Skip to main content

Short Rotation Coppice: Status and Prospects

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Coppice:

Method of forest regeneration where the trees are cut periodically. In the periods between two cuttings the trees re-sprout from their stumps

Clone:

Organism (plant or animal) that has exactly the same genes like the unit it was produced from

Harvester:

A harvester is a machine that can be driven through an agricultural or forest stand to harvest the grown biomass (e.g., cut, chip, and collect the crops or trees)

Hybrid:

Organism (plant or animal) that is produced by crossing two organisms from different species or genus to improve the characteristics of the parent generation. A hybrid is internationally labeled by the multiplication cross (×) between the botanic names of the parental species or behind the hybrids’ botanic name

Oven dry tonne (odt):

Unit to specify the weight of wood or other biomass without any water (absolute dry). To determine this value, a sample of the biomass is dried for 1 day in an oven to remove the contained water and is weighed afterward

...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. Caslin B, Finnan J, Johnston C, McCracken A, Walsh L (2015) Short rotation coppice willow. Best practice guidelines. Agri-Food Biosciences Institute (AFBI), Belfast

    Google Scholar 

  2. Leuschner C, Schade E, Hölscher D, Koenies H (2007) Auswirkungen der Niederwaldwirtschaft im Siegerland (Nordrhein-Westfalen) auf die Nährstoffvorräte in Boden und Biomasse. In: LANUV (ed) Niederwälder in Nordrhein-Westfalen. Beiträge zur Ökologie, Geschichte und Erhaltung, Recklinghausen, pp 17–32

    Google Scholar 

  3. Conrady D, Herhaus F, Wasner U (2007) Niederwald und Naturschutz in NRW. In: LANUV (ed) Niederwälder in Nordrhein-Westfalen. Beiträge zur Ökologie, Geschichte und Erhaltung, Recklinghausen, pp 9–16

    Google Scholar 

  4. Conrady D, Fasel P (2007) Hat die Erhaltung großflächiger Niederwälder eine Zukunft? Ein Beitrag aus naturschutzfachlicher Sicht. In: LANUV (ed) Niederwälder in Nordrhein-Westfalen. Beiträge zur Ökologie, Geschichte und Erhaltung, Recklinghausen, pp 379–398

    Google Scholar 

  5. Dimitriou I, Rutz D (2015) Sustainable short rotation coppice. A handbook, SRC+ Project. WIP Renewable Energies, Germany, Munich

    Google Scholar 

  6. Röhle H, Horn H, Müller M Skibbe K (2015) Site-based yield estimation and biomass calculation in short rotation coppice plantations. In: Manning DB, Bemmann A, Bredemeier M, Lamersdorf N, Ammer C (eds) Bioenergy from dendromass for the sustainable development of rural areas. Findings of the German research projects AgroForNet and BEST. Wiley-VCH Verlag GmbH, Weinheim, pp 173–186

    Google Scholar 

  7. Ugalde JM, Rutz D, Epp C, Lepus A, Bernard J, Eleftheriadis I, Žandeckis A, Fištre Ž, Kulišić B, Perutka T, Lazdina D, Toskovski N, Toskovska G, Dimitriou J (2017) SRC+ project final report. Short rotation coppice (SRC) for local bioenergy supply chains. WIP Renewable Energies, Munich

    Google Scholar 

  8. Rösch C, Jörissen J, Knapp M, Priefer C, Eiselein S, Schultmann F, Haase M, Vogt J, Witte SM, Hitzeroth M. (Short rotation coppice enabling environmentally sound production of wood for energy purposes. Research Project 2010–2011. Karlsruhe Institute of Technology; Institute for Industrial Production; Institute for Regional Sciences & Institute for Town and Regional Planning, Karlsruhe

    Google Scholar 

  9. Bemmann A, Knust C (eds) (2010) Agrowood. Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin

    Google Scholar 

  10. Butler Manning D, Bemmann A, Bredemeier M, Lamersdorf N, Ammer C (2015) Bioenergy from dendromass for the sustainable development of rural areas. Findings of the German research projects AgroForNet and BEST. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  11. Murach D, Knur L, Schultze M (2008) DENDROM – Zukunftsrohstoff Dendromasse. Endbericht, Verlag Dr. Norbert Kessel, Remagen

    Google Scholar 

  12. Marron N, Beimgraben T, Bes De Berc L, Brodbeck F, Eltrop L, Focke J, Haid S, Härdtlein M, Nahm M, Pelz S, Sauter UH, Van Den Kerchove L, Weinreich A (2012) Cost reduction and efficiency improvement of Short rotation coppice. on small field sizes and under unfavourable site conditions by focusing on high product quality and a product-oriented cooperative value chain. CREFF Final Report, Project ERA-Net Bioenergy CREFF. INRA, Nancy; Hochschule für Forstwirtschaft, Rottenburg; Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg; Institut für Energiewirtschaft und Rationelle Energieanwendung (IER), Stuttgart; UNIQUE Forestry Consultants, Nancy

    Google Scholar 

  13. Ceulemans R (2014) POFULL- system analysis of a bio-energy plantation: full greenhouse gas balance and energy accounting. Project funded by the European Research Council 2009–2014. University of Antwerpen; Groep Mouton; INBO (Research institute for Nature and Forest)

    Google Scholar 

  14. TUDD (2017) Dendromass4Europe – securing sustainable dendromass production with poplar plantations in european rural areas. Horizon 2020 project 2017–2022. Technische Universität Dresden, Institute of Forest Policy and Forest Economics

    Google Scholar 

  15. Simpson JM (1995) Silviculture, physiology and economics of sustainable short rotation coppiced tree crops on ex-agricultural land in Europe. Research Project 1995–1997. Forestry Commission, UK; AEA Technology, UK.; AFOCEL, France; Agricultural Research Institute of Northern Ireland; INRA, Nancy; NERC Institute of Terrestial Ecology, UK.; Swedish University of Agricultural Sciences, Uppsala; Scottish Agricultural College (SAC); TEAGASC, Ireland; Universidade Tecnica de Lisboa, Portugal

    Google Scholar 

  16. Lindegaard KN, Adams PWR, Holley M, Lamley A, Henriksson A, Larsson S, von Engelbrechten H-G, Esteban Lopez G, Pisarek M (2016) Short rotation plantations policy history in Europe. Lessons from the past and recommendations for the future. Food Energy Secur 5(3):125–152

    Article  Google Scholar 

  17. EEC (1988) Commission regulation (EEC) laying down detailed rules for applying the set-aside scheme for arable land. Off J Eur Communities No L 121/36

    Google Scholar 

  18. FAO (2016) Poplars and other fast-growing trees -renewable resources for future green economies. Synthesis of Country Progress Reports. Activities related to poplar and willow cultivation and utilization – 2012 through 2016. FAO- Forest Policy and Resource Division, Forestry Department International Poplar Commission 25th Session, Berlin, 13–16 Sept 2016, Rome

    Google Scholar 

  19. Hauk S, Knoke T, Wittkopf S (2014) Economic evaluation of short rotation coppice systems for energy from biomass – a review. Renew Sust Energ Rev 29:435–448

    Article  Google Scholar 

  20. Wolf H, Schildbach M, Hartmann K-U (2010) Plantagenbaumarten und deren Züchtung. In: Bemmann A, Knust C (eds) Agrowood. Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 30–53

    Google Scholar 

  21. Searle SY, Malins CJ (2014) Will energy crop yields meet expectations? Biomass Bioenergy 65:3–12

    Article  Google Scholar 

  22. Hughes F, Richards K, Girel J, Moss T, Muller E, Nilsson C, Rood S (2003) The flooded forest: guidance for policy makers and river managers in Europe on the restoration of floodplain forests. FLOBAR2. Department of Geography, University of Cambridge, Cambridge, UK

    Google Scholar 

  23. Dickmann DI, Kuzovkina J (2014) Poplars and willows of the world, with emphasis on silviculturally important species. In: Isebrands JG, Richardson J (eds) Poplars and willows: trees for society and the environment. FAO – Food and Agriculture Organization of the United Nations, Rome, pp 8–91

    Chapter  Google Scholar 

  24. Rae AM, Street NR, Rodríguez-Acosta M (2007) Populus trees. In: Kole C (ed) Forest trees. Springer, Berlin, pp 1–28

    Google Scholar 

  25. Schmidt U (2016) Poplar branch, www.uli-schmidt-paintings.com, Stuttgart

  26. Larocque GR, DesRochers A, Larchevêque M, Tremblay F, Beaulieu J, Mosseler A, Major JE, Gaussiran S, Thomas BR, Sidders D, Périnet P, Kort J, Labrecque M, Savoie P, Masse S, Bouman OT, Kamelchuk D, Benomar L, Mamashita T, Gagné P (2013) Research on hybrid poplars and willow species for fast-growing tree plantations. Its importance for growth and yield, silviculture, policy-making and commercial applications. For Chron 89(01):32–41

    Article  Google Scholar 

  27. Peschel T, Weitz M (2013) Short rotation coppice plantations. Concepts for establishment and operation methods for short rotation coppice (SRC) projects for EU bioenergy plants (including practical activities on demonstration fields). Deliverable 1.5 Project OPTFUEL, Optimized Fuels for Sustainable Transport. LIGNOVIS GmbH, Hamburg

    Google Scholar 

  28. Sperr R (2014) Anbautrends extensive Energiepflanzen 2014: Pappel, Weide oder Robinie im Energiewald? (Teil 1). Energiepflanzen.com. Available from: http://www.energiepflanzen.com/allgemein/anbautrends-2014-pappel-…1. 01 2014. Viewed 9 June 2017

  29. Dimitriou I, Aronsson P (2005) Willows for energy and phytoremediation in Sweden. Unasylva 56(221):47–50

    Google Scholar 

  30. NW-FVA (2012) Züchtung und Ertragsleistung schnellwachsender Baumarten im Kurzumtrieb: Erkenntnisse aus drei Jahren FastWOOD, ProLoc und Weidenzüchtung. Fachtagung vom 21. bis 22.09.2011 in Hann. Münden Beiträge aus der Nordwestdeutschen Versuchsanstalt, Band 8. Universitätsverlag Göttingen, Göttingen

    Google Scholar 

  31. Fehrenz S, Weber D (2012) Ökologisches Potenzial und Analyse von Leistungsparametern europäischer Weidenarten für den Kurzumtrieb. In: NW-FVA (ed) Züchtung und Ertragsleistung schnellwachsender Baumarten im Kurzumtrieb: Erkenntnisse aus drei Jahren FastWOOD, ProLoc und Weidenzüchtung. Fachtagung vom 21. bis 22.09.2011 in Hann. Münden. Universitätsverlag Göttingen, Göttingen, pp 315–340

    Google Scholar 

  32. Schmidt U (2016) Willow, www.uli-schmidt-paintings.com, Stuttgart

  33. Burger F, Sommer W, Ohrner G (2011) Anbau von Energiewäldern. Bayrische Landesanstalt für Wald und Forstwirtschaft (LWF) LWF Merkblatt 19, Freising

    Google Scholar 

  34. Abrahamson LP, Volk TA, Kopp RF, White EH, Ballard JL (2002) Willow biomass producer’s handbook. State University of New York, Syracuse

    Google Scholar 

  35. Schildbach M, Hofmann M, Wolf H (2010) Anlage und Etablierung von Kurzumtriebsplantagen. In: Bemmann A, Knust C (eds) Agrowood. Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 65–73

    Google Scholar 

  36. Eppler U, Petersen J-E (2007) Short rotation forestry, short rotation coppice and energy grasses in the European Union: Agro-environmental aspects, present use and perspectives. Fachhochschule Eberswalde Background Paper, Eberswalde

    Google Scholar 

  37. Wickham J, Rice B, Finnan J, McConnon R (2010) A review of past and current research on short rotation coppice in Ireland and abroad. COFORD, Dublin

    Google Scholar 

  38. Stoll B, Dohrenbusch A (2010) Waldbau. In: Busch G, Lamersdorf N (eds) Kurzumtriebsplantagen. Handlungsempfehlungen zur naturverträglichen Produktion von Energieholz in der Landwirtschaft. Deutsche Bundesstiftung Umwelt (DBU), Osnabrück, pp 6–13

    Google Scholar 

  39. Petzold R, Feger KH, Röhle H (2010) Standörtliche Voraussetzungen für Kurzumtriebsplantagen. In: Bemmann A, Knust C (eds) Agrowood. Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 44–53

    Google Scholar 

  40. Paris P, Mareschi L, Sabatti M, Tosi L, Scarascia-Mugnozza G (2015) Nitrogen removal and its determinants in hybrid Populus clones for bioenergy plantations after two biennial rotations in two temperate sites in northern Italy. iForest – Biogeosci For 8(5):668–676

    Article  Google Scholar 

  41. CRL (2008) Guide to short rotation coppice. Coppice Resources LTD, Retford

    Google Scholar 

  42. Toillon J, Dallé E, Bodineau G, Berthelot A, Bastien J-C, Brignolas F, Marron N (2016) Plasticity of yield and nitrogen removal in 56 Populus deltoides × P. nigra genotypes over two rotations of short-rotation coppice. For Ecol Manag 375:55–65

    Article  Google Scholar 

  43. Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenergy 20(6):399–411

    Article  Google Scholar 

  44. Fijałkowska D, Styszko L (2017) Regrowth of willow shoots in the second 4-year rotation at various fertilization with nitrogen. E3S Web Conf, 17, 22

    Google Scholar 

  45. Cavanagh A, Gasser MO, Labrecque M (2011) Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 35(10):4165–4173

    Article  CAS  Google Scholar 

  46. Verlinden MS, Broeckx LS, Ceulemans R (2015) First vs. second rotation of a poplar short rotation coppice. Above-ground biomass productivity and shoot dynamics. Biomass Bioenergy 73:174–185

    Article  Google Scholar 

  47. Stolarski MJ, Krzyżaniak M, Szczukowski S, Tworkowski J, Załuski D, Bieniek A, Gołaszewski J (2015) Effect of increased soil fertility on the yield and energy value of short-rotation woody crops. Bioenergy Res 8(3):1136–1147

    Article  CAS  Google Scholar 

  48. Georgiadis P, Taeroe A, Stupak I, Kepfer-Rojas S, Zhang W, Pinheiro Bastos R, Raulund-Rasmussen K (2017) Fertilization effects on biomass production, nutrient leaching and budgets in four stand development stages of short rotation forest poplar. For Ecol Manag 397:18–26

    Article  Google Scholar 

  49. DesRochers A, Van den Driessche R, Thomas BR (2006) NPK fertilization at planting of three hybrid poplar clones in the boreal region of Alberta. For Ecol Manag 232(1):216–225

    Article  Google Scholar 

  50. Van den Driessche R, Thomas BR, Kamelchuk DP (2008) Effects of N, NP, and NPKS fertilizers applied to four-year old hybrid poplar plantations. New For 35(3):221–233

    Article  Google Scholar 

  51. Finnan J, Burke B, Carroll J (2014) A short communication on the effect of nitrogen fertilization of willow on yield, combustion emissions and greenhouse gas balance. Nutr Cycl Agroecosyst 98(1):107–112

    Article  CAS  Google Scholar 

  52. Sevel L, Nord-Larsen T, Ingerslev M, Jørgensen U, Raulund-Rasmussen K (2014) Fertilization of SRC Willow, I. Biomass production response. Bioenergy Res 7(1):319–328

    Article  CAS  Google Scholar 

  53. Hofmann-Schielle C, Jug A, Makeschin F, Rehfuess K (1999) Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. I. Site–growth relationships. For Ecol Manag 121(1):41–55

    Article  Google Scholar 

  54. Adegbidi HG, Briggs RD, Volk TA, White EH, Abrahamson LP (2003) Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass Bioenergy 25(4):389–398

    Article  Google Scholar 

  55. Labrecque M, Teodorescu TI (2001) Influence of plantation site and wastewater sludge fertilization on the performance and foliar nutrient status of two willow species grown under SRIC in southern Quebec (Canada). For Ecol Manag 150(3):223–239

    Article  Google Scholar 

  56. Labrecque M, Teodorescu TI (2003) High biomass yield achieved by Salix clones in SRIC following two 3-year coppice rotations on abandoned farmland in southern Quebec, Canada. Biomass Bioenergy 25(2):135–146

    Article  Google Scholar 

  57. Larsen SU, Jørgensen U, Kjeldsen JB, Lærke PE (2016) Effect of fertilisation on biomass yield, ash and element uptake in SRC willow. Biomass Bioenergy 86:120–128

    Article  CAS  Google Scholar 

  58. Aronsson P, Rosenqvist H, Dimitriou I (2014) Impact of nitrogen fertilization to short-rotation willow coppice plantations grown in Sweden on yield and economy. Bioenergy Res 7(3):993–1001

    Article  CAS  Google Scholar 

  59. Quaye AK, Volk TA, Hafner S, Leopold DJ, Schirmer C (2011) Impacts of paper sludge and manure on soil and biomass production of willow. Biomass Bioenergy 35(7):2796–2806

    Article  Google Scholar 

  60. Mortensen J, Hauge Nielsen K, Jørgensen U (1998) Nitrate leaching during establishment of willow (Salix viminalis) on two soil types and at two fertilization levels. Biomass Bioenergy 15(6):457–466

    Article  CAS  Google Scholar 

  61. Balasus A, Bischoff W-A, Schwarz A, Scholz V, Kern J (2012) Nitrogen fluxes during the initial stage of willows and poplars in short-rotation coppices. J Plant Nutr Soil Sci 175(5):729–738

    Article  CAS  Google Scholar 

  62. Hytönen J, Saarsalmi A (2009) Long-term biomass production and nutrient uptake of birch, alder and willow plantations on cut-away peatland. Biomass Bioenergy 33(9):1197–1211

    Article  Google Scholar 

  63. Quaye AK, Volk TA (2013) Biomass production and soil nutrients in organic and inorganic fertilized willow biomass production systems. Biomass Bioenergy 57:113–125

    Article  CAS  Google Scholar 

  64. Dawson M (2007) Short rotation coppice willow. Best practice guidelines. Renew project. Omagh College, Omagh

    Google Scholar 

  65. Hunter T, Royle DJ, Arnold GM (1996) Variation in the occurrence of rust (Melampsora spp.) and other diseases and pests, in short-rotation coppice plantations of Salix in the British Isles. Ann Appl Biol 129(1):1–12

    Article  Google Scholar 

  66. Helbig C, Müller M (2010) Naturale Risiken und Grundzüge des Schadensmanagements in Kurzumtriebsplantagen. In: Bemmann A, Knust C (eds) Agrowood. Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 74–87

    Google Scholar 

  67. DEFRA (2004) Growing short rotation coppice. Best practice guidelines for applicants to Defra’s energy crops scheme. Department for Environment Food and Rural Affairs, London

    Google Scholar 

  68. Cornell University (2010) Leaf rust. Department of Plant Pathology and Plant-Microbe Biology, Ithaca

    Google Scholar 

  69. Praciak A (2013) The CABI encyclopedia of forest trees. Cabi, Wallingford

    Google Scholar 

  70. Ostry M, Ramstedt M, Newcombe G, Steenacker M (2014) Diseases of poplar and willows. In: Isebrands JG, Richardson J (eds) Poplars and willows: trees for society and the environment. FAO – Food and Agriculture Organization of the United Nations, Rome, pp 443–458

    Chapter  Google Scholar 

  71. EPPO (2002) EPPO global database. Data sheets on quarantine pests. European and Mediterranean Plant Protection Organization. Available from: http://www.eppo.int

  72. CABI (2017) Invasive species compendium. datasheets, maps, images, abstracts and full text on invasive species of the world. CABI. Available from: http://www.cabi.org/isc/datasheet/21936. Viewed 5 Jul 2017

