Skip to main content

Fresh Water Geochemistry, Overview

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. Montanarella L, Panagos P (2015) Policy relevance of Critical Zone Science. Land Use Policy 49:86–91

    Article  Google Scholar 

  2. White WM (2017) Geochemistry. In: White WM (ed) Encyclopedia of geochemistry. Springer, Heidelberg, pp 1–10

    Chapter  Google Scholar 

  3. Reinhardt C (2008) Chemical sciences in the 20th century: bridging boundaries. Wiley, New York

    Google Scholar 

  4. Clarke FW (1908) Data of geochemistry. Bulletin, vol 330. US Geological Survey, Washington, DC

    Google Scholar 

  5. Clarke FW (1914) Water analyses from the laboratory of the United States Geological Survey, Water Supply Paper 364. US Geological Survey, Washington, DC

    Google Scholar 

  6. Field J, Little D (2009) Regolith and biota. In: Scott KM, Pain CF (eds) Regolith science. CSIRO Publishing/Springer, Collingwood/Dordrecht, pp 175–217

    Google Scholar 

  7. Allen PA (1997) Earth surface processes. Blackwell Science, Oxford

    Book  Google Scholar 

  8. Rankama K, Sahama TG (1950) Geochemistry. University of Chicago Press, Chicago

    Google Scholar 

  9. Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean. A global synthesis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  10. Shiklomanov IA, Rodda JC (eds) (2003) World water resources at the beginning of the 21st century. Cambridge University Press, Cambridge

    Google Scholar 

  11. Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. W. W. Norton, New York

    Google Scholar 

  12. Goldich SS (1938) A study in rock weathering. J Geol 46:17–58

    Article  CAS  Google Scholar 

  13. Bowen NL (1928) Evolution of the igneous rocks. Princeton University Press, Princeton

    Google Scholar 

  14. McQueen KG (2009) Regolith geochemistry. In: Scot KM, Pain CF (eds) Regolith science. CSIRO Publishing/Springer, Collingwood/Dordrecht, pp 175–217

    Google Scholar 

  15. Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  16. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  17. Li Y-H (2000) A compendium of geochemistry. From solar nebula to the human brain. Princeton University Press, Princeton

    Google Scholar 

  18. Pasquini AI, Depetris PJ (2007) Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: an overview. J Hydrol 333:385–399

    Article  Google Scholar 

  19. Depetris PJ, Pasquini AI (2008) Riverine flow and lake level variability in southern South America. EOS Trans Am Geophys Union 89(28):254–255

    Article  Google Scholar 

  20. Drever JI (1997) The geochemistry of natural waters, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  21. Gaillardet J, Viers J, Dupré B (2005) Trace elements in river waters. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 225–272

    Google Scholar 

  22. Potter PE, Maynard JB, Depetris PJ (2005) Mud & mudstones. Introduction and overview. Springer, Heidelberg

    Google Scholar 

  23. Bland W, Rolls D (1998) Weathering. An introduction to the scientific principles. Arnold, London

    Google Scholar 

  24. Depetris PJ, Pasquini AI, Lecomte KL (2014) Weathering and the riverine denudation of continents. Springer, Dordrecht

    Book  Google Scholar 

  25. Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Article  CAS  Google Scholar 

  26. Depetris PJ, Pasquini AI (2007) The geochemistry of the Paraná River: an overview. In: Iriondo MH, Paggi JC, Parma MJ (eds) The middle Paraná River: limnology of a subtropical wetland. Springer, Berlin

    Google Scholar 

  27. Harnois L (1988) The CIW index: a new chemical index of weathering. Sediment Geol 55(3–4):319–322

    Article  CAS  Google Scholar 

  28. Hamadan J, Burnham CP (1996) The contribution of nutrients from parent material in three deeply weathered soils of peninsula Malaysia. Geoderma 74:219–233

    Article  Google Scholar 

  29. Parker A (1970) An index for weathering of silicate rocks. Geol Mag 107:501–505

    Article  CAS  Google Scholar 

  30. Babechuk MG, Widdowson M, Kamber BS (2014) Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chem Geol 363:56–75

    Article  CAS  Google Scholar 

  31. Tardy Y (1971) Characterization of the principal weathering types by the geochemistry of waters from some European and African crystalline massifs. Chem Geol 7:253–271

    Article  CAS  Google Scholar 

  32. Boeglin JL, Probst JL (1998) Physical and chemical weathering rates and CO2 consumption in tropical lateritic environment: the upper Niger basin. Chem Geol 148:137–156

    Article  CAS  Google Scholar 

  33. Faure G (1991) Principles and applications of geochemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  34. Krauskopf KB, Bird DK (1995) Introduction to geochemistry, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  35. White AF (2005) Natural weathering rates of silicate rocks. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 133–168

    Google Scholar 

  36. Velde B (1992) Introduction to clay minerals. Chemistry, origins, uses and environmental significance. Springer, Heidelberg

    Book  Google Scholar 

  37. Meunier A (2005) Clays. Springer, Heidelberg

    Google Scholar 

  38. Sayler FL, Mangelsdorf PC (1979) Cation-exchange characteristics of Amazon River suspended sediment and its reaction with seawater. Geochim Cosmochim Acta 43(5):767–779

    Article  Google Scholar 

  39. Nordstrom DK (2005) Modeling low-temperature geochemical processes. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 37–72

    Google Scholar 

  40. Dali-yousef M, Ouddane B, Derriche Z (2006) Adsorption of zinc on natural sediments of Tafna River (Algeria). J Hazard Mater 137(3):1263–1270

    Article  Google Scholar 

  41. Ito A, Otake T, Shin K-C, Ariffin KS, Yeoh F-Y, Sato T (2017) Geochemical signatures and processes in a stream contaminated by heavy mineral processing near Ipoh city, Malaysia. Appl Geochem 82:89–101

    Article  CAS  Google Scholar 

  42. Szynkiewicz A, Borrok DM (2016) Isotope variations of dissolved Zn in the Rio Grande watershed, USA: the role of adsorption on Zn isotope composition. Earth Planet Sci Lett 433:293–302

    Article  CAS  Google Scholar 

  43. Hood DW (ed) (1970) Symposium on organic matter in natural waters. University of Alaska, Institute of Marine Sciences, College

    Google Scholar 

  44. Bolin B, Degens ET, Kempe S, Ketner P (1979) The global carbon cycle. SCOPE 13. Wiley, Chichester

    Google Scholar 

  45. Garrels RM, Mackenzie FT, Hunt C (1975) Chemical cycles and the global environment. Kaufmann, Los Altos

    Google Scholar 

  46. Ludwig W, Probst JL, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Glob Biogeochem Cycles 10:23–41

    Article  CAS  Google Scholar 

  47. Perdue EM, Ritchie JD (2005) Dissolved organic matter in freshwaters. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 273–318

    Google Scholar 

  48. Depetris PJ, Kempe S (1993) Carbon dynamics and sources in the Paraná River. Limnol Oceanogr 38(2):382–395

    Article  CAS  Google Scholar 

  49. (2007) http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_topic1.pdf

  50. Ittekkot V, Laane RWPM (1991) Fate of riverine particulate matter. In: Degens ET et al (eds) Biogeochemistry of major world rivers. SCOPE, vol 42. Wiley, New York, pp 233–243

    Google Scholar 

  51. Onstad GD, Canfield DE, Quay PD, Hedges JI (2000) Sources of particulate organic matter in rivers from continental USA: lignin phenol and stable carbon isotope compositions. Geochim Cosmochim Acta 64(2):3539–3546

    Article  CAS  Google Scholar 

  52. Boyer EW, Howarth R (eds) (2002) The nitrogen cycle at regional to global scales. Springer, Heidelberg

    Google Scholar 

  53. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hikk MN (ed) The sea, vol 2. Wiley, New York

    Google Scholar 

  54. Díaz M, Pedrozo F, Reynolds C, Temporetti P (2007) Chemical composition and the nitrogen-regulated trophic state of Patagonian lakes. Limnologica 37:17–27

    Article  Google Scholar 

  55. Depetris PJ, Gaiero DM, Probst JL, Hartmann J, Kempe S (2005) Biogeochemical output and typology of rivers draining Patagonia’s Atlantic seaboard. J Coast Res 21(4):835–844

    Article  Google Scholar 

  56. White WM (2017) Trace elements. In: White WM (ed) Encyclopedia of geochemistry. Springer, Heidelberg, pp 1–2

    Chapter  Google Scholar 

  57. Pasquini AI, Depetris PJ (2012) Hydrochemical considerations and heavy metal variability in the middle Paraná River. Environ Earth Sci 65:525–534

    Article  CAS  Google Scholar 

  58. Canil D (2017) Transition elements. In: White WM (ed) Encyclopedia of geochemistry. Springer, Heidelberg, pp 1–4

    Google Scholar 

  59. McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Lipin BR, McKay GA (eds) Geochemistry and mineralogy of rare earth elements. Mineralogical Society of America, Washington, DC, pp 169–200

    Google Scholar 

  60. Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New York

    Google Scholar 

  61. White WM (2015) Isotope geochemistry. Wiley-Blackwell, New York

    Google Scholar 

  62. Kendall C, Doctor DH (2005) Stable isotope applications in hydrologic studies. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 319–364

    Google Scholar 

  63. Panarello HO, Dapeña C (2009) Large scale meteorological phenomena, ENSO and ITCZ, define the Paraná River isotope composition. J Hydrol 365:105–112

    Article  CAS  Google Scholar 

  64. Pasquini AI, Depetris PJ (2010) ENSO-triggered exceptional flooding in the Paraná River: where is the excess water coming from? J Hydrol 383:186–194

    Article  CAS  Google Scholar 

  65. Mook WG (2005) Introduction to isotope hydrology: stable and radioactive isotopes of hydrogen, carbon, and oxygen. CRC Press, New York

    Google Scholar 

  66. Brunet F, Gaiero DM, Probst JL, Depetris PJ, Gauthier Lafaye F, Stille P (2005) δ13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrol Process 19:3321–3344

    Article  CAS  Google Scholar 

  67. Kendall C (1998) Tracing nitrogen and cycling in catchments. In: Kendall C, McDonell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576

    Chapter  Google Scholar 

  68. Hoefs J (2009) Stable isotope geochemistry. Springer, Berlin/Heidelberg

    Google Scholar 

  69. Tang YJ, Hong-Fu Z, Ji-Feng Y (2007) Review of the lithium isotope system as a geochemical tracer. Int Geol Rev 49:374–388

    Article  Google Scholar 

  70. Millot R, Vigier N, Gaillardet J (2010) Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin, Canada. Geochim Cosmochim Acta 74:3897–3912

    Article  CAS  Google Scholar 

  71. Burnett WC, Dulaiova H (2006) Radon as a tracer of submarine groundwater discharge into a boat basin in Donnalucata, Sicily. Cont Shelf Res 26(7):862–873

    Article  Google Scholar 

  72. Kwon EY, Kim G, Primeau F, Moore WS, Cho HM, DeVries T, Sarmiento JL, Charette MA, Cho YK (2014) Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model. Geophys Res Lett 41. https://doi.org/10.1002/2014GL061574

  73. Moore WS (2003) Sources and fluxes of submarine groundwater discharge delineated by radium isotopes. Biogeochemistry 66:75–93

    Article  CAS  Google Scholar 

  74. Schlüter M (2002) Fluid flow in continental margin sediments. In: Wefer G, Billet D, Hebbeln D, Jorgensen BB, Schlüter M, Van Weering T (eds) Ocean margin system. Springer, Heidelberg, pp 205–217

    Chapter  Google Scholar 

  75. Blum JD, Erel Y (2005) Radiogenic isotopes in weathering and hydrology. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 365–392

    Google Scholar 

  76. Henry F, Probst JL, Thouron D, Depetris PJ, Garçon V (1996) Nd-Sr isotopic compositions of dissolved and particulate material transported by the Paraná and Uruguay rivers during high (December 1993) and low (September 1994) water periods. Sci Géol Bull 49:89–100

    CAS  Google Scholar 

  77. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  CAS  Google Scholar 

  78. Gibbs RJ (1992) A reply to the comment of Eilers et al. Limnol Oceanogr 37(6):1338–1339

    Article  CAS  Google Scholar 

  79. Depetris PJ (1980) Hydrochemical aspects of the Negro River, Patagonia, Argentina. Earth Surf Proc 5:181–186

    Article  CAS  Google Scholar 

  80. Meybeck M (2005) Global occurrence of major elements in rivers. In: Drever JI (ed) Surface and ground water, weathering, and soils. Elsevier, Amsterdam, pp 207–223

    Google Scholar 

  81. https://water.usgs.gov/software/

  82. https://www.epa.gov/exposure-assessment-models/minteqa2

Books and Reviews

  • Albarède F (2003) Geochemistry. An introduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Allen PA (1997) Earth surface processes. Blackwell Science, Oxford

    Book  Google Scholar 

  • Barceló D, Kostianoy AG (eds) (1980) The handbook of environmental chemistry. Springer, Heidelberg

    Google Scholar 

  • Berkowitz B, Dror I, Yaron B (2014) Contaminant geochemistry. Springer, Heidelberg

    Book  Google Scholar 

  • Boyd CE (2015) Water quality. Springer, Heidelberg

    Book  Google Scholar 

  • Christensen ER, Li A (2014) Physical and chemical processes in the aquatic environment. Wiley, New York

    Google Scholar 

  • Clark I (2015) Groundwater geochemistry and isotopes. CRC Press, New York

    Book  Google Scholar 

  • Killops SD, Killops VJ (1993) An introduction to organic geochemistry. Longman S & T, Burnt Mill

    Google Scholar 

  • Krauskopf KB, Bird DK (1995) Introduction to geochemistry, 3rd edn. McGraw-Hill International Editions, New York

    Google Scholar 

  • Merkel BJ, Nordstrom DK, Planer-Friedrich B (eds) (2008) Groundwater geochemistry. Springer, Heidelberg

    Google Scholar 

  • Osadchyy V, Nabyvanets B, Linnik P, Osadcha N, Nabyvanets Y (2016) Processes determining surface water chemistry. Springer, Heidelberg

    Book  Google Scholar 

  • Otonello G (1997) Principles of geochemistry. Columbia University Press, New York

    Google Scholar 

  • Stumm W (1992) Chemistry of the solid-water interface: processes at the mineral-water and particle-water interface in natural systems. Wiley, New York

    Google Scholar 

  • Van Loon G, Duffy SJ (2005) Environmental chemistry: a global perspective. Oxford University Press, Oxford

    Google Scholar 

  • White WM (2013) Geochemistry. Wiley-Blackwell, New York

    Google Scholar 

  • White WM (2015) Isotope geochemistry. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro José Depetris .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Cite this entry

Depetris, P.J. (2018). Fresh Water Geochemistry, Overview. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_969-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_969-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics