Fission Reactor Physics

  • Michael Natelson
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)



Fissile isotopes are fissionable by the capture of neutrons of any energy, but are especially easily fissioned by the capture of slow neutrons, for example, U233, U235, Pu239, and Pu241.


Fertile isotopes may be transmuted into fissile isotopes by neutron capture. The naturally occurring fertile isotopes are Th232 and U238.


A critical fission reactor is in a steady state, with its neutron population sustained by a chain reaction.


Reactivity is a dimensionless parameter, which characterizes how far from critical a fission reactor is. If zero, the reactor is critical; if positive, the reactor is supercritical and its neutron population is increasing; if negative, the reactor is subcritical.

Microscopic cross section

A microscopic cross section is a parameter, with dimensions of area, that is a measure of the probability of a particular reaction resulting from an incident particle on a target nucleus. The macroscopic cross sectionfor this...


Primary Literature

  1. 1.
    Wheeler JA (1967) Mechanism of fission. Phys Today 20(11):49–52Google Scholar
  2. 2.
    Bohr N, Wheeler JA (1939) The mechanism of nuclear fission. Phys Rev 56:426CrossRefGoogle Scholar
  3. 3.
    Ford KW (2009) Wheeler’s work on particles, nuclei, and weapons. Phys Today 62(4):29CrossRefGoogle Scholar
  4. 4.
    Fermi E, Szilard L (1955) Neutronic reactor. US Patent 2,708,656, 17 May 1955Google Scholar
  5. 5.
    Einstein A (1905) On the electrodynamics of moving bodies. Ann Phys 17:891–921CrossRefGoogle Scholar
  6. 6.
    Frankel S, Metropolis N (1947) Calculations in the liquid-drop model of fission. Phys Rev 72:914CrossRefGoogle Scholar
  7. 7.
    Kinsey R (1979) Compiler “ENDF/B Summary Doc.” BNL-NCS-17541(ENDF-201), 3rd edn. ENDF/B-V, Brookhaven National Laboratory, UptonGoogle Scholar
  8. 8.
    England TR, Wilson WB, Stamatelatos MG (1976) Fission product data for thermal reactors. EPRI-NP-356, Los Alamos Scientific Lab., New MexicoGoogle Scholar
  9. 9.
    Parks DE, Nelkin MS, Wikner NF, Beyster JR (1970) Slow neutron scattering and thermalization with reactor applications. Benjamin, New YorkGoogle Scholar
  10. 10.
    MacFarlane RE (1994) The NJOY nuclear data processing system, Version 91, report #LA-12740-M. Los Alamos National Laboratory, New MexicoGoogle Scholar
  11. 11.
    Breit G, Wigner E (1936) Capture of slow neutrons. Phys Rev 49:519CrossRefGoogle Scholar
  12. 12.
    Beckurts KH, Wirtz K (1964) Neutron physics. Springer, BerlinCrossRefGoogle Scholar
  13. 13.
    Larson NM (2006) Updated user’s guide for SAMMY: multilevel R-matrix fits to neutron data using Bayes’s equations, ORNL/TM-9179/R7. Oak Ridge National Lab, OakRidgeGoogle Scholar
  14. 14.
    Spanier J, Gelbard EM (1969, 2008) Monte carlo principles and neutron transport problems. Dover/Addison-Wesley, New York/ReadingGoogle Scholar
  15. 15.
    X-5 Monte Carlo Team (2003) MCNP – A general Monte Carlo N-Particle transport code, Version 5, LA-UR-03-1987. Los Alamos National Laboratory, New MexicoGoogle Scholar
  16. 16.
    Ondis LA II, Tyburski LJ, Moskowitz BS (2000) RCP01 – a Monte Carlo program for solving neutron and photon transport problems in three dimensional geometry with detailed energy description and depletion capability, B-TM-1638. Bettis Atomic Power Laboratory, West MifflinGoogle Scholar
  17. 17.
    TOP 500 Super Computing Sites.
  18. 18.
    Lathrop KA (1972) Discrete-ordinates methods for the numerical solution of the transport equation. Reactor Technol 15:107Google Scholar
  19. 19.
    Lathrop KA (1971) Remedies for ray effects. Nucl Sci Eng 45(3):355–368CrossRefGoogle Scholar
  20. 20.
    Varga RS (2000) Matrix iterative analysis, 2 revised and expandedth edn. Springer, HeidelbergCrossRefGoogle Scholar
  21. 21.
    Henry A, Dias A, Frances W, Parlos A, Tanker E, Tanker Z (1986) Continued development of nodal methods for nuclear reactor analysis, MIT EL 86–002. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  22. 22.
    Buslik AJ, Weinreich WA (1967) Variational calculation of complex natural modes of xenon oscillation, WAPD -TM-673 (LWB-LSBR Development Program). Bettis Atomic Power Laboratory, West MifflinGoogle Scholar
  23. 23.
    Idaho National Laboratory (2009) RELAP5-D.
  24. 24.
    Thie JA (1963) Reactor noise (an AEC monograph). Rowman and Littlefield, New YorkGoogle Scholar
  25. 25.
    Osborn RK, Yip S (1966) Foundations of neutron transport theory, Monograph series on nuclear technology. Gordon and Breach, New YorkGoogle Scholar
  26. 26.
    Natelson M, Osborn RK, Shure S (1966) Space and energy effects in reactor fluctuation experiments. J Nucl Energy Parts A/B 20(7):557–585CrossRefGoogle Scholar
  27. 27.
    Hurwitz H Jr, MacMillan DB, Smith JH, Storm ML (1963) Kinetics of low source reactor startups, part I and II. Nucl Sci Eng 15:166CrossRefGoogle Scholar
  28. 28.
    Clark WG, Harris DR, Natelson M, Walter JF (1968) Variances and covariances of neutron and precursor populations in time-varying reactors. Nucl Sci Eng 31:440–457CrossRefGoogle Scholar
  29. 29.
    Sutton TM et al, Knolls Atomic Power Lab., Griesheimer DP et al, Bettis Atomic Power Lab (2007) The MC21 Monte Carlo Code, LM-06K144, Proceedings (on CD-ROM) of the joint international topical meeting on M&C and supercomputing applications, MontereyGoogle Scholar
  30. 30.
    Palmiotti G et al, Argonne National Lab (2007) UNIC Ultimate Neutronic Investigation Code, Proceeding (on CD-ROM) of the joint international topical meeting on M&C and supercomputing applications, MontereyGoogle Scholar
  31. 31.
    Herman M et al (2008) Covariance evaluation methodology for neutron cross sections, BNL-81525-2008. Brookhaven National Lab, UptonGoogle Scholar
  32. 32.
    Belle J, Berman RM (eds) (1984) Chapter 2, Natelson M, Nuclear properties of the thorium fuel cycle. In: Thorium dioxide: properties and nuclear applications. Naval Reactors Office, U. S. Department of Energy, Govt. Printing Office, Washington, DCGoogle Scholar
  33. 33.
    Katcoff S (1958) Fission-Product yields from U, Th and Pu. Nucleonics 16(4):78Google Scholar

Books and Reviews

  1. Duderstadt JJ, Hamilton LJ (1976) Nuclear reactor analysis. Wiley, New YorkGoogle Scholar
  2. Evans RD (1955) The atomic nucleus. McGraw-Hill, New YorkzbMATHGoogle Scholar
  3. Henry AF (1975) Nuclear-reactor analysis. MIT Press, CambridgeGoogle Scholar
  4. Kaplan I (1962) Nuclear physics, 2nd edn. Addison-Wesley, ReadingzbMATHGoogle Scholar
  5. Krane KS (1988) Introductory nuclear physics. Wiley, New YorkGoogle Scholar
  6. Mermin ND (2005) It’s about time, understanding Einstein’s relativity. Princeton University Press, PrincetonzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bettis Atomic Power LaboratoryWest MifflinUSA

Personalised recommendations