Skip to main content

Biomass Production, Biological Basics

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hall DO (1979) Solar energy use through biology – past, present and future. Sol Energy 22:307–328

    Article  CAS  Google Scholar 

  2. Trenberth KE, Fasullo JT, Kiehl J (2009) Earth’s global energy budget. Bull Am Meteorol Soc 90:311–323

    Article  Google Scholar 

  3. Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G (2013) The global energy balance from a surface perspective. Clim Dyn 40:3107–3134

    Article  Google Scholar 

  4. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  CAS  Google Scholar 

  5. Townsend CR, Begon CR, Harper JL (2008) Essentials of ecology. Blackwell Publishing, Oxford (UK)

    Google Scholar 

  6. Wilhelm C, Weinberg J, Kaltschmitt M (2014) Conversion steps in bioenergy production – analysis of the energy flow from photon to biofuel. Biofuels 5:385–404

    Article  CAS  Google Scholar 

  7. Evenson RE, Gollin D (2003) Assessing the impact of the green revolution, 1960 to 2000. Science 300:758–762

    Article  CAS  Google Scholar 

  8. Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341:508–513

    Article  CAS  Google Scholar 

  9. Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  10. Bassham JA, Krause GH (1969) Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim Biophys Acta (BBA) – Bioenergetics 189:207–221

    Article  CAS  Google Scholar 

  11. Voet D, Voet JG, Pratt CW (2008) Fundamentals of biochemistry. Wiley, Hoboken

    Google Scholar 

  12. Mohapatra PK, Singh NR (2015) Teaching the Z-Scheme of electron transport in photosynthesis: a perspective. Photosynth Res 123:105–114

    Article  CAS  Google Scholar 

  13. Jaiswal S, Bansal M, Roy S, Bharati A, Padhi B (2017) Electron flow from water to NADP+ with students acting as molecules in the chain: a Z-scheme drama in a classroom. Photosynth Res 131:351–359

    Article  CAS  Google Scholar 

  14. Govindjee, Shevela D, Björn LO (2017) Evolution of the Z-scheme of photosynthesis: a perspective. Photosynth Res 123:11

    Google Scholar 

  15. Amthor JS (2010) From sunlight to phytomass: on the potential efficiency of converting solar radiation to phyto-energy. New Phytol 188:939–959

    Article  CAS  Google Scholar 

  16. Nobel PS (1991) Achievable productivities of certain CAM plants: basis for high values compared with C3 and C4 plants. New Phytol 119:183–205

    Article  CAS  Google Scholar 

  17. Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  Google Scholar 

  18. Borland AM, Griffiths H, Hartwell J, Smith JAC (2009) Exploiting the potential of plants with crassulacean acid metabolism for bioenergy production on marginal lands. J Exp Bot 60:2879–2896

    Article  CAS  Google Scholar 

  19. Davis SC, Dohleman FG, Long SP (2011) The global potential for Agave as a biofuel feedstock. GCB Bioenergy 3:68–78

    Article  CAS  Google Scholar 

  20. Yan X, Tan DKY, Inderwildi OR, Smith JAC, King DA (2011) Life cycle energy and greenhouse gas analysis for agave-derived bioethanol. Energy Environ Sci 4:3110–3121

    Article  CAS  Google Scholar 

  21. Holtum JAM, Chambers DON, Morgan T, Tan DKY (2011) Agave as a biofuel feedstock in Australia. GCB Bioenergy 3:58–67

    Article  CAS  Google Scholar 

  22. Davis SC, LeBauer DS, Long SP (2014) Light to liquid fuel: theoretical and realized energy conversion efficiency of plants using Crassulacean Acid Metabolism (CAM) in arid conditions. J Exp Bot 65:3471–3478

    Article  Google Scholar 

  23. Zhu X-G, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19:153–159

    Article  CAS  Google Scholar 

  24. Turina P, Samoray D, Gräber P (2003) H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CF0F1 – liposomes. EMBO J 22:418–426

    Article  CAS  Google Scholar 

  25. Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J (2012) Photosynthetic control of electron transport and the regulation of gene expression. J Exp Bot 63:1637–1661

    Article  CAS  Google Scholar 

  26. Cramer WA, Zhang H, Yan J, Kurisu G, Smith JL (2006) Transmembrane traffic in the cytochrome b 6 f complex. Annu Rev Biochem 75:769–790

    Article  CAS  Google Scholar 

  27. Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 161:308–313

    Article  CAS  Google Scholar 

  28. Amthor JS (1989) Respiration and crop productivity. Springer, New York

    Book  Google Scholar 

  29. Amthor JS (2000) The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Annals of Botany 86:1–20

    Google Scholar 

  30. Blankenship RE, Tiede DM, Barber J, Brudvig GW, Fleming G, Ghirardi M, Gunner MR, Junge W, Kramer DM, Melis A, Moore TA, Moser CC, Nocera DG, Nozik AJ, Ort DR, Parson WW, Prince RC, Sayre RT (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  CAS  Google Scholar 

  31. Hu S, Xiang C, Haussener S, Berger AD, Lewis NS (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6:2984–2993

    Article  CAS  Google Scholar 

  32. Rocheleau RE, Miller EL (1997) Photoelectrochemical production of hydrogen: engineering loss analysis. Int J Hydrogr Energy 22:771–782

    Article  CAS  Google Scholar 

  33. Seitz LC, Chen Z, Forman AJ, Pinaud BA, Benck JD, Jaramillo TF (2014) Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem 7:1372–1385

    Article  CAS  Google Scholar 

  34. Nakamura A, Ota Y, Koike K, Hidaka Y, Nishioka K, Sugiyama M, Fujii K (2015) A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl Phys Express 8:107101

    Article  CAS  Google Scholar 

  35. Jia J, Seitz LC, Benck JD, Huo Y, Chen Y, Ng JWD, Bilir T, Harris JS, Jaramillo TF (2016) Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat Commun 7:13237

    Article  CAS  Google Scholar 

  36. Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21:509–517

    Article  Google Scholar 

  37. Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  Google Scholar 

  38. Beadle CL, Long SP (1985) Photosynthesis – is it limiting to biomass production? Biomass 8:119–168

    Article  CAS  Google Scholar 

  39. Monteith JL, Moss CJ (1977) Climate and the efficiency of crop production in Britain [and discussion]. Philos Trans R Soc London B, Biol Sci 281:277–294

    Article  Google Scholar 

  40. Beale CV, Long SP (1995) Can perennial C4 grasses attain high efficiencies of radiant energy conversion in cool climates? Plant Cell Environ 18:641–650

    Article  Google Scholar 

  41. Piedade MTF, Junk WJ, Long SP (1991) The productivity of the C_4 grass Echinochloa Polystachya on the Amazon floodplain. Ecology 72:1456–1463

    Article  Google Scholar 

  42. Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  43. Ort DR (2001) When there is too much light. Plant Physiol 125:29–32

    Article  CAS  Google Scholar 

  44. Demmig-Adams B, Adams WW (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  CAS  Google Scholar 

  45. Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  CAS  Google Scholar 

  46. Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant Cell Environ 29:315–330

    Article  CAS  Google Scholar 

  47. Lieth H, Whittaker RH (1975) In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, Berlin

    Chapter  Google Scholar 

  48. Stanhill G (1986) Water use efficiency. Adv Agron 39:53–85

    Article  Google Scholar 

  49. Beale CV, Morison JIL, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric For Meteorol 96:103–115

    Article  Google Scholar 

  50. FAO-FAOSTAT (2007) FAOSTAT FAO statistical databases. http://www.fao.org. Accessed Date Accessed 2007 Accessed

  51. Morgan PB, Bollero GA, Nelson RL, Dohleman FG, Long SP (2005) Smaller than predicted increase in aboveground net primary production and yield of field-grown soybean under fully open-air [CO2] elevation. Glob Chang Biol 11:1856–1865

    Article  Google Scholar 

  52. Dermody O, Long SP, McConnaughay K, DeLucia EH (2008) How do elevated CO2 and O3 affect the interception and utilization of radiation by a soybean canopy? Glob Chang Biol 14:556–564

    Article  Google Scholar 

  53. Evans LT (1993) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge

    Google Scholar 

  54. Hay RKM (1995) Harvest index: a review of its use in plant breeding and crop physiology. Ann Appl Biol 126:197–216

    Article  Google Scholar 

  55. Sinclair TR (1998) Historical changes in harvest index and crop nitrogen accumulation. Crop Sci 38:638–643

    Article  Google Scholar 

  56. Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie KM, Wittig VE, Rogers A, Long SP, Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air field conditions. Plant Cell Environ 29:2077–2090

    Article  CAS  Google Scholar 

  57. Leakey ADB, Xu F, Gillespie KM, McGrath JM, Ainsworth EA, Ort DR (2009) Genomic basis for stimulated respiration by plants growing under elevated carbon dioxide. Proc Natl Acad Sci 106:3597–3602

    Article  CAS  Google Scholar 

  58. Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150:2104–2115

    Article  CAS  Google Scholar 

  59. Baker NR, East TM, Long SP (1983) Chilling damage to photosynthesis in young Zea maysII. Photochemical function of thylakoids in vivo. J Exp Bot 34:189–197

    Article  CAS  Google Scholar 

  60. Long SP, Incoll LD, Woolhouse HW (1975) C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina townsendii. Nature 257:622–624

    Article  CAS  Google Scholar 

  61. Wang D, Portis AR, Moose SP, Long SP (2008) Cool C4 photosynthesis: pyruvate Pi Dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. Plant Physiol 148:557–567

    Article  CAS  Google Scholar 

  62. Ortiz-Lopez A, Nie GY, Ort DR, Baker NR (1990) The involvement of the photoinhibition of photosystem II and impaired membrane energization in the reduced quantum yield of carbon assimilation in chilled maize. Planta 181:78–84

    Article  CAS  Google Scholar 

  63. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  64. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO<sub>2</sub> enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO<sub>2</sub>. New Phytol 165:351–372

    Article  Google Scholar 

  65. Niinemets Ü, Díaz-Espejo A, Flexas J, Galmés J, Warren CR (2009) Importance of mesophyll diffusion conductance in estimation of plant photosynthesis in the field. J Exp Bot 60:2271–2282

    Article  CAS  Google Scholar 

  66. von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO, Collingwood

    Google Scholar 

  67. Lin MT, Occhialini A, Andralojc PJ, Parry MAJ, Hanson MR (2014) A faster Rubisco with potential to increase photosynthesis in crops. Nature 513:547–550

    Article  CAS  Google Scholar 

  68. Bainbridge G, Madgwick P, Parmar S, Mitchell R, Paul M, Pitts J, Keys AJ, Parry MAJ (1995) Engineering Rubisco to change its catalytic properties. J Exp Bot 46:1269–1276

    Article  CAS  Google Scholar 

  69. Zhu XG, Portis AR, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27:155–165

    Article  CAS  Google Scholar 

  70. Spreitzer RJ, Salvucci ME (2002) RUBISCO: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  CAS  Google Scholar 

  71. Pyke KA, Leech RM (1987) The control of chloroplast number in wheat mesophyll cells. Planta 170:416–420

    Article  CAS  Google Scholar 

  72. Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75:1–10

    Article  CAS  Google Scholar 

  73. Zhu X-G, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145:513–526

    Article  CAS  Google Scholar 

  74. Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  CAS  Google Scholar 

  75. Harrison EP, Willingham NM, Lloyd JC, Raines CA (1997) Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation. Planta 204:27–36

    Article  Google Scholar 

  76. Peterhansel C, Horst I, Niessen M, Blume C, Kebeish R, Kürkcüoglu S, Kreuzaler F (2010) Photorespiration. Arabidopsis Book 8:e0130

    Article  Google Scholar 

  77. Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stabler N, Schonfeld B, Kreuzaler F, Peterhansel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  Google Scholar 

  78. Miyao M (2003) Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot 54:179–189

    Article  CAS  Google Scholar 

  79. Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 52:297–314

    Article  CAS  Google Scholar 

  80. Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 45:369–392

    Article  CAS  Google Scholar 

  81. Studer AJ, Gandin A, Kolbe AR, Wang L, Cousins AB, Brutnell TP (2014) A limited role for carbonic anhydrase in C4 photosynthesis as revealed by a ca1ca2 double mutant in maize. Plant Physiol 165:608–617

    Article  CAS  Google Scholar 

  82. Momayyezi M, Guy RD (2017) Substantial role for carbonic anhydrase in latitudinal variation in mesophyll conductance of Populus trichocarpa Torr. & Gray. Plant Cell Environ 40:138–149

    Article  CAS  Google Scholar 

  83. Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  CAS  Google Scholar 

  84. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  Google Scholar 

  85. Frommer WB, Sonnewald U (2010) Progress in physiological research and its relevance for agriculture and ecology. Curr Opin Plant Biol 13:227–232

    Article  Google Scholar 

  86. Jonik C, Sonnewald U, Hajirezaei M-R, Flügge U-I, Ludewig F (2012) Simultaneous boosting of source and sink capacities doubles tuber starch yield of potato plants. Plant Biotechnol J 10:1088–1098

    Article  CAS  Google Scholar 

  87. Kirst H, Gabilly ST, Niyogi KK, Lemaux PG, Melis A (2017) Photosynthetic antenna engineering to improve crop yields. 245: Planta:1009–1020

    Google Scholar 

  88. Chen X, Zhang W, Xie Y, Lu W, Zhang R (2007) Comparative proteomics of thylakoid membrane from a chlorophyll b-less rice mutant and its wild type. Plant Sci 173:397–407

    Article  CAS  Google Scholar 

  89. Johnson MP, Davison PA, Ruban AV, Horton P (2008) The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett 582:262–266

    Article  CAS  Google Scholar 

  90. Donald CM (1968) The breeding of crop ideotypes. Euphytica 17:385–403

    Article  Google Scholar 

  91. Allwright MR, Taylor G (2016) Molecular breeding for improved second generation bioenergy crops. Trends Plant Sci 21:43–54

    Article  CAS  Google Scholar 

  92. Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L (2016) Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 34:997–1017

    Article  CAS  Google Scholar 

  93. Grammelis P, Malliopoulou A, Basinas P, Danalatos NG (2008) Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int J Mol Sci 9:1241–1258

    Article  CAS  Google Scholar 

  94. Bouton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17:553–558

    Article  CAS  Google Scholar 

  95. Casler MD, Stendal CA, Kapich L, Vogel KP (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher. Crop Sci 47:2261–2273

    Article  CAS  Google Scholar 

  96. Sannigrahi P, Ragauskas AJ, Tuskan GA (2010) Poplar as a feedstock for biofuels: a review of compositional characteristics. Biofuels Bioprod Biorefin 4:209–226

    Article  CAS  Google Scholar 

  97. van Eijck J, Romijn H, Balkema A, Faaij A (2014) Global experience with jatropha cultivation for bioenergy: an assessment of socio-economic and environmental aspects. Renew Sust Energ Rev 32:869–889

    Article  CAS  Google Scholar 

  98. Jones M (2017) Perennial biomass crops for a resource-constrained world. GCB Bioenergy 9:4–5

    Article  Google Scholar 

  99. Schrama M, Vandecasteele B, Carvalho S, Muylle H, van der Putten WH (2016) Effects of first- and second-generation bioenergy crops on soil processes and legacy effects on a subsequent crop. GCB Bioenergy 8:136–147

    Article  CAS  Google Scholar 

  100. Ribaut J-M, Hoisington D (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239

    Article  Google Scholar 

  101. Miles C, Wayne M (2008) Quantitative trait locus (QTL) analysis. Nat Educ 1:208

    Google Scholar 

  102. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93:1156–1160

    Article  CAS  Google Scholar 

  103. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  Google Scholar 

  104. Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  Google Scholar 

Books

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Gilbert, M., Wilhelm, C. (2017). Biomass Production, Biological Basics. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_985-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_985-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics