Skip to main content

Innovative Options for Energy Provision

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 77 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Anastas P, Warner J (1998) Green chemistry: theory and practice. Oxford University Press, Oxford

    Google Scholar 

  2. Perez E et al (2017) Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: a bibliographic analysis. Renewal 69:350–359

    Google Scholar 

  3. Gilbert, M Encyclopedia of sustainability science and technology. Robert A (ed), 2nd edn. Meyers Springer, New York

    Google Scholar 

  4. Beringer T, Lucht W, Schaphoff L (2011) bioenergy production potential of global biomass plantations under environmental and agricultural constraints. Glob Change Biol Bioenergy. doi:10.1111/j.1757-1707.2010.01088.x

  5. Beer L, Boyd E, Peters J, Posewitz M (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    Article  CAS  Google Scholar 

  6. Hellingwerf M, de Mattos Z (2009) Alternative routes to biofuels: light-driven biofuel formation from CO2 and water based on the ‘photanol’ approach. J Biotechnol 142:87–90

    Article  CAS  Google Scholar 

  7. Silva C, Bertucco A (2017) Bioethanol from microalgae and cyanobacteria: a review and technological outlook. Process Biochem 51:1833–1842

    Article  Google Scholar 

  8. Wilhelm C (2012) The biological perspective: new green chemistry concepts to improve the performance of microalgae. Technol Assess 21:46–53

    Google Scholar 

  9. Walter C, Posten C (2012) Microalgal biotechnology: Potential and Production. De Gruyter, Berlin

    Google Scholar 

  10. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  11. Meyer M, Weiss A (2014) Life cycle costs for the optimized production of hydrogen and biogas from microalgae. Energy 78:84e93

    Article  Google Scholar 

  12. Stephens E, Ross IL, King Z, Mussgnug JH, Kruse O, Posten C, Borowitzka MA, Hankamer B (2010) An economic and technical evaluation of microalgal biofuels. Nature Biotechnology 28:126–128

    Article  CAS  Google Scholar 

  13. Franz A, Lehr F, Posten C, Schaub G (2012) Modeling microalgae cultivation productivities in different geographic locations – estimation method for idealized photobioreactors. Biotechnol J 7:546–557

    Article  CAS  Google Scholar 

  14. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  15. Larkum A, Ross I, Kruse O, Hankamer B (2012) Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends Biotechnol 30:198–204

    Article  CAS  Google Scholar 

  16. http://data.worldbank.org/indicator/AG.YLD.CREL.KG

  17. Wilhelm C, Weinberg J, Kaltschmitt M (2014) Conversion steps in bioenergy production – analysis of the energy flow from photon to biofuel. Biofuel 5:385–404

    Article  CAS  Google Scholar 

  18. de Mooij T, Janssen M, Cerezo-Chinarro O, Mussgnug J, Kruse O, Ballottari M, Bassi R, Bujaldon S, Wollman F, Wijffels F (2015) Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. J Appl Phycol 27:1063

    Article  Google Scholar 

  19. Schramm A, Jakob T, Wilhelm W (2016) The impact of the optical properties and respiration of algal cells with truncated antennae on biomass production under simulated outdoor conditions. Curr Biotechnol 5:142–153

    Article  CAS  Google Scholar 

  20. https://de.statista.com/themen/802/erdoel-in-deutschland/

  21. https://de.statista.com/statistik/daten/studie/161842/umfrage/verbrauch-ausgewaehlter-duenger-in-der-landwirtschaft-in-deutschland/

  22. Guenther A, Jakob T, Goss R et al (2012) Methane production from glycolate excreting algae as a new concept in the production of biofuels. Bioresour Technol 121:454–457

    Article  CAS  Google Scholar 

Books and Reviews

  • Hohmann-Mariott M (2014) The structural basis of biological energy generation. Springer, Dordrecht

    Book  Google Scholar 

  • Hu Q, Olivares J, Sayre R (2014) Special issue “Progress and perspectives on microalgal mass culture”. Algal Res 4:1–122

    Article  Google Scholar 

  • Lu X (2014) Biofuels: from microbes to molecules. Caister Academic Press, Norfolk

    Google Scholar 

  • Posten C, Walter C (2012a) Microalgal Biotechnology: potential and production. De Gruyter, Berlin

    Book  Google Scholar 

  • Posten C, Walter C (2012b) Microalgal Biotechnology: integration and economy. De Gruyter, Berlin

    Book  Google Scholar 

  • Rögner M (2015) Biohydrogen. De Gruyter, Berlin

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wilhelm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Wilhelm, C. (2017). Innovative Options for Energy Provision. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_995-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_995-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics