Skip to main content

Biosynthetic Natural Gas (Bio-SNG)

  • Living reference work entry
  • First Online:
  • 310 Accesses

Glossary

Bio-Synthetic Natural Gas (Bio-SNG), Renewable Natural Gas (RNG), bio-methane, Renewable methane:

Gas mixture consisting mainly of methane (>90%, in most regions even >96%) of non-fossil or biomass origin

Fixed bed reactor:

Reactor type, in which catalyst particles or catalytically coated structures are contained such that they cannot move

Fluidised bed reactor:

Reactor type, in which catalyst particles are contained such that they are suspended and moved by an up-wards fluid flow (usually reacting gases)

Power-to-Gas:

Process, in which electric power is converted to a gaseous energy carrier, usually by water electrolysis to produce hydrogen which may be further converted to methane

Dual fluidised bed gasifier (DFB):

Reactor type consisting of two chambers, of which one is used to convert e.g. wood with steam to a producer gas consisting of H2, CO, H2O, CO2, CH4, C2Hx, tars and impurities; the heat for this endothermic reaction is transported by circulating bed material that...

This is a preview of subscription content, log in via an institution.

Bibliography

  1. Deutscher Verein des Gas- und Wasserfachs (DVGW) (2013) Arbeitsblatt G260 “Gasbeschaffenheit”, Bonn/Germany

    Google Scholar 

  2. Schweizerischer Verein des Gas- und Wasserfachs (SVGW) (2008) Arbeitsblatt G13d, “Richtlinien für die Einspeisung von Biogas”, Zürich/Switzerland

    Google Scholar 

  3. Heyne S, Seemann M, Schildhauer TJ (2016) Coal and biomass gasification for SNG production. In: Schildhauer TJ, Biollaz SMA (eds) Synthetic natural gas from coal, dry biomass, and power-to-gas applications. Wiley, New York, pp 5–40

    Google Scholar 

  4. Bajohr S, Schollenberger D, Buchholz D, Weinfurtner T, Götz M (2014) Kopplung der PtG-Technologie mit thermochemischer Biomassevergasung: Das KIC Projekt “DemoSNG”, gwf – Gas/Erdgas 155:470–475

    Google Scholar 

  5. Götz M, Lefebvre J, Mörs F, Koch AMD, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390

    Article  Google Scholar 

  6. Rönsch S, Schneider J, Matthischke S, Schlüter M, Götz M, Lefebvre J, Prabhakaran P, Bajohr S (2016) Review on methanation – from fundamentals to current projects. Fuel 166:276–296

    Article  Google Scholar 

  7. Bartholomew CH (1982) Carbon deposition in steam reforming and methanation. Catal Rev Sci Eng 24(1):67–117

    Article  CAS  Google Scholar 

  8. Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009. Fuel 89(8):1763–1783

    Article  CAS  Google Scholar 

  9. Schildhauer TJ (2016) Methanation for SNG production – chemical reaction engineering aspects. In: Schildhauer TJ, Biollaz SMA (eds) Synthetic natural gas from coal, dry biomass, and power-to-gas applications. Wiley & Sons, New York, pp 77–159

    Google Scholar 

  10. Schildhauer TJ, Biollaz SMA (2015) Reactors for catalytic Methanation in the conversion of biomass to synthetic natural gas (SNG). Chimia 69:603–607

    Article  CAS  Google Scholar 

  11. Moeller FW, Ros H, Britz B (1974) Methanation of coal gas for SNG. Hydrocarb Process 53:69–74

    CAS  Google Scholar 

  12. Li C (2014) Current development situation of Coal to SNG in China. Presentation at IEA-MOST Workshop: Advances in deployment of fossil fuel technologies, Beijing, 24–25 June 2014

    Google Scholar 

  13. Rabou LPLM, Bos L (2012) High efficiency production of substitute natural gas from biomass. Appl Catal B Environ 111–112:456–460

    Article  Google Scholar 

  14. Aranda Almansa G, Rabou LPLM, van der Meijden CM, van der Drift A. (2015) ECN System for MEthanation (ESME), Report ECN-L–15-044, 23rd European Biomass Conference and exhibition, Vienna

    Google Scholar 

  15. Held J (2016) The GoBiGas project. In: Schildhauer TJ, Biollaz SMA (eds) Synthetic natural gas from coal, dry biomass, and power-to-gas applications. Wiley & Sons, New York

    Google Scholar 

  16. Eckle S (2014) SNG technologies at Clariant. Presentation at the 2nd Nuremberg Workshop Methanation and Second Generation Fuels. Nuremberg/Germany

    Google Scholar 

  17. Nguyen TTM, Wissing L, Skjoth-Rasmussen MS (2013) High temperature methanation: catalyst considerations. Catal Today 215(0):233–238

    Article  CAS  Google Scholar 

  18. Hoehlein B, Menzer R, Range J (1981) High temperature methanation in the long-distance nuclear energy transport system. Appl Catal 1:125–139

    Article  CAS  Google Scholar 

  19. Rabou LPLM, Van der Drift A, Van Dijk HAJ, Van der Meijden CM, Vreugdenhil BJ (2016) MILENA – OLGA – SNG (ECN). In: Schildhauer TJ, Biollaz SMA (eds) Synthetic natural gas from coal, dry biomass, and power-to-gas applications. Wiley & Sons, New York

    Google Scholar 

  20. Thunman H, Alamia A, Berguerand N, Lind F, Seemann M (2013) Beyond 80% Efficiency for Standalone Production of Bio-Methane from Wet Biomass, Presentation IEA task 33 workshop

    Google Scholar 

  21. Specht M, Brellochs J, Frick V, Stürmer B, Zuberbühler U (2016) The power-to-gas (P2G®) process: storage of renewable energy in the natural gas grid via fixed bed Methanation of CO2/H2. In: Schildhauer TJ, Biollaz SMA (eds) Synthetic natural gas from coal, dry biomass, and power-to-gas applications. Wiley & Sons, New York

    Google Scholar 

  22. Kienberger T, Zuber C (2016) Agnion’s small scale SNG-concept. In: Schildhauer TJ, Biollaz SMA (eds) Synthetic natural gas from coal, dry biomass, and power-to-gas applications. Wiley & Sons, New York

    Google Scholar 

  23. Sudiro M, Bertucco A, Groppi G, Tronconi E (2010) Simulation of a structured catalytic reactor for exothermic methanation reactions producing synthetic natural gas. In: Pierucci S, Ferraris GB (eds) Computer aided chemical engineering. Elsevier, Amsterdam, pp 691–696

    Google Scholar 

  24. Fukuhara C, Hayakawa K, Suzuki Y, Kawasaki W, Watanabe R (2016) A novel nickel-based structured catalyst for CO2 methanation: a honeycomb-type Ni/CeO2 catalyst to transform greenhouse gas into useful resources. Appl Catal A Gen 532:12–18

    Article  Google Scholar 

  25. Donaubauer PJ, Hinrichsen O, Schlereth D (2015) Metallic honeycombs as catalyst supports for Methanation of carbon dioxide. Chem Eng Technol 38(10):1845–1852

    Article  Google Scholar 

  26. Schildhauer TJ, Newson E, Wokaun A (2009) Closed cross flow structures – improving the heat transfer in fixed bed reactors by enforcing radial convection. Chem Eng Process Process Intensif 48:321–328

    Article  CAS  Google Scholar 

  27. Engelbrecht N, Chiuta S, Everson RC, Neomagus HWJP, Bessarabo DG (2017) Experimentation and CFD modelling of a microchannel reactor for carbon dioxide methanation. Chem Eng J 313:847–857

    Google Scholar 

  28. Liu Z, Chu B, Zhai X, Jin Y, Cheng Y (2012) Total methanation of syngas to synthetic natural gas over Ni catalyst in a micro-channel reactor. Fuel 95:599–605

    Article  CAS  Google Scholar 

  29. Lefebvre J, Götz M, Bajohr S, Reimert R, Kolb T (2015) Improvement of three-phase methanation reactor performance for steady-state and transient operation. Fuel Process Technol 132:83–90

    Article  CAS  Google Scholar 

  30. Friedrichs G, Proplesch P, Wismann G, Lommerzheim W, (1985) Methanisierung von Kohlenvergasungsgasen im Wirbelbett Pilot Entwicklungsstufe, Technologische Forschung und Entwicklung – Nichtnukleare Energietechnik. Thyssengas GmbH prepared for Bundesministerium fuer Forschung und Technologie

    Google Scholar 

  31. Hedden K, Anderlohr A, Becker J, Zeeb HP, Cheng YH, (1986) Gleichzeitige Konvertierung und Methanisierung von CO-reichen Gasen. Universität Karlsruhe: DVGW-Forschungsstelle Engler-Bunte-Institut, Universität Karlsruhe prepared for Bundesministerium für Forschung und Technologie, Forschungsbericht T 86–044

    Google Scholar 

  32. Demonstration of the production and utilization of Synthetic Natural Gas (SNG) from solid biofuels (BIO-SNG), European Union project 19895 funded under FP6-SUSTDEV, http://cordis.europa.eu/project/rcn/85629_en.html

  33. Seemann MC, Schildhauer TJ, Biollaz SMA (2010) Fluidised bed methanation of wood-derived producer gas for the production of synthetic natural gas. Ind Eng Chem Res 49(15):7034–7038

    Article  CAS  Google Scholar 

  34. http://www.projetgaya.com/en/. Accessed on 02 Apr 2017

  35. Liu J, Cui D, Yao C, Jian Y, Fabing S, Guangwen X (2016) Syngas methanation in fluidized bed for an advanced two-stage process of SNG production. Fuel Process Technol 141:130–137

    Article  CAS  Google Scholar 

  36. Czekaj I, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A (2007) Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Appl Catal, A 329:68–78

    Article  CAS  Google Scholar 

  37. Nguyen TTM, (2014) Topsoe’s synthesis technology for SNG with focus on methanation in general and Bio-SNG in particular. Presentation at the 1st International Conference on Renewable Energy Gas Technology (REGATEC). May, Malmö/Sweden

    Google Scholar 

  38. Zarfl J (2015) Methanation of biomass-derived-synthesis gas – in situ DRIFTS studies over an alumina supported nickel catalyst. Dissertation ETH Zürich Nr. 22183

    Google Scholar 

  39. Kopyscinski J, Seemann MC, Moergeli R, Biollaz SMA, Schildhauer TJ (2013) Synthetic natural gas from wood: reactions of ethylene in fluidized bed methanation. Appl Catal A Gen 462–463(0):150–156

    Article  Google Scholar 

  40. Kopyscinski J, Schildhauer TJ, Vogel F, Biollaz SMA, Wokaun A (2010) Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation. J Catal 271(2):262–279

    Article  CAS  Google Scholar 

  41. Teske SL (2014) Integrating rate-based models into a multi-objective process design & optimisation framework using surrogate models. Dissertation EPF Lausanne Nr. 6302

    Google Scholar 

  42. Schildhauer TJ, Tschedanoff V (2016) Final Report NFP66 project Predicting the complex coupling of chemistry and hydrodynamics in fluidized bed methanation reactors for SNG-production from wood (Bio-SNG – fundamentals of methanation)

    Google Scholar 

  43. Tschedanoff V (2016) Predicting the complex coupling of chemistry and hydrodynamics in fluidized bed methanation reactors for SNG-production from wood. Dissertation ETH Zürich Nr, 23869

    Google Scholar 

  44. Rüdisüli M, Schildhauer TJ, Biollaz SMA, van Ommen JR (2012) Bubble characterization in a fluidized bed with vertical tubes. Ind Eng Chem Res 51:4748–4758

    Article  Google Scholar 

  45. Rüdisüli M, Schildhauer TJ, Biollaz SMA, van Ommen JR (2012) Comparison of bubble growth obtained from pressure fluctuation measurements to optical probing and literature correlations. Chem Eng Sci 74:266–275

    Article  Google Scholar 

  46. Rüdisüli M, Schildhauer TJ, Biollaz SMA, van Ommen JR (2012) Evaluation of a sectoral scaling approach for bubbling fluidized beds with vertical internals. Chem Eng J 197:435–439

    Article  Google Scholar 

  47. Maurer S, Schildhauer TJ, van Ommen JR, Biollaz SMA, Wokaun A (2014) Scale-up of fluidized beds with vertical internals: studying the sectoral approach by means of optical probes. Chem Eng J 252(0):131–140

    Article  CAS  Google Scholar 

  48. Maurer S, Wagner EC, Schildhauer TJ, van Ommen JR, Biollaz SMA, Mudde RF (2015) X-ray measurements on the influence of optical probes on gas solid fluidized bed. Int J Multiphase Flow 74:143–147

    Article  CAS  Google Scholar 

  49. Maurer S, Wagner EC, van Ommen JR, Schildhauer TJ, Teske SL, Biollaz SMA, Wokaun A, The RFM (2015) Influence of vertical internals on a bubbling fluidized bed characterized by X-ray tomography. Int J Multiphase Flow 75:237–249

    Article  CAS  Google Scholar 

  50. Maurer S, Wagner EC, Schildhauer TJ, van Ommen JR, Biollaz SMA, Mudde RF (2015) X-ray measurements of bubble hold-up in fluidized beds with and without vertical internals. Int J Multiphase Flow 74:118–124

    Article  CAS  Google Scholar 

  51. Schillinger F, Maurer S, Wagner EC, Ruud van Ommen J, Mudde RF, Tilman J (2017) Schildhauer; Influence of vertical heat exchanger tubes, their arrangement and the column diameter on the hydrodynamics in a gas–solid bubbling fluidized bed, International Journal of Multiphase Flow 97:46–59

    Google Scholar 

  52. Thunman H, Larsson A, Hedenskog M. (2015) Commissioning of the GoBiGas 20 MW biomethane plant, presentation at TC Biomass Chicago

    Google Scholar 

  53. CTU AG. (2014) Lignogaz – Methan aus Holz, Projektierung einer 2.67 MW für den Standort Mont-la-Ville (VD), Swiss Federal Office of Energy

    Google Scholar 

  54. Vögelin P, Georges G, Boulouchos K. (2016) Potentialanalyse eines Schwarms biogener Wärmekraftkoppelungsanlagen zur Kompensation fluktuierender erneuerbaren Stromquellen, Presentation EnInnovGraz

    Google Scholar 

  55. König CFJ, Nachtegaal M, Schildhauer TJ (2016) Integrated desulfurization and methanation concepts for SNG production. In: Schildhauer TJ, Biollaz SMA (eds) Synthetic natural gas from coal, dry biomass, and power-to-gas applications. Wiley & Sons, New York, pp 293–306

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman J. Schildhauer .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Cite this entry

Schildhauer, T.J. (2018). Biosynthetic Natural Gas (Bio-SNG). In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_996-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_996-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics