Skip to main content

Slime Mold Computing

  • Reference work entry
  • First Online:
Unconventional Computing

Part of the book series: Encyclopedia of Complexity and Systems Science Series ((ECSSS))

  • Originally published in
  • R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media LLC 2017

Glossary

Physarum polycephalum :

belongs to the order Physarales, subclass Myxogastromycetidae, class Myxomycetes, and division Myxostelida; it is commonly known as a true, acellular, or multiheaded slime mold.

Shortest path :

is a sequence of edges connecting two vertexes in a graph that has a minimal sum of edge weights; in context of the paper, shortest path is determined by sum of distances on Euclidean plane.

Maze :

is a collection of all possible paths between two points.

Travelling salesman problem :

aims to find a shortest path in a graph that visits all nodes and ends in its starting node.

Spanning tree :

of a finite planar set is a connected, undirected, acyclic planar graph, whose vertices are points of the planar set; the tree is a minimal spanning tree where sum of edge lengths is minimal.

Voronoi diagram :

of a set of points is a partition of the plane into such regions that, for any element of the set, a region corresponding to a unique point contains all those points of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 489.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Adamatzky A (1991) Neural algorithm for constructing minimal spanning tree. Neural Netw World 6:335–339

    Google Scholar 

  • Adamatzky A (2002) Collision-based computing. Springer, London

    Book  Google Scholar 

  • Adamatzky A (2007) Physarum machine: implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Process Lett 17(04):455–467

    Article  MathSciNet  Google Scholar 

  • Adamatzky A (2008) Growing spanning trees in plasmodium machines. Kybernetes 37(2):258–264

    Article  MathSciNet  Google Scholar 

  • Adamatzky A (2009) Developing proximity graphs by Physarum polycephalum: does the plasmodium follow the Toussaint hierarchy? Parallel Process Lett 19(01):105–127

    Article  MathSciNet  Google Scholar 

  • Adamatzky A (2010a) Physarum machines: computers from slime mould. World Scientific Publishing, London

    Google Scholar 

  • Adamatzky A (2010b) Slime mould logical gates: exploring ballistic approach. arXiv preprint arXiv:1005.2301

    Google Scholar 

  • Adamatzky A (2012a) Bioevaluation of world transport networks. World Scientific Publishing, London

    Google Scholar 

  • Adamatzky A (2012b) Slime mold solves maze in one pass, assisted by gradient of chemo- attractants. NanoBioscience IEEE Trans 11(2):131–134

    Article  Google Scholar 

  • Adamatzky A (2012c) Slime mould computes planar shapes. Int J Bio-Inspired Comput 4(3):149–154

    Article  Google Scholar 

  • Adamatzky A (ed) (2016) Advances in Physarum machines: sensing and computing with slime mould. Springer, Heidelberg

    Google Scholar 

  • Adamatzky A, Kayem AVDM (2013) Biological evaluation of trans-African high-ways. European Phys J Spec Top 215(1):49–59

    Article  Google Scholar 

  • Adamatzky A, Martinez GJ (2013) Bio-imitation of Mexican migration routes to the USA with slime mould on 3D terrains. J Bionic Eng 10(2):242–250

    Article  Google Scholar 

  • Adamatzky A, Prokopenko M (2012) Slime mould evaluation of Australian motor- ways. Int J Parallel Emergent Distrib Syst 27(4):275–295

    Article  Google Scholar 

  • Adamatzky A, Schubert T (2012) Schlauschleimer in Reichsautobahnen: slime mould imitates motorway network in Germany. Kybernetes 41(7/8):1050–1071

    Article  Google Scholar 

  • Adamatzky A, Schubert T (2014) Slime mold microfluidic logical gates. Mater Today 17(2):86–91

    Article  Google Scholar 

  • Adamatzky A, De Lacy Costello B, Asai T (2005) Reaction-diffusion computers. Elsevier, Amsterdam

    Google Scholar 

  • Adamatzky A, De Baets B, Van Dessel W (2012) Slime mould imitation of Belgian transport networks: redundancy, bio-essential motorways, and dissolution. Int J Unconv Comput 8(3):235–261

    Google Scholar 

  • Adamatzky A, Akl S, Alonso-Sanz R, Van Dessel W, Ibrahim Z, Ilachinski A, Jones J, Kayem AVDM, Martínez GJ, De Oliveira P et al (2013a) Are motorways rational from slime mould’s point of view? Int J Parallel Emergent Distrib Syst 28(3):230–248

    Article  Google Scholar 

  • Adamatzky A, Lees M, Sloot P (2013b) Bio-development of motorway network in the Netherlands: a slime mould approach. Adv Complex Syst 16(02n03):1250034

    Article  Google Scholar 

  • Adamatzky A, Armstrong R, De Lacy Costello B, Deng Y, Jones J, Mayne R, Schubert T, Ch Sirakoulis G, Zhang X (2014) Slime mould analogue models of space exploration and planet colonisation. J Br Interplanet Soc 67:290–304

    Google Scholar 

  • Aono M, Kim S-J, Zhu L, Naruse M, Ohtsu M, Hori H, Hara M (2012). Amoeba-inspired sat solver. In: Proc. NOLTA. p 586–589

    Google Scholar 

  • Aono M, Kasai S, Kim SJ, Wakabayashi M, Miwa H, Naruse M (2015) Amoeba-inspired nanoarchitectonic computing implemented using electrical brownian ratchets. Nanotechnology 26(23):234001

    Article  Google Scholar 

  • Ascher R (1961) Experimental archeology. Am Anthropol 63(4):793–816

    Article  Google Scholar 

  • Becker M, Kromker M, Szczerbicka H (2015) Evaluating heuristic optimiza-tion, bio-inspired and graph-theoretic algorithms for the generation of fault-tolerant graphs with minimal costs. In: Information science and applications. Springer, Berlin, pp 1033–1041

    Chapter  Google Scholar 

  • Blakey E (2014) Towards non-quantum implementations of shor’s factorization algorithm. Int J Unconv Comput 10:339–352

    Google Scholar 

  • Blass A, Gurevich Y (2003) Algorithms: a quest for absolute definitions. Bull EATCS 81:195–225

    MathSciNet  MATH  Google Scholar 

  • Bonifaci V, Mehlhorn K, Varma G (2012) Physarum can compute shortest paths. J Theor Biol 309:121–133

    Article  MathSciNet  Google Scholar 

  • Carlile MJ (1972) The lethal interaction following plasmodial fusion between two strains of the myx-omycete physarum polycephalum. J Gen Microbiol 71(3):581–590

    Article  Google Scholar 

  • Cloteaux B, Ranjan D (2006) Some separation results between classes of pointer algorithms. DCFS 6:232–240

    Google Scholar 

  • Coles J (1979) Experimental archaeology. Academic Press, London

    Google Scholar 

  • Delaunay B (1934) Sur la sphere vide. Izv Akad Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7(793–800):1–2

    MATH  Google Scholar 

  • Dietrich MR (2015) Explaining the pulse of protoplasm: the search for molecular mechanisms of protoplasmic streaming. J Integr Plant Biol 57(1):14–22

    Article  Google Scholar 

  • Dourvas N, Tsompanas M-A, Sirakoulis GC, Tsalides P (2015) Hardware acceleration of cellular automata Physarum polycephalum model. Parallel Process Lett 25(01):1540006

    Article  MathSciNet  Google Scholar 

  • Durham AC, Ridgway EB (1976) Control of chemotaxis in physarum polycephalum. J Cell Biol 69(1):218–223

    Article  Google Scholar 

  • Edelsbrunner H, Kirkpatrick DG, Seidel R (1983) On the shape of a set of points in the plane. Inf Theory IEEE Trans 29(4):551–559

    Article  MathSciNet  Google Scholar 

  • Evangelidis V, Tsompanas M-A, Sirakoulis GC, Adamatzky A (2015) Slime mould imitates development of Roman roads in the Balkans. J Archaeol Sci Rep 2:264–281

    Google Scholar 

  • Gabriel KR, Sokal RR (1969) A new statistical approach to geographic variation analysis. Syst Biol 18(3):259–278

    Google Scholar 

  • Grebecki A, CieÅ›lawska M (1978) Plasmodium of physarum polycephalum as a synchronous contractile system. Cytobiologie 17(2):335–342

    Google Scholar 

  • Gurevich Y (1988) Kolmogorov machines and related issues. Bull EATCS 35:71–82

    Google Scholar 

  • Hinz AM (1989) The tower of Hanoi. Enseign Math 35(2):289–321

    MathSciNet  MATH  Google Scholar 

  • Hinz AM (1992) Shortest paths between regular states of the Tower of Hanoi. Inf Sci 63(1):173–181

    Article  MathSciNet  Google Scholar 

  • Ingersoll D, Yellen JE, Macdonald W (1977) Experimental archaeology. Columbia University Press, New York

    Google Scholar 

  • Jarvis RA (1973) On the identification of the convex hull of a finite set of points in the plane. Inf Process Lett 2(1):18–21

    Article  Google Scholar 

  • Jones J, Adamatzky A (2010) Towards Physarum binary adders. Biosystems 101(1):51–58

    Article  Google Scholar 

  • Jones J, Adamatzky A (2014a) Computation of the travelling salesman problem by a shrinking blob. Nat Comput 13(1):1–16

    Article  MathSciNet  Google Scholar 

  • Jones J, Adamatzky A (2014b) Material approximation of data smoothing and spline curves inspired by slime mould. Bioinspir Biomim 9(3):036016

    Article  Google Scholar 

  • Kalogeiton VS, Papadopoulos DP, Sirakoulis GC (2014) Hey physarum! Can you perform slam? Int J Unconv Comput 10(4):271–293

    Google Scholar 

  • Kalogeiton VS, Papadopoulos DP, Georgilas IP, Sirakoulis GC, Adamatzky AI (2015a) Biomimicry of crowd evacuation with a slime mould cellular automaton model. In: Computational intelligence, medicine and biology. Springer, Berlin, pp 123–151

    Google Scholar 

  • Kalogeiton VS, Papadopoulos DP, Georgilas IP, Ch Sirakoulis G, Adamatzky AI (2015b) Cellular automaton model of crowd evacuation inspired by slime mould. Int J Gen Syst 44(3):354–391

    Article  MathSciNet  Google Scholar 

  • Kauffman S, Wille JJ (1975) The mitotic oscillator in Physarum polycephalum. J Theor Biol 55(1):47–93

    Article  Google Scholar 

  • Kim S-J, Aono M, Hara M (2010) Tug-of-war model for the two-bandit problem: nonlocally-correlated parallel exploration via resource conservation. Biosystems 101(1):29–36

    Article  Google Scholar 

  • Kishimoto U (1958) Rhythmicity in the protoplasmic streaming of a slime mood, physarum polycephalum. i. A statistical analysis of the electrical potential rhythm. J Gen Physiol 41(6):1205–1222

    Article  Google Scholar 

  • Kolmogorov AN (1953) On the concept of algorithm. Uspekhi Mat Nauk 8(4):175–176

    Google Scholar 

  • Kolmogorov AN, Uspenskii VA (1958) On the definition of an algorithm. Uspekhi Matematicheskikh Nauk 13(4):3–28

    MathSciNet  MATH  Google Scholar 

  • Liang M, Gao C, Liu Y, Tao L, Zhang Z (2015a) A new physarum network based genetic algorithm for bandwidth-delay constrained least-cost multicast routing. In: Advances in swarm and computational intelligence. Springer, Berlin, pp 273–280

    Chapter  Google Scholar 

  • Liang L, Song Y, Zhang H, Ma H, Vasilakos AV (2015b) Physarum optimization: a biology-inspired algorithm for the steiner tree problem in networks. Comput IEEE Trans 64(3):819–832

    MathSciNet  MATH  Google Scholar 

  • MacGregor JN, Ormerod T (1996) Human performance on the traveling salesman problem. Percept Psychophys 580(4):527–539

    Article  Google Scholar 

  • Margolus N (2002) Universal cellular automata based on the collisions of soft spheres. In: Collision-based computing. Springer, London, pp 107–134

    Chapter  Google Scholar 

  • Mayne R, Adamatzky A (2015a) Slime mould foraging behaviour as optically coupled logical operations. Int J Gen Syst 44(3):305–313

    Article  MathSciNet  Google Scholar 

  • Mayne R, Adamatzky A (2015b) On the computing potential of intracellular vesicles. PLoS One 10(10):e0139617

    Article  Google Scholar 

  • Mayne R, Tsompanas M-A, Sirakoulis GC, Adamatzky A (2015) Towards a slime mould-FPGA interface. Biomed Eng Lett 5(1):51–57

    Article  Google Scholar 

  • Miyaji T, Ohnishi I (2008) Physarum can solve the shortest path problem on Riemannian surface mathematically rigorously. Int J Pure Appl Math 47(3):353–369

    MathSciNet  MATH  Google Scholar 

  • Nakagaki T, Yamada H, Toth A (2001) Path finding by tube morphogenesis in an amoeboid organism. Biophys Chem 92(1):47–52

    Article  Google Scholar 

  • Naruse M, Berthel M, Drezet A, Huant S, Aono M, Hori H, Kim S-J (2015) Single-photon decision maker. Sci Rep 5:13253

    Article  Google Scholar 

  • NeÅ¡etÅ™il J, Milková E, NeÅ¡etÅ™ilová H (2001) Otakar Boru°vka on minimum span-ning tree problem translation of both the 1926 papers, comments, history. Discrete Math 233(1):3–36

    Article  MathSciNet  Google Scholar 

  • Piovanelli M, Fujie T, Mazzolai B, Beccai L (2012) A bio-inspired approach towards the development of soft amoeboid microrobots. In: Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on. IEEE, p 612–616

    Google Scholar 

  • Preparata FP, Shamos MI (1985) Computational geometry: an introduction. Springer, New York

    Book  Google Scholar 

  • Rakoczy L (1963) Application of crossed light and humidity gradients for the investigation of slime-molds. Acta Soc Bot Pol 32(2):393–403

    Article  Google Scholar 

  • Reid CR, Beekman M (2013) Solving the towers of Hanoi—how an amoeboid organism efficiently constructs transport networks. J Exp Biol 216(9):1546–1551

    Article  Google Scholar 

  • Ridgway EB, Durham AC (1976) Oscillations of calcium ion concentrations in Physarum polycephalum. J Cell Biol 69(1):223–226

    Article  Google Scholar 

  • Romik D (2006) Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J Discret Math 20(3):610–622

    Article  MathSciNet  Google Scholar 

  • Saigusa T, Tero A, Nakagaki T, Kuramoto Y (2008) Amoebae anticipate periodic events. Phys Rev Lett 100(1):018101

    Article  Google Scholar 

  • Schön T, Stetter M, Tomé AM, Puntonet CG, Lang EW (2014) Physarum learner: a bio-inspired way of learning structure from data. Expert Syst Appl 41(11):5353–5370

    Article  Google Scholar 

  • Schumann A (2017) Conventional and unconventional reversible logic gates on Physarum polycephalum. International Journal of Parallel, Emergent and Distributed Systems 32(2):218–231

    Google Scholar 

  • Schumann A, Adamatzky A (2011) Physarum spatial logic. New Math Nat Comput 7(03):483–498

    Article  MathSciNet  Google Scholar 

  • Schumann A, Pancerz K, Adamatzky A, Grube M (2014) Bio-inspired game theory: the case of physarum polycephalum. In: Proceedings of the 8th International Conference on Bioinspired Information and Communications Technologies. Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, ICST, p 9–16

    Google Scholar 

  • Shinde Y, Oya T (2014) Design of single-electron slime-mold circuit and its application to solving optimal path planning problem. Nonlinear Theory Appl IEICE 5(s):80–88

    Article  Google Scholar 

  • Shirakawa T, Adamatzky A, Gunji Y-P, Miyake Y (2009) On simultaneous construction of Voronoi diagram and Delaunay triangulation by Physarum polycephalum. Int J Bifurcation Chaos 19(09):3109–3117

    Article  Google Scholar 

  • Shvachko KV (1991) Different modifications of pointer machines and their computational power. In: Mathematical Foundations of Computer Science 1991. Springer, Berlin, pp 426–435

    Chapter  Google Scholar 

  • Stephenson SL, Stempen H, Hall I (1994) Myxomycetes: a handbook of slime molds. Timber Press Portland, Oregon

    Google Scholar 

  • Teplov VA, Romanovsky YM, Latushkin OA (1991) A continuum model of contraction waves and protoplasm streaming in strands of physarum plasmodium. Biosystems 24(4):269–289

    Article  Google Scholar 

  • Tero A, Kobayashi R, Nakagaki T (2006) Physarum solver: a biologically in-spired method of road-network navigation. Phys A: Stat Mech Appl 363(1):115–119

    Article  Google Scholar 

  • Tsompanas M-AI, Mayne R, Sirakoulis GC, Adamatzky AI (2015) A cellular automata bioinspired algorithm designing data trees in wireless sensor networks. Int J Distrib Sens Netw 501:471045

    Article  Google Scholar 

  • Tsuda S, Aono M, Gunji Y-P (2004) Robust and emergent physarum logical-computing. Biosystems 73(1):45–55

    Article  Google Scholar 

  • Ueda T, Muratsugu M, Kurihara K, Kobatake Y (1976) Chemotaxis in Physarum polycephalum: effects of chemicals on isometric tension of the plasmodial strand in relation to chemotactic movement. Exp Cell Res 100(2):337–344

    Article  Google Scholar 

  • Umedachi T, Idei R, Ito K, Ishiguro A (2013) A fluid-filled soft robot that exhibits spontaneous switching among versatile spatiotemporal oscillatory patterns inspired by the true slime mold. Artif Life 19(1):67–78

    Article  Google Scholar 

  • Whiting JGH, de Lacy Costello BPJ, Adamatzky A (2014) Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems 124:21–25

    Article  Google Scholar 

  • Wohlfarth-Bottermann KE (1979) Oscillatory contraction activity in physarum. J Exp Biol 81(1):15–32

    Google Scholar 

  • Grigoriev YD (1980) Kolmogoroff algorithms are stronger than turing machines. J Math Sci 14(5):1445–1450

    Article  Google Scholar 

  • Zhang X, Wang Q, Adamatzky A, Chan FT, Mahadevan S, Deng Y (2014) An improved physarum polycephalum algorithm for the shortest path problem. The Scientific World Journal, 2014

    Google Scholar 

  • Zhang, Xiaoge, Sankaran Mahadevan, and Yong Deng. Physarum-inspired applications in graph-optimization problems. Parallel Processing Letters 25.01 (2015): 1540005

    Google Scholar 

  • Zhu L, Aono M, Kim S-J, Hara M (2013) Amoeba-based computing for traveling salesman problem: long-term correlations between spatially separated individual cells of physarum polycephalum. Biosystems 112(1):1–10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Adamatzky, A. (2018). Slime Mold Computing. In: Adamatzky, A. (eds) Unconventional Computing. Encyclopedia of Complexity and Systems Science Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6883-1_686

Download citation

Publish with us

Policies and ethics