Skip to main content

Biogas for Energy Provision from Organic Waste, Hi-tech Applications

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Anaerobic filter digester:

A digester that uses support media to promote biofilm formation.

Batch test:

A laboratory experiment to determine how much biogas/methane it is biologically possible to obtain from a substrate.

Biogas:

Biogas is a gas produced during anaerobic microbiological breakdown of organic substances. The main constituents are methane (CH4) and carbon dioxide (CO2).

Chemical oxygen demand (COD):

The amount of organic compounds in a substrate; this represents the theoretical amount of material that can be converted into biogas. COD also refers to a standardized test used for an indirect determination of this value.

CHP unit:

A combined heat and power (CHP) unit consists of a gas-burning engine driving a generator which produces electricity. The heat produced within the engine can be used for further applications.

Co-digestion:

Co-digestion is the anaerobic digestion of two or more substrates simultaneously.

Combined heat and power (CHP):

An energy conversion...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mata-Alvarez J (2002) Biomethanization of the organic fraction of municipal solid wastes. IWA Publishing, London

    Google Scholar 

  2. Sahlstrom L (2003) A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour Technol 87:161–166

    Article  CAS  Google Scholar 

  3. Smet E, Van Langenhove H, De Bo I (1999) The emission of volatile compounds during the aerobic and the combined anaerobic/aerobic composting of biowaste. Atmos Environ 33:1295–1303

    Article  CAS  Google Scholar 

  4. Tafdrup S (1995) Viable energy production and waste recycling from anaerobic digestion of manure and other biomass materials. Biomass Bioenergy 9:303–314

    Article  CAS  Google Scholar 

  5. Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380

    Article  CAS  Google Scholar 

  6. Shikha D, Johny J (2015) High rate biomethanation technology for solid waste management and rapid biogas production: an emphasis on reactor design parameters. Bioresour Technol 188:73–78

    Article  Google Scholar 

  7. Khanal SK (2008) Anaerobic biotechnology for bioenergy production: principles and applications. Wiley-Blackwell, Iowa

    Book  Google Scholar 

  8. Lusk P (1998) Methane recovery from animal manures. The current opportunities casebook. NREL/SR-580-25145

    Google Scholar 

  9. Stander GJ (1950) Effluents from fermentation industries. Part IV. A new method for increasing and maintaining efficiency in the anaerobic digestion of fermentation effluents. Public Health 14(9):263–273

    Google Scholar 

  10. Buswell AM, Hatfield WD (1936) Bulletin 32, Anaerobic fermentations. State of Illinois Department of Registration and Education, Urbana

    Google Scholar 

  11. Owen WF, Stuckey DC, Healy JB, Young LY, McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res 13:485–492

    Article  CAS  Google Scholar 

  12. Mahanty B, Zafar M, Jae Han M, Park HS (2014) Optimization of co-digestion of various industrial sludges for biogas production and sludge treatment: methane production potential experiments and modeling. Waste Manag 34:1018–1024

    Article  CAS  Google Scholar 

  13. Hidalgo D, Martin-Marroquin JM (2015) Biochemical methane potential of livestock and agri-food waste streams in the Castilla y León Region (Spain). Food Res Int 73:226–233

    Article  CAS  Google Scholar 

  14. Zheng W, Phoungthong K, Leu F, Shao L-M, He P-J (2013) Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Manag 33:2632–2640

    Article  CAS  Google Scholar 

  15. Fitamo T, Boldrin K, Boe K, Scheutz C (2016) Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors. Bioresour Technol 206:245–254

    Article  CAS  Google Scholar 

  16. Mahdy A, Mendez L, Ballesteros M, Gonzalez-Fernandez C (2015) Algaculture integration in conventional wastewater treatment plants: anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresour Technol 184:236–244

    Article  CAS  Google Scholar 

  17. Bougrier C, Delgenes JP, Carrere H (2006) Combination of thermal treatments and anaerobic digestion to reduce sewage sludge quantity and improve biogas yield. Process Saf Environ 84:280–284

    Article  CAS  Google Scholar 

  18. Girault R, Bridoux G, Nauleau F, Poullain C, Buffet J, Peu P, Sadowski AG, Beline F (2012) Anaerobic co-digestion of waste activated sludge and greasy sludge from flotation process: batch versus CSTR experiments to investigate optimal design. Bioresour Technol 105:1–8

    Article  CAS  Google Scholar 

  19. Pages Diaz J, Reyes IP, Lundin M, Horvath IS (2011) Co-digestion of different waste mixtures from agro-industrial activities: kinetic evaluation and synergetic effects. Bioresour Technol 23:10834–10840

    Article  Google Scholar 

  20. Hansen TL, Jansen JLC, Davidsson A, Christensen TH (2007) Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery. Waste Manag 27:398–405

    Article  CAS  Google Scholar 

  21. Zhang Y, Banks CJ, Heaven S (2012) Anaerobic digestion of two biodegradable municipal waste streams. J Environ Manage 104:166–174

    Article  CAS  Google Scholar 

  22. Owens JM, Chynoweth DP (1993) Biochemical methane potential of municipal solid-waste (MSW) components. Water Sci Technol 27:1–14

    Article  CAS  Google Scholar 

  23. Mata-Alvarez J, Dosta J, Mace S, Astals S (2011) Codigestion of solid wastes: a review of its uses and perspectives including modeling. Crit Rev Biotechnol 31:99–111

    Article  CAS  Google Scholar 

  24. Alatriste-Mondragon F, Samar P, Cox HHJ, Ahring BK, Iranpour R (2006) Anaerobic co-digestion of municipal, farm and industrial organic wastes: a survey of recent literature. Water Environ Res 78:607–636

    Article  CAS  Google Scholar 

  25. Hartmann H, Ahring BK (2005) Anaerobic digestion of the organic fraction of municipal solid waste: influence of co-digestion with manure. Water Res 39:1543–1552

    Article  CAS  Google Scholar 

  26. Hills DJ, Roberts DW (1982) Conversion of tomato, peach and honeydew solid-waste into methane gas. Trans ASAE 25:820–826

    Article  CAS  Google Scholar 

  27. Neumann P, Pesante S, Venegas M, Vidal G (2016) Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Environ Sci Biotechnol 15:173–211

    Article  CAS  Google Scholar 

  28. Zhen G, Lu X, Kato H, Zhao Y, You Y (2017) Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full scale application and future perspectives. Renew Sustain Energy Rev 69:559–577

    Article  CAS  Google Scholar 

  29. Chu CP, Lee DJ, Chang BV, You CS, Tay JH (2002) “Weak” ultrasonic pre-treatment on anaerobic digestion of flocculated activated biosolids. Water Res 36:2681–2688

    Article  CAS  Google Scholar 

  30. Lee I-S, Rittmann BE (2011) Effect of low solids retention time and focused pulsed pre-treatment on anaerobic digestion of waste activated sludge. Bioresour Technol 102:2542–2548

    Article  CAS  Google Scholar 

  31. Kim J, Park C, Kim T-H, Lee M, Kim S, Kim S-W, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95:271–275

    Article  CAS  Google Scholar 

  32. Yang Q, Luo K, Li X, Wang D, Zheng W, Zeng G, Liu J (2010) Enhanced efficiency of biological excess sludge hydrolysis under anaerobic digestion by additional enzymes. Bioresour Technol 101:2924–2930

    Article  CAS  Google Scholar 

  33. Rozzi A, Passino R (1985) State of the art anaerobic digesters in Europe. In: Pain BF, Hepherd RQ (eds) Anaerobic digestion of farm waste, NIRD technical bulletins. NIRD, Reading, pp 115–124

    Google Scholar 

  34. Elmitwalli TA, Oahn KLT, Zeeman G, Lettinga G (2002) Treatment of domestic sewage in a two-step anaerobic filter/anaerobic hybrid system at low temperature. Water Res 36:2225–2232

    Article  CAS  Google Scholar 

  35. Macarie H (2000) Overview of the application of anaerobic treatment to chemical and petrochemical wastewaters. Water Sci Technol 42:201–213

    CAS  Google Scholar 

  36. Lettinga G, Roersma R, Grin P (1983) Anaerobic treatment of raw domestic sewage at ambient temperatures using a granular bed UASB reactor. Biotechnol Bioeng 25:1701–1723

    Article  CAS  Google Scholar 

  37. Beteau JF, Otton V, Hihn JY, Delpech F, Cheruy A (2005) Modelling of anaerobic digestion in a fluidised bed with a view to control. Biochem Eng J 24:255–267

    Article  CAS  Google Scholar 

  38. Pol LWH, Dezeeuw WJ, Velzeboer CTM, Lettinga G (1983) Granulation in UASB-reactors. Water Sci Technol 15:291–304

    Google Scholar 

  39. Heertjes PM, Vandermeer RR (1978) Dynamics of liquid flow in an up-flow reactor used for anaerobic treatment of wastewater. Biotechnol Bioeng 20:1577–1594

    Article  Google Scholar 

  40. Lim SJ, Kim TH (2014) Applicability and trends of anaerobic granular sludge treatment processes. Biomass Bioenergy 60:189–202

    Article  CAS  Google Scholar 

  41. Yang Y, Tada C, Tsukahara K, Sawayama S (2004) Methanogenic community and performance of fixed- and fluidized-bed reactors with reticular polyurethane foam with different pore sizes. Mat Sci Eng C-Bio S 24:803–813

    Article  Google Scholar 

  42. Perez-Garcia M, Rornero-Garcia LI, Rodriguez-Cano R, Sales-Marquez D (2005) High rate anaerobic thermophilic technologies for distillery wastewater treatment. Water Sci Technol 51:191–198

    CAS  Google Scholar 

  43. Aye TT, Loh KC (2003) Biodegradation of high strength phenolic wastewater in a modified external loop inversed fluidised bed airlift bioreactor (EIFBAB). Can J Chem Eng 81:1246–1250

    Article  CAS  Google Scholar 

  44. Farhan MH, ChinHong PH, Keenan JD, Shieh WK (1997) Performance of anaerobic reactors during pseudo-steady-state operation. J Chem Technol Biotechnol 69:45–57

    Article  CAS  Google Scholar 

  45. De Baere L, Boelens J (1999) The treatment of grey and mixed solid waste by means of anaerobic digestion: future developments. In: Mata Alvarez J, Tilche A, Cecchi F (eds) 2nd international symposium on anaerobic digestion of solid waste, Barcelona, pp 302–305

    Google Scholar 

  46. Pohland FG, Ghosh S (1971) Developments in anaerobic treatment processes. In: Canale RP (ed) Biological waste treatment. Interscience, New York, pp 85–106

    Google Scholar 

  47. Ghosh S, Ombregt JP, Pipyn P (1985) Methane production from industrial wastes by two-phase anaerobic digestion. Water Res 19:1083–1088

    Article  CAS  Google Scholar 

  48. Liu GT, Peng XY, Long TR (2006) Advance in high-solid anaerobic digestion of organic fraction of municipal solid waste. J Cent South Univ Technol 13:151–157

    Article  CAS  Google Scholar 

  49. Ghosh S, Henry MP (1981) Stabilization and gasification of soft-drink manufacturing waste by conventional and two-phase anaerobic digestion. In: Proceedings of the 36th industrial waste conference, Purdue University

    Google Scholar 

  50. Nielsen HB, Mladenovska Z, Westermann P, Ahring BK (2004) Comparison of two-stage thermophilic (68 degrees C/55 degrees C) anaerobic digestion with one-stage thermophilic (55 degrees C) digestion of cattle manure. Biotechnol Bioeng 86:291–300

    Article  CAS  Google Scholar 

  51. Liu Y, Tay JH (2002) The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 36:1653–1665

    Article  CAS  Google Scholar 

  52. Burton CH, Turner C (2003) Manure management, treatment strategies for sustainable agriculture, 2nd edn. Silsoe Research Institute. Wrest Park, Silsoe, Bedford, UK

    Google Scholar 

  53. Gomez X, Cuetos MJ, Cara J, Moran A, Garcia AI (2006) Anaerobic co-digestion of primary sludge and the fruit and vegetable fraction of the municipal solid wastes – conditions for mixing and evaluation of the organic loading rate. Renew Energy 31:2017–2024

    Article  CAS  Google Scholar 

  54. Stroot PG, McMahon KD, Mackie RI, Raskin L (2001) Anaerobic co-digestion of municipal solid waste and biosolids under various mixing conditions – I. digester performance. Water Res 35:1804–1816

    Article  CAS  Google Scholar 

  55. Ong HK, Greenfield PF, Pullammanappallil PC (2002) Effect of mixing on biomethanation of cattle-manure slurry. Environ Technol 23:1081–1090

    Article  CAS  Google Scholar 

  56. Vavilin VA, Angelidaki I (2005) Anaerobic degradation of solid material: importance of initiation centers for methanogenesis, mixing intensity, and 2D distributed model. Biotechnol Bioeng 89:113–122. doi:10.1002/bit.20323

    Article  CAS  Google Scholar 

  57. de Bok FAM, Plugge CM, Stams AJM (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375

    Article  Google Scholar 

  58. McMahon KD, Stroot PG, Mackie RI, Raskin L (2001) Anaerobic co-digestion of municipal solid waste and biosolids under various mixing conditions – II: microbial population dynamics. Water Res 35:1817–1827

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik B. Møller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Møller, H.B., Ward, A.J. (2017). Biogas for Energy Provision from Organic Waste, Hi-tech Applications. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_994-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_994-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics