11):4280.

    Article  CAS  Google Scholar 

  86. DeCant BT, et al. Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. Front Physiol. 2014;5:464.

    Article  Google Scholar 

  87. Wang Z. Transactivation of epidermal growth factor receptor by G protein-coupled receptors: recent progress, challenges and future research. Int J Mol Sci. 2016;17(1):95.

    Article  Google Scholar 

  88. Fredriksson R, et al. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003;63(6):1256.

    Article  CAS  Google Scholar 

  89. Gutkind JS. The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem. 1998;273(4):1839–42.

    Article  CAS  Google Scholar 

  90. Lappano R, Maggiolini M. GPCRs and cancer. Acta Pharmacol Sin. 2012;33(3):351–62.

    Article  CAS  Google Scholar 

  91. Dabrowski A, et al. Cholecystokinin and EGF activate a MAPK cascade by different mechanisms in rat pancreatic acinar cells. Am J Physiol Cell Physiol. 1997;273(5):C1472.

    Article  CAS  Google Scholar 

  92. Smith JP, Fonkoua LK, Moody TW. The role of gastrin and CCK receptors in pancreatic cancer and other malignancies. Int J Biol Sci. 2016;12(3):283–91.

    Article  CAS  Google Scholar 

  93. Navas C, et al. EGF receptor signaling is essential for K-ras oncogene-driven pancreatic ductal adenocarcinoma. Cancer Cell. 2012;22(3):318–30.

    Article  CAS  Google Scholar 

  94. Smith JP, et al. Cholecystokinin receptor antagonist halts progression of pancreatic cancer precursor lesions and fibrosis in Mice. Pancreas. 2014;43(7):1050–9.

    Article  CAS  Google Scholar 

  95. Ryder NM, et al. G protein–coupled receptor signaling in human ductal pancreatic cancer cells: neurotensin responsiveness and mitogenic stimulation. J Cell Physiol. 2001;186(1):53–64.

    Article  CAS  Google Scholar 

  96. Mishani E, et al. Imaging of EGFR and EGFR tyrosine kinase overexpression in tumors by nuclear medicine modalities. Curr Pharm Des. 2008;14(28):2983–98.

    Article  CAS  Google Scholar 

  97. Saccomano M, et al. Preclinical evaluation of near-infrared (NIR) fluorescently labeled cetuximab as a potential tool for fluorescence-guided surgery. Int J Cancer. 2016;139(10):2277–89.

    Article  CAS  Google Scholar 

  98. Nielsen CH, et al. In vivo imaging of therapy response to a novel Pan-HER antibody mixture using FDG and FLT positron emission tomography. Oncotarget. 2015;6(35):37486–99.

    Article  Google Scholar 

  99. England CG, et al. Molecular imaging of pancreatic cancer with antibodies. Mol Pharm. 2016;13(1):8–24.

    Article  CAS  Google Scholar 

  100. Ricono JM, et al. Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res. 2009;69(4):1383–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories is supported by NIH DK52913 (to RU), NIH CA178627 (to GL), ChiRhoClin, Research Institute (to RU and GL), as well as the Mayo Clinic SPORE in Pancreatic Cancer (P50 CA102701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Urrutia .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Williams, M., Lomberk, G., Urrutia, R. (2018). EGFR (ErbB) Signaling Pathways in Pancreatic Cancer Pathogenesis. In: Neoptolemos, J., Urrutia, R., Abbruzzese, J., Büchler, M. (eds) Pancreatic Cancer. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-7193-0_15

Download citation

Publish with us

Policies and ethics