  73. Ramstedt M, ÅRström B, von Fircks HA (1994) Dieback of poplar and willow caused by Pseudomonas syringae in combination with freezing stress. Eur J For Pathol 24(6–7):305–315

    Article  Google Scholar 

  74. Borkar SG, Yumlembam RA (2016) Bacterial diseases of crop plants. CRC Press, Milton

    Book  Google Scholar 

  75. Charles JG, Nef L, Allegro G, Collins CM, Delplanque A, Gimenez R, Höglund S, Jiafu H, Larsson S, Luo Y, Parra P, Singh AP, Volney WJ, Augustin S (2014) Insect and other pests of poplar and willows. In: Isebrands JG, Richardson J (eds) Poplars and willows: trees for society and the environment. FAO – Food and Agriculture Organization of the United Nations, Rome, pp 459–526

    Chapter  Google Scholar 

  76. Laurent A, Pelzer E, Loyce C, Makowski D (2015) Ranking yields of energy crops: a meta-analysis using direct and indirect comparisons. Renew Sust Energ Rev 46:41–50

    Article  Google Scholar 

  77. Becker R, Scholz V, Wegener J (2010) Maschinen und Verfahren für die Ernte von Kurzumtriebsplpantagen. In: Bemmann A, Knust C (eds) Agrowood. Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 88–102

    Google Scholar 

  78. Vanbeveren S, Schweier J, Berhongaray G, Ceulemans R (2015) Operational short rotation woody crop plantations. Manual or mechanised harvesting? Biomass Bioenergy 72:8–18

    Article  Google Scholar 

  79. Santangelo E, Scarfone A, Giudice AD, Acampora A, Alfano V, Suardi A, Pari L (2015) Harvesting systems for poplar short rotation coppice. Ind Crop Prod 75:85–92

    Article  Google Scholar 

  80. Bemmann A, Pretzsch J, Schulte A (2008) Baumplantagen weltweit – eine Übersicht. Schweiz Z Forstwes 159(6):124–132

    Article  Google Scholar 

  81. Lenz H, Idler C, Hartung E, Pecenka R (2015) Open-air storage of fine and coarse wood chips of poplar from short rotation coppice in covered piles. Biomass Bioenergy 83:269–277

    Article  Google Scholar 

  82. Krzyżaniak M, Stolarski MJ, Niksa D, Tworkowski J, Szczukowski S (2016) Effect of storage methods on willow chips quality. Biomass Bioenergy 92:61–69

    Article  Google Scholar 

  83. Brummack J (2010) Aufbereitung von Hackschnitzeln für eine energetische Nutzung. In: Bemmann A, Knust C (eds) Agrowood. Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 117–129

    Google Scholar 

  84. Searcy E, Flynn P, Ghafoori E, Kumar A (2007) The relative cost of biomass energy transport. Appl Biochem Biotechnol 137(1):639–652

    Google Scholar 

  85. Röhle H, Böcker L, Feger K-H, Petzold R, Wolf H, Ali W (2008) Anlage und Ertragsausichten von Kurzumtriebsplantagen in Ostdeutschland. Schweiz Z Forstwes 159(6):133–139

    Article  Google Scholar 

  86. Njakou Djomo S, Ac A, Zenone T, de Groote T, Bergante S, Facciotto G, Sixto H, Ciria Ciria P, Weger J, Ceulemans R (2015) Energy performances of intensive and extensive short rotation cropping systems for woody biomass production in the EU. Renew Sust Energ Rev 41:845–854

    Article  Google Scholar 

  87. Röhle H, Ali W, Hartmann K-U, Steinke C (2010) Wachstum und Biomasseproduktion schnellwachsender Baumarten im Kurzumtrieb. In: Bemmann A, Knust C (eds) Agrowood. Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 103–116

    Google Scholar 

  88. Mola-Yudego B, Arevalo J, Díaz-Yáñez O, Dimitriou I, Freshwater E, Haapala A, Khanam T, Selkimäki M (2016) Reviewing wood biomass potentials for energy in Europe. The role of forests and fast growing plantations. Biofuels 8(4):401–410

    Article  Google Scholar 

  89. Stanturf JA, Van Oosten C (2014) Operational poplar and willow culture. In: Isebrands JG, Richardson J (eds) Poplars and willows: trees for society and the environment. FAO – Food and Agriculture Organization of the United Nations, Rome, pp 200–257

    Chapter  Google Scholar 

  90. Schmidt PA, Gerold D (2008) Kurzumtriebsplantagen – Ergänzung oder Widerspruch zur nachhaltigen Waldwirtschaft. Schweiz Z Forstwes 159(6):152–157

    Article  Google Scholar 

  91. Weih M (2014) Environmental applications of poplars and willows – biodiversity, environment and landscape. In: Isebrands JG, Richardson J (eds) Poplars and willows: trees for society and the environment. FAO – Food and Agriculture Organization of the United Nations, Rome, p 318

    Google Scholar 

  92. Schulz U, Brauner O, Gruß H (2009) Animal diversity on short-rotation coppices – a review. Landbauforschung-vTI Agric For Res 59(3):171–182

    Google Scholar 

  93. Berg A (2002) Composition and diversity of bird communities in Swedish farmland – forest mosaic landscapes. Bird Study 49(2):153–165

    Article  Google Scholar 

  94. Rowe RL, Goulson D, Doncaster CP, Clarke DJ, Taylor G, Hanley ME (2013) Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations. GCB Bioenergy 5(3):257–266

    Article  Google Scholar 

  95. Dauber J, Jones MB, Stout JC (2010) The impact of biomass crop cultivation on temperate biodiversity. GCB Bioenergy 2(6):289–309

    Article  Google Scholar 

  96. Christian DP, Collins PT, Hanowski JM, Niemi GJ (1997) Bird and small mammal use of short-rotation hybrid poplar plantations. J Wildl Manag 61(1):171–182

    Article  Google Scholar 

  97. Baum S, Weih M, Busch G, Kroiher F, Bolte A (2009) The impact of short rotation coppice plantations on phytodiversity. Landbauforschung-vTI Agric For Res 59(3):163–170

    Google Scholar 

  98. Knust C (2007) Beeinflussung des Nährstoff- und Wasserhaushalts durch die Anpflanzung von Pappelklonen auf einem ehemals landwirtschaftlich genutzten Standort. Masterarbeit. Göttingen, Georg-August Universität, Göttingen

    Google Scholar 

  99. Busch G (2009) The impact of short rotation coppice cultivation on groundwater recharge – a spatial (planning) perspective. Landbauforschung-vTI Agric For Res 59(3):207–222

    Google Scholar 

  100. Petzold R, Feger KH, Schwärzel K (2009) Wasserhaushalt von Kurzumtriebsplantagen. In: Reeg T, Bemmann A, Konold W, Murach D, Spieker H (eds) Anbau und Nutzung von Bäumen auf landwirtschaftlichen Flächen. Wiley-VCH Verlag, Weinheim, pp 181–191

    Chapter  Google Scholar 

  101. Lamersdorf N, Petzold R, Schwärzel K, Feger KH, Köstner B, Moderow U, Bernhofer C, Knust C (2010) Bodenökologische Aspekte von Kurzumtriebsplantagen. In: Bemmann A, Knust C (eds) Agrowood. Kurzumtriebsplantagen in Deutschland und europäische Perspektiven. Weißensee Verlag, Berlin, pp 170–188

    Google Scholar 

  102. Hall RL (2003) Short rotation coppice for energy production hydrological guidelines. DTI Department of Trade and Industry DTI New and renewable Energy Programme

    Google Scholar 

  103. Bungart R, Hüttl RF (2004) Growth dynamics and biomass accumulation of 8-year-old hybrid poplar clones in a short-rotation plantation on a clayey-sandy mining substrate with respect to plant nutrition and water budget. Eur J For Res 123(2):105–115

    CAS  Google Scholar 

  104. Dimitriou I, Busch G, Jacobs S, Schmidt-Walter P, Lamersdorf N (2009) A review of the impacts of short rotation coppice cultivation on water issues. Landbauforschung-vTI Agric For Res 59(3):197–206

    Google Scholar 

  105. Don A, Osborne B, Hastings A, Skiba U, Carter MS, Drewer J, Flessa H, Freibauer A, Hyvönen N, Jones MB, Lanigan GJ, Mander Ü, Monti A, Djomo SN, Valentine J, Walter K, Zegada-Lizarazu W, Zenone T (2012) Land-use change to bioenergy production in Europe. Implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4(4):372–391

    Article  CAS  Google Scholar 

  106. Aronsson PG, Bergström LF, Elowson SNE (2000) Long-term influence of intensively cultured short-rotation willow coppice on nitrogen concentrations in groundwater. J Environ Manag 58(2):135–145

    Article  Google Scholar 

  107. FAO (2017) Soil organic carbon: the hidden potential. FAO – Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  108. Harris ZM, Spake R, Taylor G (2015) Land use change to bioenergy. A meta-analysis of soil carbon and GHG emissions. Biomass Bioenergy 82:27–39

    Article  CAS  Google Scholar 

  109. Grigal DF, Berguson WE (1998) Soil carbon changes associated with short-rotation systems. Biomass Bioenergy 14(4):371–377

    Article  CAS  Google Scholar 

  110. Hellebrand HJ, Strähle M, Scholz V, Kern J (2010) Soil carbon, soil nitrate, and soil emissions of nitrous oxide during cultivation of energy crops. Nutr Cycl Agroecosyst 87(2):175–186

    Article  Google Scholar 

  111. Sabbatini S, Arriga N, Bertolini T, Castaldi S, Chiti T, Consalvo C, Njakou Djomo S, Gioli B, Matteucci G, Papale D (2016) Greenhouse gas balance of cropland conversion to bioenergy poplar short-rotation coppice. Biogeosciences 13(1):95–113

    Article  CAS  Google Scholar 

  112. Deckmyn G, Muys B, Garcia Quijano J, Ceulemans R (2004) Carbon sequestration following afforestation of agricultural soils. Comparing oak/beech forest to short rotation poplar coppice combining a process and a carbon accounting model. Glob Chang Biol 10(9):1482–1491

    Article  Google Scholar 

  113. Guo LB, Gifford RM (2002) Soil carbon stocks and land use change. A meta analysis. Glob Chang Biol 8(4):345–360

    Article  Google Scholar 

  114. Lemus R, Lal R (2005) Bioenergy crops and carbon sequestration. Crit Rev Plant Sci 24:1–21

    Article  CAS  Google Scholar 

  115. Sartori F, Lal R, Ebinger MH, Eaton JA (2007) Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agric Ecosyst Environ 122(3):325–339

    Article  CAS  Google Scholar 

  116. Coleman M, Isebrands J, Tolsted D, Tolbert V (2004) Comparing soil carbon of short rotation poplar plantations with agricultural crops and woodlots in North Central United States. Environ Manag 33(Suppl 1):299–308

    Google Scholar 

  117. Walter K, Don A, Flessa H (2015) No general soil carbon sequestration under Central European short rotation coppices. GCB Bioenergy 7(4):727–740

    Article  CAS  Google Scholar 

  118. Harris ZM, Alberti G, Viger M, Jenkins JR, Rowe R, McNamara NP, Taylor G (2017) Land-use change to bioenergy. Grassland to short rotation coppice willow has an improved carbon balance. GCB Bioenergy 9(2):469–484

    Article  CAS  Google Scholar 

  119. Rowe RL, Keith AM, Elias D, Dondini M, Smith P, Oxley J, McNamara NP (2016) Initial soil C and land-use history determine soil C sequestration under perennial bioenergy crops. GCB Bioenergy 8(6):1046–1060

    Article  CAS  Google Scholar 

  120. FAO (2016) Global forest resources assessment 2015. How are the world’s forests changing? 2nd edn. FAOn- Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  121. El Kasmioui O, Ceulemans R (2012) Financial analysis of the cultivation of poplar and willow for bioenergy. Biomass Bioenergy 43:52–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Rödl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Rödl, A. (2017). Short Rotation Coppice: Status and Prospects. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_988-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_988-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics