Skip to main content

Vitrification of Waste and Reuse of Waste-Derived Glass

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Crystallization:

Crystallization is the formation of crystals (i.e., a solid phase possessing short-, middle-, and long-range order) from a liquid or a solid. It occurs via a process consisting of two steps: nucleation and crystal growth. During nucleation, the structural units (atoms, ions, or molecules) spontaneously arrange themselves according to a regular geometry, which is specific for the crystal phase being formed. If this cluster, typically of the order of a few nanometers, has reached a critical size, which depends on the operating conditions (temperature, supersaturation, etc.), it becomes thermodynamically stable. The crystal growth is the subsequent growth of the nuclei that succeed in achieving the critical cluster size. In a crystal, the constituents are arranged in a defined and periodic manner (unit cell) that defines the crystal structure.

Durability:

Durability is the ability of a substance (or a structure) to withstand the interaction with the surrounding...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. Roth G, Weisenburger S (2000) Vitrification of high level liquid waste: glass chemistry, process chemistry and process technology. Nucl Eng Des 202:197–207

    Article  CAS  Google Scholar 

  2. Park J-K, Song M-J (1998) Feasibility study on vitrification of low-and intermediate-level radioactive waste from pressurized water reactors. Waste Manag 18:157–167

    Article  CAS  Google Scholar 

  3. Sakai S, Hiraoka M (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag 20:249–258

    Article  CAS  Google Scholar 

  4. US Environmental Protection Agency (1994) 1994 EPA contaminated sediment management strategy, EPA 823-R-94-001. Office of Water, US Environmental Protection Agency, Washington, DC

    Google Scholar 

  5. SITE (Superfund Innovative Technology Evaluation) Emerging Technology Bulletin (1995) Ferro Corporation waste vitrification through electric melting, U.S. EPA/540/F-95/503. US Environmental Protection Agency, Cincinnati

    Google Scholar 

  6. Nechvatal TM, Jansen TJ (1996) Converting paper mill sludge or the like. US Patent 5,549,059. Minergy, Assignee

    Google Scholar 

  7. Buelt JL, Oma KH, Eschbach EA (1994) Apparatus for in situ heating and vitrification. US Patent 5,316,411, 31 May 1994

    Google Scholar 

  8. U.S. Environmental Protection Agency (1995) Geosafe Corporation in situ vitrification. innovative technology evaluation report. Risk reduction engineering laboratory, Office of Research and Development. Report EPA/540/R-94/520

    Google Scholar 

  9. Poiroux R, Rollin M (1996) High temperature treatment of waste: from laboratories to the industrial stage. Pure Appl Chem 68:1035–1040

    Article  CAS  Google Scholar 

  10. Bingham PA, Hand RJ (2006) Vitrification of toxic waste: a brief review. Adv Appl Ceram 105:21–31

    Article  CAS  Google Scholar 

  11. http://www.epa.gov/epawaste/hazard/tsd/td/combustion.htm. Accessed 10 Feb 2009

  12. Marra JC, Jantzen CM (2004) Glass: an environmental protector. Am Ceram Soc Bull 83(11):12–16

    CAS  Google Scholar 

  13. Baehr W (1989) Industrial vitrification processes for high-level liquid waste solutions. IAEA Bull 31(4):47–51

    Google Scholar 

  14. Buelt JL, Chapman C (1978) Liquid fed ceramic melter. Doc. N° PNL-2735, UC 70, U.S. Department of Energy

    Google Scholar 

  15. Jantzen C, Bickford DF, Brown KG, Cozzi AD et al (2000) Savannah river site waste vitrification projects initiated throughout the United States: disposal and recycle options. US Department of Energy, Office of Scientific and Technical Information, Oak Ridge

    Google Scholar 

  16. Roth G (1995) Atomwirtschaft 40(Jg3):174–177

    CAS  Google Scholar 

  17. Jouan A (2001) La vitrification des déchets, une contribution au respect de notre terre. Verre 7:20–27

    CAS  Google Scholar 

  18. US Environmental Protection Agency (1992) Handbook on vitrification technologies for treatment of hazardous and radioactive waste, report EPA/625/R-92/002. Office of Research and Development, Washington, DC

    Google Scholar 

  19. Buelt JL (1997) Molten glass processes. In: Freeman HM (ed) Standard handbook of hazardous waste treatment and disposal, 2nd edn. McGraw-Hill, New York, pp 45–77

    Google Scholar 

  20. Wakamura Y, Nakazato K (1994) Recent trend of ash management from MSW incineration facilities in Japan. In: National waste processing conference proceedings ASME 91–96

    Google Scholar 

  21. Richards RS, Plodinec MJ (1998) Overview of current and emerging waste vitrification technologies. In: Proceedings of the XVIII international congress on glass, San Francisco, 5–8 July 1998. Paper no. A7-I (CD ROM). The American Ceramic Society, Westerville

    Google Scholar 

  22. Hollander H (1995) Vitrification of combustion ash residue for beneficial use. Solid Waste Technol 9:31–40

    Google Scholar 

  23. Terasawa Y, Yasuda S, Horizoe H, Sato J, Gotou Y (2001) Commercialization of MSW incineration system with direct ash melting by thermal cracking for high efficient generation of electricity, Mitsubishi Heavy Industries, Ltd. Tech Rev 38(2):82–86

    Google Scholar 

  24. Miyata H, Sadatsuka T (2005) Technology applicable to “Heat recovery facilities”, Sanki Engineering. J Solid Liq Waste 35(9):43–44. in Japanese

    Google Scholar 

  25. Chapman C (1995) Earth melter. US Patent 5,443,618. Assignee Battelle Memorial Institute, Richland

    Google Scholar 

  26. Chapman C (1993) State-of-the-art of waste glass melters. In: Varshneya AK, Bickford DF, Bihuniak PP (eds) Ceramic transactions, vol 29. American Ceramic Society, Westerville, pp 485–493

    Google Scholar 

  27. Park JK, Moon YP, Park BC, Song MJ, Ko KS, Cho JM (2001) Non-combustible waste vitrification with plasma torch melter. J Environ Sci Health A Tox/Hazard Subst Environ Eng 36:861–871

    Article  CAS  Google Scholar 

  28. Tendler M, Retberg P, Van Oost G (2005) Plasma based waste treatment and energy production. Plasma Phys Controlled Fusion 47:A219–A230

    Article  CAS  Google Scholar 

  29. Moustakas K, Fatta D, Malamis S, Haralambous K, Lozidou M (2005) Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J Hazard Mater 123:120–126

    Article  CAS  Google Scholar 

  30. Park HS, Kim SJ (2005) Analysis of a plasma melting system for incinerated ash. J Ind Eng Chem 11:657–665

    CAS  Google Scholar 

  31. Kushnikov VV et al (1995) Using an induction melter with a cold crucible for the immobilization of Plutonium. In: Plutonium stabilization and immobilization workshop proceedings, Washington, DC, pp 319–326

    Google Scholar 

  32. Jouan A, Boen R, Merlin S, Pujadas V (1997) New development for medium and low level waste vitrification. In: Nuthos-5, Beijing, 14–18 Apr 1997

    Google Scholar 

  33. Ojovan MI, Lee WE (2003) Self sustaining vitrification for immobilisation of radioactive and toxic waste. Glass Technol 44:218–224

    CAS  Google Scholar 

  34. Karlina OK, Varlakova GA, Ojovan MI, Tivanski VM, Klimov VL, Pavlova GY, Dmitriev SA (2001) Ash and soil conditioning using exothermic metallic compositions. Mater Res Soc Symp Proc 663:65–70

    Article  Google Scholar 

  35. Blackman WC (1993) Basic hazardous waste management. Lewis, Boca Raton

    Google Scholar 

  36. European Council (2000) European waste catalogue, Council Decision 2000/532/EC. Off J Eur Commun L226:3–24

    Google Scholar 

  37. Räbiger K, Keldenich K, Scheffer J (1995) Experience in operation of a pilot plant melting residual substances. Glastech Ber Glass Sci Technol 68:84–90

    Google Scholar 

  38. Frugifer P, Godon N, Vernaz E, Larché F (2002) Influence of composition variations on the initial alteration rate of vitrified domestic waste incineration fly-ash. Waste Manag 22:137–142

    Article  Google Scholar 

  39. Piepel G, Redgate T (1997) Mixture techniques for reducing the number of components applied for modeling waste glass sodium release. J Am Ceram Soc 80:3038–3044

    Article  CAS  Google Scholar 

  40. Besmann TM, Spear KE (2002) Thermochemical modeling of oxide glasses. J Am Ceram Soc 85:2887–2894

    Article  CAS  Google Scholar 

  41. Kim C-W, Choi K, Park J-K, Shin S-W, Song M-J (2001) Enthalpies of chromium oxide solution in soda lime borosilicate glass systems. J Am Ceram Soc 84:2987–2990

    Article  CAS  Google Scholar 

  42. Lapa N, Santos Oliveira JF, Camacho SL, Circeo LJ (2002) An ecotoxic risk assessment of residue materials produced by the plasma pyrolysis/vitrification (PP/V) process. Waste Manag 22:335–342

    Article  CAS  Google Scholar 

  43. Colombo P, Brusatin G, Bernardo E, Scarinci G (2003) Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Curr Opin Solid State Mater Sci 7:225–239

    Article  CAS  Google Scholar 

  44. Höland W, Beall G (2002) Glass-ceramic technology. American Ceramic Society, Westerville

    Google Scholar 

  45. Davies MW, Kerrison B, Gross WE, Robson MJ, Witchall DF (1973) Slag ceramics: a glass ceramic from blast-furnace slag. J Iron Steel Inst 208:348–370

    Google Scholar 

  46. Nakamura S (1976) Crystallized glass article having a surface pattern. US patent 3,955,989, 11 May 1976

    Google Scholar 

  47. Fredericci C, Zanotto ED, Ziemath EC (2000) Crystallization mechanism and properties of a blast furnace slag glass. J Noncryst Solids 273:64–75

    Article  CAS  Google Scholar 

  48. Ferreira EB, Zanotto ED, Scudeller LAM (2002) Glass and glass-ceramic from basic oxygen furnace (BOF) slag. Glas Sci Technol 75:75–86

    CAS  Google Scholar 

  49. Karamanov A, Gutzow I, Chomakov I, Christov J, Kostov L (1994) Synthesis of wall-covering glass-ceramics from waste raw materials. Glastech Ber Glass Sci Technol 67:227–230

    CAS  Google Scholar 

  50. Gomes V, De Borba CDG, Riella HG (2002) Production and characterization of glass ceramics from steelwork slag. J Mater Sci 37:2581–2585

    Article  CAS  Google Scholar 

  51. Pelino M (2000) Recycling of zinc-hydrometallurgy waste in glass and glass ceramic materials. Waste Manag 20:561–568

    Article  CAS  Google Scholar 

  52. Karamanov A, Taglieri G, Pelino M (1999) Iron-rich sintered glass-ceramics from industrial waste. J Am Ceram Soc 82(11):3012–3016

    Article  CAS  Google Scholar 

  53. Pisciella P, Crisucci S, Karamanov A, Pelino M (2001) Chemical durability of glasses obtained by vitrification of industrial waste. Waste Manag 21:1–9

    Article  CAS  Google Scholar 

  54. Diaz C, Valle-Fuentes FJ, Zayas ME, Avalos-Borja M (1999) Cordierite glass-ceramic from geothermic waste. Am Ceram Soc Bull 78:62–64

    CAS  Google Scholar 

  55. Diaz C, Gracia H, MaE Z, Espinoza FJ, Valle-Fuentes FJ (2000) Producing optical glass with geothermal waste. Am Ceram Soc Bull 79:57–59

    CAS  Google Scholar 

  56. Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B96:201–216

    Article  Google Scholar 

  57. Romero M, Rawlings RD, Rincón JM (1999) Development of a new glass-ceramic by means of controlled vitrification and crystallization of inorganic waste from urban incineration. J Eur Ceram Soc 19:2049–2058

    Article  CAS  Google Scholar 

  58. Boccaccini AR, Kopf M, Stumpfe W (1995) Glass-ceramics from filter dusts from waste incinerators. Ceram Int 21:231–235

    Article  CAS  Google Scholar 

  59. Cheng TW, Chen YS (2003) On formation of CaO-Al2O3-SiO2 glass-ceramics by vitrification of incinerator fly ash. Chemosphere 51:817–824

    Article  CAS  Google Scholar 

  60. Park YJ, Heo J (2002) Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling. Ceram Int 28:689–694

    Article  CAS  Google Scholar 

  61. Bernardo E, Scarinci G, Edme E, Michon U, Planty N (2009) Fast-sintered gehlenite glass-ceramics from plasma-vitrified municipal solid waste incinerator fly ashes. J Am Ceram Soc 92:528–530

    Article  CAS  Google Scholar 

  62. Romero M, Rawlings RD, Rincón JM (2000) Crystal nucleation and growth in glasses from inorganic waste from urban incineration. J Noncryst Solids 271:108–118

    Article  Google Scholar 

  63. Romero M, Rincon JM, Rawlings RD, Boccaccini AR (2001) Use of vitrified urban incinerator waste as raw material for production of sintered glass-ceramics. Mater Res Bull 36:383–395

    Article  CAS  Google Scholar 

  64. Park YJ, Heo J (2002) Vitrification of fly ash from municipal solid waste incinerator. J Hazard Mater B91:83–93

    Article  Google Scholar 

  65. Siwadamrongpong S, Koide M, Matusita K (2004) Prediction of chloride solubility in CaO-Al2O3-SiO2 glass systems. J Noncryst Solids 347:114–120

    Article  CAS  Google Scholar 

  66. Kim JM, Kim HS (2004) Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content. J Eur Ceram Soc 24:2373–2382

    Article  CAS  Google Scholar 

  67. Kavouras P, Komninou P, Chrissafis K, Kaimakamis G, Kokkou S (2003) Microstructural changes of processed vitrified solid waste products. J Eur Ceram Soc 23:1305–1311

    Article  CAS  Google Scholar 

  68. Karamanov A, Pelino M, Hreglich S (2003) Sintered glass-ceramics from municipal solid waste-incinerator fly ashes-part I: the influence of the heating rate on the sinter-crystallization. J Eur Ceram Soc 23:827–832

    Article  CAS  Google Scholar 

  69. Pelino M, Karamanov A, Pisciella P, Crisucci S, Zonetti D (2002) Vitrification of electric arc fornace dusts. Waste Manag 22:945–949

    Article  CAS  Google Scholar 

  70. Leroy C, Ferro MC, Monteiro RCC, Fernandes MHV (2001) Production of glass-ceramics from coal ashes. J Eur Ceram Soc 21:195–202

    Article  CAS  Google Scholar 

  71. Kavouras P, Kaimakamis G, Ioannidis TA, Kehagias T, Komninou P, Kokkou S, Pavlidou E, Antonopoulos I, Sofoniou M, Zouboulis A, Hadjiantoniou CP, Nouet G, Prakouras A, Karakostas T (2003) Vitrification of lead-rich solid ashes from incineration of hazardous industrial waste. Waste Manag 23:361–371

    Article  CAS  Google Scholar 

  72. Cheng TW (2003) Combined glassification of EAF dust and incinerator fly ash. Chemosphere 50:47–51

    Article  CAS  Google Scholar 

  73. Barbieri L, Ferrari AM, Lancellotti I, Leonelli C (2000) Crystallization of (Na2O-MgO)-CaO-Al2O3-SiO2 glassy systems formulated from waste products. J Am Ceram Soc 83:2515–2520

    Article  CAS  Google Scholar 

  74. Barbieri L, Corradi A, Lancellotti I (2000) Alkaline and alcaline-earth silicate glasses and glass-ceramics from municipal and industrial waste. J Eur Ceram Soc 20:2477–2483

    Article  CAS  Google Scholar 

  75. Öveçoğlu ML (1998) Microstructural characterization and physical properties of a slag-based glass-ceramic crystallized at 950 and 1100°C. J Eur Ceram Soc 18:161–168

    Article  Google Scholar 

  76. Barbieri L, Corradi A, Lancellotti I (2002) Thermal and chemical behavior of different glasses containing steel fly ash and their transformation into glass-ceramics. J Eur Ceram Soc 22:1759–1765

    Article  CAS  Google Scholar 

  77. Barbieri L, Lancellotti I, Manfredini T, Queralt I, Rincon JM, Romero M (1999) Design, obtainment and properties of glasses and glass-ceramics from coal fly ash. Fuel 78:271–276

    Article  CAS  Google Scholar 

  78. Bernardo E, Esposito L, Rambaldi E, Tucci A, Pontikes Y, Angelopoulos GN (2009) Sintered esseneite-wollastonite-plagioclase glass-ceramics from vitrified waste. J Eur Ceram Soc 29:2921–2927

    Article  CAS  Google Scholar 

  79. Boccaccini A, Rawlings R (2002) Waste not – producing glass-ceramics from waste materials. Mater World 10:16–18

    Google Scholar 

  80. Rincon JM, Romero M, Boccaccini AR (1999) Microstructural characterisation of a glass and a glass-ceramic obtained from municipal incinerator fly ash. J Mater Sci 34:4413–4423

    Article  CAS  Google Scholar 

  81. Boccaccini AR, Petitmermet M, Wintermantel E (1997) Glass-ceramics from municipal incinerator fly ash. Am Ceram Soc Bull 76:75–78

    CAS  Google Scholar 

  82. Erol M, Demirler U, Küçükbayrak S, Ersoy-Meriçboyu A, Öveçoğlu ML (2003) Characterization investigations of glass-ceramics developed from Seyitömer thermal power plant fly ash. J Eur Ceram Soc 23:757–763

    Article  CAS  Google Scholar 

  83. Francis AA, Rawlings RD, Boccaccini AR (2002) Glass-ceramics from mixtures of coal ash and soda lime glass by the petrurgic method. J Mater Sci Lett 21:975–980

    Article  CAS  Google Scholar 

  84. Amutha Rani D, Gomez E, Boccaccini AR, Hao L, Deegan D, Cheeseman CR (2008) Plasma treatment of air pollution control residues. Waste Manag 28:1254–1262

    Article  CAS  Google Scholar 

  85. Bernstein AG, Bonsembiante E, Brusatin G, Calzolari G, Colombo P, Dall’Igna R, Hreglich S, Scarinci G (2002) Inertization of hazardous dredging spoils. Waste Manag 22:865–869

    Article  Google Scholar 

  86. Brusatin G, Bernardo E, Andreola F, Barbieri L, Lancellotti I, Hreglich S (2005) Reutilization of waste inert glass from the disposal of polluted dredging spoils by the obtainment of ceramic products for tiles applications. J Mater Sci 40:5259–5264

    Article  CAS  Google Scholar 

  87. Suzuki S, Tanaka M, Kaneko T (1997) Glass-ceramic from sewage sludge ash. J Mater Sci 32:1775–1779

    Article  CAS  Google Scholar 

  88. Park YJ, So M, Heo J (2003) Crystalline phase control of glass ceramics obtained from sewage sludge fly ash. Ceram Int 29:223–227

    Article  CAS  Google Scholar 

  89. Toya T, Nakamura A, Kameshima Y, Nakajima A, Okada K (2007) Glass-ceramics prepared from sludge generated by a water purification plant. Ceram Int 33:573–577

    Article  CAS  Google Scholar 

  90. Bhat PN, Ghosh DK, Desai MVM (2002) Immobilisation of beryllium in solid waste (red-mud) by fixation and vitrification. Waste Manag 22:549–556

    Article  CAS  Google Scholar 

  91. Roberts D, Stuart JH (1989) Vitrification of asbestos waste. US Patent 4,820,328, 11 Apr 1989

    Google Scholar 

  92. Dall’Igna R, Falcone R, Hreglich S, Profilo B, Vallotto M, Cadore A, Grattieri W (2002) Production of mineral fertilizer glass from inertized asbestos containing waste. Riv Staz Sper Vetro 6:13–15

    Google Scholar 

  93. Bernardo E, Scarinci G, Hreglich S (2005) Foam glass as a way of recycling glasses from cathode ray tubes. Glas Sci Technol 78:7–11

    CAS  Google Scholar 

  94. Bernardo E, Cedro R, Florean M, Hreglich S (2007) Reutilization and stabilization of wastes by the production of glass foams. Ceram Int 33:963–968

    Article  CAS  Google Scholar 

  95. Bernardo E, Scarinci G, Bertuzzi P, Ercole P, Ramon L (2009) Recycling of waste glasses into glass and glass-ceramic foams. J Porous Mater 17(3):359–365

    Article  CAS  Google Scholar 

  96. Bernardo E, Andreola F, Barbieri L, Lancellotti I (2005) Sintered glass-ceramics and glass-ceramic matrix composites from CRT panel glass. J Am Ceram Soc 88:1886–1891

    Article  CAS  Google Scholar 

  97. Bernardo E, Castellan R, Hreglich S, Lancellotti I (2006) Sintered sanidine glass-ceramics from industrial wastes. J Eur Ceram Soc 26:3335–3341

    Article  CAS  Google Scholar 

  98. Tucci A, Esposito L, Rastelli E, Palmonari C, Rambaldi E (2004) Use of soda-lime scrap-glass as a fluxing agent in a porcelain stoneware tile mix. J Eur Ceram Soc 24:83–92

    Article  CAS  Google Scholar 

  99. Pontikes Y, Christogerou A, Angelopoulos G, Rambaldi E, Esposito L, Tucci A (2005) Use of soda-lime-silica scrap glass in the traditional ceramic industry. Glass Technol 46:200–207

    CAS  Google Scholar 

  100. Tarvornpanich T, Souza GP, Lee WE (2005) Microstructural evolution on firing soda-lime-silica glass fluxed whitewares. J Am Ceram Soc 88:1302–1308

    Article  CAS  Google Scholar 

  101. Tucci A, Rambaldi E, Esposito L (2006) Use of scrap glass as raw materials for porcelain stoneware tiles. Adv Appl Ceram 105:40–45

    Article  CAS  Google Scholar 

  102. Raimondo M, Zanelli C, Matteucci F, Guarini G, Dondi M, Labrincha JA (2007) Effect of waste glass (TV/PC cathodic tube and screen) on technological properties and sintering behaviour of porcelain stoneware tiles. Ceram Int 33:615–623

    Article  CAS  Google Scholar 

  103. Rawlings RD, Wu JP, Boccaccini AR (2006) Glass-ceramics: their production from wastes – a review. J Mater Sci 41:733–761

    Article  CAS  Google Scholar 

  104. Bernardo E, Esposito L, Rambaldi E, Tucci A (2009) Glass-based stoneware as a promising route for the recycling of waste glasses. Adv Appl Ceram 108:2–8

    Article  CAS  Google Scholar 

  105. http://www.europlasma.com/

  106. Morimoto N et al (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

    Google Scholar 

  107. Peng F, Liang K, Hu A (2005) Nano-crystal glass-ceramics obtained from high alumina coal fly ash. Fuel 84:341–346

    Article  CAS  Google Scholar 

  108. Karamanov A, Cantalini C, Pelino M, Hreglich S (1999) Kinetics of phase formation in jarosite glass-ceramic. J Eur Ceram Soc 19:527–533

    Article  CAS  Google Scholar 

  109. Karamanov A, Pelino M (2001) Crystallization phenomena in iron-rich glasses. J Noncryst Solids 281:139–151

    Article  CAS  Google Scholar 

  110. Bloomer PE, Feng X, Chantaraprachoom N, Gong M, McCready DE (1999) Effect of crystallization, redox, and waste loading on the properties of several glassy waste forms. J Am Ceram Soc 11:2999–3011

    Google Scholar 

  111. Gutzow I, Pascova R, Karamanov A, Schmelzer J (1998) The kinetics of surface induced sinter-crystallization and the formation of glass-ceramic materials. J Mater Sci 33:5265–5273

    Article  CAS  Google Scholar 

  112. Müller R, Zanotto ED, Fokin VM (2000) Surface crystallization of silicate glasses: nucleation sites and kinetics. J Noncryst Solids 274:208–231

    Article  Google Scholar 

  113. Prado MO, Zanotto ED (2002) Glass sintering with concurrent crystallization. C R Chimie 5:773–786

    Article  CAS  Google Scholar 

  114. Francis AA, Rawlings RD, Sweeney R, Boccaccini AR (2004) Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. J Noncryst Solids 333:187–193

    Article  CAS  Google Scholar 

  115. Hernandez-Crespo MS, Romero M, Rincon JM (2006) Nucleation and crystal growth of glasses produced by a generic plasma arc-process. J Eur Ceram Soc 26:1679–1685

    Article  CAS  Google Scholar 

  116. Bernardo E (2008) Fast Sinter-crystallization of a glass from waste materials. J Noncryst Solids 354:3486–3490

    Article  CAS  Google Scholar 

  117. Karamanov A, Pisciella P, Cantalini C, Pelino M (2000) Influence of Fe3+/Fe2+ ratio on the crystallization of iron-rich glasses made with industrial waste. J Am Ceram Soc 83:3153–3157

    Article  CAS  Google Scholar 

  118. Karamanov A, Aloisi M, Pelino M (2005) Sintering behaviour of a glass obtained from MSWI ash. J Eur Ceram Soc 25:1531–1540

    Article  CAS  Google Scholar 

  119. Ray A, Tiwari AN (2001) Compaction and sintering behaviour of glass-alumina composites. Mater Chem Phys 67:220–225

    Article  CAS  Google Scholar 

  120. Romero M, Rincon JM (1999) Surface and bulk crystallization of glass-ceramic in the Na2O-CaO-ZnO-PbO-Fe2O3-Al2O3-SiO2 system derived from a goethite waste. J Am Ceram Soc 82:1313–1317

    Article  CAS  Google Scholar 

  121. Francis AA, Rawlings RD, Sweeney R, Boccaccini AR (2002) Processing of coal ash into glass ceramic products by powder technology and sintering. Glass Technol 43:58–62

    CAS  Google Scholar 

  122. Fidancevska E, Mangutova B, Milosevski D, Milosevski M, Bossert J (2003) Sci Sinter 35:85–91

    Article  CAS  Google Scholar 

  123. Scarinci G, Brusatin G, Barbieri L, Corradi A, Lancellotti I, Colombo P, Hreglich S, Dall’Igna R (2000) Vitrification of industrial and natural waste with production of glass fibres. J Eur Ceram Soc 20:2485–2490

    Article  CAS  Google Scholar 

  124. Hreglich S, Cioffi F (2009) Continuous glass fibres from waste and their application in reinforced materials. Adv Appl Ceram 108:22–26

    Article  CAS  Google Scholar 

  125. Hreglich S, Falcone R, Vallotto M (2001) The recycling of end of life panel glass from TV sets in glass fibres and ceramic productions. In: Dhir RK, Limbachiya MC, Dyer TD (eds) Recycling and reuse of glass cullet. Thomas Telford, London, pp 123–134

    Google Scholar 

  126. Marabini AM, Plescia P, Maccari D, Burragato F, Pelino M (1998) New materials from industrial and mining waste: glass-ceramics and glass- and rock-wool fibre. Int J Miner Process 53:121–134

    Article  CAS  Google Scholar 

  127. Scarinci G, Brusatin G, Bernardo E (2005) Production technology of glass foams. In: Scheffler M, Colombo P (eds) Cellular ceramics: structure, manufacturing, properties and applications. Wiley-VCH, Weinheim

    Google Scholar 

  128. Méar F, Yot P, Viennois R, Ribes M (2007) Mechanical behaviour and thermal and electrical properties of foam glass. Ceram Int 33:543–550

    Article  CAS  Google Scholar 

  129. Brusatin G, Scarinci G, Zampieri L, Colombo P (2002) Foam glass from cullet. Glass Mach Plant Accessory 1:108–110

    Google Scholar 

  130. Fernandes HR, Tulyaganov DU, Ferreira JMF (2009) Production and characterisation of glass ceramic foams from recycled raw materials. Adv Appl Ceram 108:9–13

    Article  CAS  Google Scholar 

  131. Tulyaganov DU, Fernandes HR, Agathopoulos S, Ferreira JMF (2006) Preparation and characterization of high compressive strength foams from sheet glass. J Porous Mater 13:133–139

    Article  CAS  Google Scholar 

  132. Wu JP, Boccaccini AR, Lee PD, Kershaw MJ, Rawlings RD (2006) Glass ceramic foams from coal ash and waste glass: production and characterisation. Adv Appl Ceram 105:32–39

    Article  CAS  Google Scholar 

  133. Bernardo E (2007) Micro- and macro-cellular sintered glass-ceramics from wastes. J Eur Ceram Soc 27:2415–2422

    Article  CAS  Google Scholar 

  134. Boccaccini AR, Bücker M, Bossert J, Marszalek K (1997) Glass matrix composites from coal fly ash and waste glass. Waste Manag 17:39–45

    Article  CAS  Google Scholar 

  135. Ferraris M, Salvo M, Smeacetto F, Augier L, Barbieri L, Corradi A, Lancellotti I (2001) Glass matrix composites from solid waste materials. J Eur Ceram Soc 21:453–460

    Article  CAS  Google Scholar 

  136. Appendino P, Ferraris M, Matekovits I, Salvo M (2004) Production of glass-ceramic bodies from the bottom ashes of municipal solid waste incinerators. J Eur Ceram Soc 24:803–810

    Article  CAS  Google Scholar 

  137. Aloisi M, Karamanov A, Taglieri G, Ferrante F, Pelino M (2006) Sintered glass ceramic composites from vitrified municipal solid waste bottom ashes. J Hazard Mater 137:138–143

    Article  CAS  Google Scholar 

  138. Bernardo E, Scarinci G, Hreglich S (2005) Development and mechanical characterization of Al2O3 platelet-reinforced glass matrix composites obtained from glasses coming from dismantled cathode ray tubes. J Eur Ceram Soc 255:1541–1550

    Article  CAS  Google Scholar 

  139. Bernardo E, Castellan R, Hreglich S (2007) Al2O3-platelet reinforced glass matrix composites from a mixture of wastes. J Mater Sci 42:2706–2711

    Article  CAS  Google Scholar 

  140. Rozenstrauha I, Cimdins R, Berzina L, Bajare D, Bossert J, Boccaccini AR (2002) Sintered glass-ceramic matrix composites made from Latvian silicate wastes. Glas Sci Technol 75:132–139

    CAS  Google Scholar 

  141. Saccani A, Sandrolini F, Barbieri L, Corradi A, Lancellotti I (2001) Structural studies and electrical properties of recycled glasses from glass and incinerator waste. J Mater Sci 36:2173–2177

    Article  CAS  Google Scholar 

  142. Barba MF, Callejas P, Arabe JO, Ajò D (1998) Characterization of two frit ceramics materials in low cost fertilizers. J Eur Ceram Soc 18:1313–1317

    Article  CAS  Google Scholar 

  143. Jin W, Meyer C, Baxter S (2000) Glascrete-concrete with glass aggregate. ACI Mater J 97:208–213

    CAS  Google Scholar 

  144. Schroeder RL (1994) The use of recycled materials in highway construction. Public Roads 58:32–41

    Google Scholar 

  145. Su N, Chen JS (2002) Engineering properties of asphalt concrete made with recycled glass. Resour Conserv Recycl 35:259–274

    Article  Google Scholar 

  146. Gao Z, Drummond CH (1999) Thermal analysis of nucleation and growth of crystalline phases in vitrified industrial waste. J Am Ceram Soc 82:561–565

    Article  CAS  Google Scholar 

  147. Romero M, Rincon JM, Acosta A (2002) Effect of iron oxide content on the crystallisation of a diopside glass-ceramic glaze. J Eur Ceram Soc 22:883–890

    Article  CAS  Google Scholar 

  148. Zubekhin AP, Zhabrev VA, Kondyurin AM (1993) Glass formation and crystallization in the SiO2-CaO-MgO-Fe2O3-MnO2-K2O-Na2O for synthesizing heat resistant coatings. Steklo i Keramica 5:26–28

    Google Scholar 

  149. Barbieri L, Corradi A, Lancellotti I, Manfredini T (2002) Use of municipal incinerator bottom ash as sintering promoter. Waste Manag 22:859–863

    Article  CAS  Google Scholar 

  150. Bernardo E, Esposito L, Rambaldi E, Tucci A, Hreglich S (2008) Recycle of waste glass into “glass-ceramic stoneware”. J Am Ceram Soc 91:2156–2162

    Article  CAS  Google Scholar 

Books and Reviews

  • Gomez E, Rani DA, Cheeseman CR, Deegan D, Wise M, Boccaccini AR (2008) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161:614–626

    Article  CAS  Google Scholar 

  • Oh CO (2001) Hazardous and radioactive waste treatment technology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Scholze H (1991) Glass: nature, structure and properties. Springer, New York

    Book  Google Scholar 

  • Strnad Z (1986) Glass-ceramic materials. Elsevier, Amsterdam

    Google Scholar 

  • Vesilind PA, Worrell W, Reinhart D (2002) Solid waste engineering. Rooks/Cole, Pacific Grove

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Bernardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Bernardo, E., Scarinci, G., Colombo, P. (2017). Vitrification of Waste and Reuse of Waste-Derived Glass. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_96-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_96-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics