Skip to main content

Mitigation of Airborne Pollutants in Coal Combustion: Use of Simulation

  • Living reference work entry
  • First Online:

Definition of the Subject

Combustion of coal is a significant source of electrical power production in the United States, providing approximately one-third of US power generation [1]. Coal provides a secure and sustainable fuel source and utilizes existing infrastructure for mining, transportation, and processing, making it an economical contributor to the overall US energy portfolio. Inherent in coal combustion is the production of various airborne trace pollutants including particulate matter. At uncontrolled levels, these pollutants can create environmental and health concerns. Pollution control technologies have been developed, commercialized, and deployed across the power generation industry over the past 40 years resulting in significant reductions in airborne emissions from coal power plants. However, competitive markets and ever-tightening pollutant regulations require increasingly sophisticated solutions to further reduce emissions.

Because of the complex chemical processes...

This is a preview of subscription content, log in via an institution.

Abbreviations

ACI:

Activated carbon injection

APCD:

Air pollution control devices

APH:

Air preheater

CFD:

Computational fluid dynamics

ESP:

Electrostatic precipitator

FGD:

Flue gas desulfurization

LNB:

Low-NOx burner

OFA:

Overfire air

PM:

Particulate matter

SCR:

Selective catalytic reduction

SDA:

Spray dryer absorber

SNCR:

Selective non-catalytic reduction

Bibliography

  1. (2016) US Energy Information Administration. Electric power monthly

    Google Scholar 

  2. https://www.epa.gov/naaqs

  3. https://gispub.epa.gov/air/trendsreport/2016/

  4. Power plant emission trends. https://www3.epa.gov/airmarkets/progress/datatrends/index.html

  5. Mitchell JFB (1989) The “Greenhouse” effect and climate change. Am Geophys Union 27(1):115–139. Washington, DC

    Google Scholar 

  6. Adams B, Cremer M, Wang D (2000) Modeling non-equilibrium CO oxidation in combustion systems. In: Proceedings of the ASME heat transfer division HTD-366-5:29–34

    Google Scholar 

  7. Turns S (1996) An introduction to combustion. McGraw-Hill, New York

    Google Scholar 

  8. Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications: I Analysis, vol 1311. NASA Reference Publication, Washington, DC

    Google Scholar 

  9. Reynolds W (1986) The element-potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN. Stanford University, Palo Alto

    Google Scholar 

  10. Smoot L, Smith P (1985) Coal combustion and gasification. Plenum Press, New York

    Book  Google Scholar 

  11. Kee R, Rupley F, Miller J (1989) Chemkin-II: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical report SAND-89-8009. Sandia National Labs

    Google Scholar 

  12. Goodwin D (2001) Cantera user’s guide fortran version. California Institute of Technology, Pasadena

    Google Scholar 

  13. Meeks E, Chou C, Garratt T (2013) Package equivalent reactor networks as reduced order models for use with CAPEOPEN compliant simulations – final report. US DOE report DOE/FE0001074-4.

    Google Scholar 

  14. Chen JY (1988) A general procedure for constructing reduced reaction mechanisms with given independent relations. Combust Sci Technol 57(1–3):89–94

    Article  CAS  Google Scholar 

  15. Grant D, Pugmire R, Fletcher T, Kerstein A (1989) Chemical model of coal devolatilization using percolation lattice statistics. Energy Fuel 3:175–186

    Article  CAS  Google Scholar 

  16. Solomon P, Hamblen D, Carangelo R, Serio M, Deshpande G (1988) General model of coal devolatilization. Energy Fuel 2:405–422

    Article  CAS  Google Scholar 

  17. Ubhayakar SK, Stickler DB, Von Rosenberg C, Gannon, RE (1976) Rapid devolatilization of pulverized coal in hot combustion gases. In: 16th international symposium on combustion, Pittsburgh, pp 427–436

    Google Scholar 

  18. Kobayashi H, Howard JB, Sarofim AF (1977) Coal devolatilization at high temperatures. Symp Combust 16(1):411–425

    Article  Google Scholar 

  19. Hurt R, Sun J, Lunden M (1998) A kinetic model of carbon burnout in pulverized coal combustion. Combust Flame 113:181–197

    Article  CAS  Google Scholar 

  20. Baxter LL (1987) Particle phase behaviour in combustion environments. Ph.D. Dissertation, Chemical Engineering Department. Brigham Young University. Provo, Utah

    Google Scholar 

  21. Pletcher RH, Tannehill JC, Anderson D (2012) Computational fluid mechanics and heat transfer, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  22. Patankar S (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington, DC

    Google Scholar 

  23. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics, the finite volume method, 2nd edn. Pearson Education Limited, England

    Google Scholar 

  24. Eaton AM, Smoot LD, Hill SC, Eatough CN (1999) Components, formulations, solutions, evaluation, and application of comprehensive combustion models. Prog Energy Combust Sci 25:387–436

    Article  CAS  Google Scholar 

  25. Williams A, Backreedy R, Habib R, Jones JM, Pourkashanian M (2002) Modelling coal combustion: the current position. Fuel 81(5):605–618

    Article  CAS  Google Scholar 

  26. Patankar SV, Spalding DB (1970) Heat and mass transfer in boundary layers, 2nd edn. Morgan-Grampian, London

    Google Scholar 

  27. Spalding DB (1977) GENMIX; a general computer program for two-dimensional parabolic phenomena. Pergamon Press, Oxford

    Google Scholar 

  28. Spalding DB, Stephenson PL (1971) Laminar flame propagation in hydrogen & bromine mixtures. Proc Roy Soc A 324:315–337

    Article  CAS  Google Scholar 

  29. Gosman GD, Pun WM, Runchal AK, Spalding DB, Wolfshtein M (1969) Heat and mass transfer in recirculating flows. Academic Press, London

    Google Scholar 

  30. Pun WM, Spalding DB (1968) A procedure for predicting the velocity and temperature distributions in a confined, steady, turbulent, gaseous diffusion flame. In: Proceedings of 18th International Aeronautical Congress, Belgrade. Pergamon Press, London

    Google Scholar 

  31. Caretto LS, Curr RM, Spalding DB (1972) Two numerical methods for three-dimensional boundary layers. Comput Methods Appl Math Eng 1(1):39–57

    Article  Google Scholar 

  32. Caretto LS, Gosman AD, Patankar SV, Spalding DB (1973) Two calculation procedures for steady, three-dimensional flows with recirculation. Proc, 3rd Int Conf on Numerical Methods in Fluid Mechanics, Springer Verlag

    Google Scholar 

  33. Zuber I (1972) A mathematical model of the combustion chamber. Staatliches Forschungsinstitut fuer Maschinenbau, Bechovice

    Google Scholar 

  34. Patankar SV, Spalding DB (1974) Simultaneous predictions of flow patterns and radiation for three-dimensional flames. In: Afgan NH, Beer JM (eds) Heat transfer in flames. Wiley, New York

    Google Scholar 

  35. Serag-El-Din MA (1977) The numerical prediction of the flow and combustion processes in a three-dimensional combustion chamber. London University PhD thesis, Imperial College

    Google Scholar 

  36. Spalding DB (1971) Mixing and chemical reaction in confined turbulent flames. In: 13th international symposium on combustion, Combustion Institute, Pittsburgh, pp 649–657

    Google Scholar 

  37. Spalding DB (1971) Concentration fluctuations in a round turbulent free jet. J Chem Eng Sci 26:95

    Article  CAS  Google Scholar 

  38. Lockwood FC, Shah NG (1981) A new radiation solution method for incorporation in general combustion prediction procedures. In: 18th symposium (international) on combustion. Elsevier, Amsterdam

    Google Scholar 

  39. Fiveland WA (1984) Discrete-ordinates solutions of the radiative-transport equation for rectangular enclosures. J Heat Transf 106:699–706

    Article  Google Scholar 

  40. Magnussen BF, Hjertager BH (1976) On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion. In: 16th symposium (international) on combustion, Combustion Institute, Pittsburg, pp 719–729

    Google Scholar 

  41. Bray KNC (1980) Topics in applied physics. Springer, New York

    Google Scholar 

  42. Pope SB (1982) An improved turbulent mixing model. Combust Sci Technol 28:131

    Google Scholar 

  43. Abbas AS, Lockwood FC (1986) Prediction of power station combustors. In: 21st symposium (international) on combustion, Elsevier, Amsterdam, pp 285–292

    Google Scholar 

  44. Boyd RK, Kent JH (1986) Three-dimensional furnace computer modelling. In: 21st Symposium (international) on combustion, Elsevier, Amsterdam, pp 265–274

    Google Scholar 

  45. Cetegen BM, Richter W (1987) Heat transfer modeling of a large coal-fired utility boiler and comparisons with field data. In: Proceedings of the 2nd ASME/JSME Thermal Engineering Joint Conference, vol 1. New York, pp 225–234

    Google Scholar 

  46. De Michele G, Ghiribelli L, Pasini S, Tozzi A (1989) A 3-D code for predicting radiative and convective heat transfer in boilers. In: Shah, RK (ed) Heat transfer phenomena in radiation, combustion, and fires, vol. 106, HTD – ASME, New York, pp 275–286

    Google Scholar 

  47. Fiveland WA, Wessel RA (1986) FURMO: A numerical model for predicting performance of three-dimensional pulverized-fuel fired furnaces. ASME Paper 86-HT-35. ASME, New York

    Google Scholar 

  48. Gillis PA, Smith PJ (1990) An evaluation of three-dimensional computational combustion and fluid-dynamics for industrial furnace geometries. In: 23rd symposium (international) on combustion, Elsevier, Amsterdam, pp 981–991

    Google Scholar 

  49. Lockwood FC, Mahmud T (1988) The prediction of swirl burner pulverized coal flames. In: 22nd symposium (international) on combustion, Elsevier, Amsterdam, pp 165–173

    Google Scholar 

  50. Smith PJ, Fletcher TH, Smoot LD (1981) Model for pulverized coal fired reactors. In: 18th symposium (international) on combustion, Elsevier, Amsterdam, pp 1285–1293

    Google Scholar 

  51. Smoot LD (1984) Modeling of coal-combustion processes. Prog Energy Combust Sci 10:229–272

    Article  CAS  Google Scholar 

  52. Truelove JS (1984) The modelling of flow and combustion in swirled, pulverized-coal burners. In: 20th symposium (international) on combustion, Elsevier, Amsterdam, pp 523–530

    Google Scholar 

  53. Smoot L, Pratt DT (1979) Pulverized coal combustion and gasification. Plenum Press, New York

    Book  Google Scholar 

  54. Adams B, Smith PJ (1993) Three dimensional discrete ordinates modelling of radiative transfer in a geometrically complex furnace. Combust Sci Technol 88(5–6):293–308

    Article  CAS  Google Scholar 

  55. Viskanta R, Menguc MP (1987) Radiation heat transfer in combustion systems. Prog Energy Combust Sci 13:97–160

    Article  CAS  Google Scholar 

  56. Fiveland W, Jessee P (1995) Comparison of discrete ordinates formulations for radiative heat transfer in multidimensional geometries. J Thermophys Heat Transfer 9:1

    Article  Google Scholar 

  57. Fletcher TH, Ma J, Rigby JR, Brown AL, Webb BW (1997) Soot in coal combustion systems. Prog Energy Combust Sci 23:283–301

    Article  CAS  Google Scholar 

  58. Adams BR, Smith PJ (1995) Modeling effects of soot and turbulence-radiation coupling on radiative transfer in turbulent gaseous combustion. Combust Sci Technol 109:121–140

    Article  CAS  Google Scholar 

  59. Leung KM, Lindstedt P, Jones WP (1991) A simplified reaction mechanism for soot formation in nonpremixed flames. Combust Flame 87:289–305

    Article  CAS  Google Scholar 

  60. Magnussen B, Hjertager B (1977) On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp Combust 16(1):719–729

    Article  Google Scholar 

  61. Peters N (1988) Laminar flamelet concepts in turbulent combustion. Symp Combust 21(1):1231–1250

    Article  Google Scholar 

  62. Christo F, Dally B (2005) Modeling turbulent reacting jets issuing into a hot and diluted coflow. Combust Flame 142(1–2):117–129

    Article  CAS  Google Scholar 

  63. Gran I, Magnussen B (1996) A numerical study of a bluff-body stabilized diffusion flame. Part 1: influence of turbulence modeling and boundary conditions. Combust Sci Technol 119(1–6):171–190

    Article  CAS  Google Scholar 

  64. Falcitellia M, Pasinib S, Tognotti L (2002) Modelling practical combustion systems and predicting NOx emissions with an integrated CFD based approach. Comput Chem Eng 26(9):1171–1183

    Article  Google Scholar 

  65. Cremer M, Valentine J, Shim H, Davis K, Adams B, Letcavits J, Vierstra S (2003) CFD-based development, design, and installation of cost-effective NOx control strategies for coal-fired boilers. In: The mega symposium: EPRI-DOE-EPA combined utility air pollutant control symposium, AWMA, Washington, DC

    Google Scholar 

  66. Cremer M, Adams B, Valentine J, Letcavits J, Vierstra S (2002) Use of CFD modeling to guide design and implementation of overfire air for NOx control in coal-fired boilers. In: Proceedings of nineteenth annual international Pittsburgh coal conference, Pittsburgh

    Google Scholar 

  67. Adams B, Cremer M, Valentine J, Bhamidipati V, O’Connor D, Letcavits J, Vierstra S (2002) Use of CFD modeling for design of NOx reduction systems in utility boilers. In: International joint power generation conference, Phoenix

    Google Scholar 

  68. Cremer M, Wang D, Montgomery C, Adams B (2001) Utilization of reduced mechanism methods in CFD simulations for improved NOx predictions in utility boilers and furnaces. In: Joint AFRC/JFRC/IEA international combustion symposium, Kauai

    Google Scholar 

  69. Adams B, Wang DH, Cremer M, Frizzell K, Conn S (2001) Modeling NOx reduction from fuel lean gas reburning and selective non-catalytic reduction combined with overfire air at OMU’s Smith Unit 1. US EPA/DOE/EPRI combined power plant air pollutant control symposium: The mega symposium, paper 147, Chicago, AWMA, Washington, DC

    Google Scholar 

  70. Wang H, Harb J (2007) Modeling of ash deposit growth and sintering in PC-fired boilers. Impact of mineral impurities in solid fuel combustion, Gupta R, Wall T, Baxter L (Eds), Berlin Springer Science & Business Media 697—708

    Google Scholar 

  71. Lee1 FCC, Lockwood FC (1999) Modelling ash deposition in pulverized coal-fired applications. Prog Energy Combust Sci 25(2):117–132

    Article  Google Scholar 

  72. Rushdi A, Gupta R, Sharma A, Holcombe D (2005) Mechanistic prediction of ash deposition in a pilot-scale test facility. Fuel 84(10):1246–1258

    Article  CAS  Google Scholar 

  73. Pedel J, Thornock JN, Smith PJ (2012) Large eddy simulation of pulverized coal jet flame ignition using the direct quadrature method of moments. Energy Fuel 26(11):6686–6694

    CAS  Google Scholar 

  74. Pedel J, Thornock JN, Smith PJ (2013) Ignition of co-axial turbulent diffusion oxy-coal jet flames: experiments and simulations collaboration. Combust Flame 160(6):112–1128

    Article  CAS  Google Scholar 

  75. Warzecha P, Boguslawski A (2014) LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies. Energy 66:732–743

    Article  CAS  Google Scholar 

  76. Stein OT, Olenik G, Kronenburg A et al (2013) Towards comprehensive coal combustion modelling for LES. Flow Turbul Combust 90:859

    Article  CAS  Google Scholar 

  77. Kulaots I, Hurt RH, Suuberg EM (2004) Size distribution of unburned carbon in coal fly ash and its implications. Fuel 83:223–230

    Article  CAS  Google Scholar 

  78. Wang C, Seames WS, Gadgil M, Hrdlicka J, Fix G (2007) Comparison of coal ash particle size distributions from Berner and Dekati low pressure impactors. Aerosol Sci Technol 41:1049–1062

    Article  CAS  Google Scholar 

  79. Seaton A, Godden D, MacNee W, Donaldson K, Gooden D (1995) Particulate air pollution and acute health effects. Lancet 345:176–178

    Article  CAS  Google Scholar 

  80. U.S. Environmental Protection Agency (1998) Particulate matter research needs for human health risk assessment to support future reviews of the national ambient air quality standards for particulate matter. National Center for Environmental Assessment, Research Triangle Park. EPA/600/R-97/132F

    Google Scholar 

  81. U.S. Environmental Protection Agency (1998) Stationary source control techniques document for fine particulate matter. Research Triangle Park: National Center for Environmental Assessment. EPA 68-D-98-026

    Google Scholar 

  82. Wilder J, Pilat M (1983) Calculated droplet size distributions and opacities of condensed sulfuric acid aerosols. APCA J 33(9)

    Google Scholar 

  83. (2016) ASTM D1857/D1857M-16 standard test method for fusibility of coal and coke ash. ASTM International, West Conshohocken

    Google Scholar 

  84. Walsh PM, Sayre AN, Loehden DO, Monroe LS, Beér JM, Sarofim AF (1990) Deposition of bituminous coal ash on an isolated heat exchanger tube: effects of coal properties on deposit growth. Prog Energy Combust Sci 16(4):327–345

    Article  CAS  Google Scholar 

  85. Miller B (1985) Clean coal engineering technology, 2nd edn. Butterworth-Heinemann Elsevier Ltd, Oxford

    Google Scholar 

  86. Raask E (1985) Mineral impurities in coal combustion: behavior, problems, and remedial measures. Hemisphere Publishing Corp, Washington, DC

    Google Scholar 

  87. López C, Unterberger S, Maier J, Hein KRG (2003) Overview of actual methods for characterization of ash deposition. In: Heat exchanger fouling and cleaning: fundamentals and applications, engineering conferences international, New York, NY

    Google Scholar 

  88. Bryers RW (1996) Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog Energy Combust Sci 22(1):29–120

    Article  CAS  Google Scholar 

  89. Dumont BJ, Mudry RG (2003) Computational fluid dynamic modeling of electrostatic precipitators. In: Electric power conference, Houston, TX

    Google Scholar 

  90. Choi BS, Fletcher CAJ (1997) Computation of particle transport in an electrostatic precipitator. J Electrost 40–41:413–418

    Article  Google Scholar 

  91. Guo B, Yu A, Guo J (2015) Numerical modelling of ESP for design optimization. The 7th World Congress on Particle Technology (WCPT7). Procedia Eng 102:1366–1372

    Article  Google Scholar 

  92. Liu Q, Zhang S, Chen J (2015) Numerical analysis of charged particle collection in wire-plate ESP. J Electrost 74:56–65

    Article  Google Scholar 

  93. Soldati A (2000) On the effects of electrohydrodynamic flows and turbulence on aerosol transport and collection in wire-plate electrostatic precipitators. J Aerosol Sci 31(3):293–305

    Article  CAS  Google Scholar 

  94. Turner J, McKenna J, Mycock J, Nunn A, Vatavuk W (1998) Baghouses and filters. EPA/452/B-02-001, OAQPS, US EPA, Research Triangle Park, NC

    Google Scholar 

  95. Broadway RM, Cass RW (1975) Fractional efficiency of a utility boiler baghouse: Nucla generating plant. EPA-600/2-75-013-a, Office of Research and Development, US EPA, Washington, DC

    Google Scholar 

  96. Cass RW, Broadway RM (1976) Fractional efficiency of a utility boiler baghouse: Sunbury Steam Electric Station. EPA-600/2-76-077a, Office of Research and Development, US EPA, Research Triangle Park, NC

    Google Scholar 

  97. Dennis R, Klemm HA (1980) Modeling concepts for pulse jet filtration. JAPCA 30(l):38–43

    Google Scholar 

  98. Leith D, Ellenbecker MJ (1980) Theory for pressure drop in a pulse-jet cleaned fabric filter. Atmos Environ 14:845–852

    Article  Google Scholar 

  99. Koehler JL, Leith D (1983) Model calibration for pressure drop in a pulse-jet cleaned fabric filter. Atmos Environ 17(10):1909–1913

    Article  CAS  Google Scholar 

  100. Spinti JP, Pershing DW (2003) The fate of char-N at pulverized coal conditions. Combust Flame 135:299–313

    Article  CAS  Google Scholar 

  101. https://www.epa.gov/sites/production/files/2016-07/documents/cofactsheetaugust12v4.pdf

  102. Dryer G (1973) High temperature oxidation of CO and CH4. In: 14 symbosium (international) on combustion, The Combustion Institute, Pittsburgh, pp 987–1003

    Google Scholar 

  103. Miller B (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci 15:287–338

    Article  CAS  Google Scholar 

  104. Chen JY (1988) A general procedure for constructing reduced reaction mechanisms with given independent relations. Combust Sci Technol 57(1–3):9–94

    Google Scholar 

  105. Glassman I (1987) Combustion, 2nd edn. Academic, Orlando

    Google Scholar 

  106. Fenimore CP (1971) Formation of nitric oxide in premixed hydrocarbon flames. In: Proceedings of the 13th symposium (international) on combustion, Elsevier, Amsterdam, pp 373–389

    Google Scholar 

  107. Pershing DW, Wendt JOL (1977) The influence of flame temperature and coal composition on thermal and fuel NOx. In: Proceedings of the 16th symposium (international) on combustion, pp 389–399

    Google Scholar 

  108. Sarofim AF, Beér JM (1990) The fate of fuel nitrogen and ash during combustion of pulverized coal, chapter 4. In: Lemieux PM (ed) Air and Energy Engineering Research Laboratory (eds) Pulverized coal combustion: pollutant formation and control. U.S. Environmental Protection Agency/Air and Energy Engineering Research Laboratory, Research Triangle Park, pp 1970–1980

    Google Scholar 

  109. Hayhurst AN, Vince IM (1980) Nitric oxide formation from N2 in flames. Prog Energy Combust Sci 6:35–51. Elsevier, Amsterdam

    Article  CAS  Google Scholar 

  110. Zel’dovich YB (1946) The oxidation of nitrogen in combustion explosions. Acta Physicochim USSR 21:577–628

    Google Scholar 

  111. http://combustion.berkeley.edu/gri-mech/

  112. Perry S, Fletcher TH, Pugmire RJ, Solum MS (2000) A global free-radical mechanism for light gas nitrogen release from coal during devolatilization. Energy Fuel 14:1094–1102

    Article  CAS  Google Scholar 

  113. Sung CJ, Law CK, Chen JY (2001) Augmented reduced mechanisms for NO emission in methane oxidation. Combust Flame 125(1–2):906–919

    Article  CAS  Google Scholar 

  114. Lu T, Law CK (2008) A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry. Combust Flame 154(4):761–774

    Article  CAS  Google Scholar 

  115. Massias A, Diamantis D, Mastorakos E, Goussis D (1999) Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data. Combust Theor Model 3(2):233–257

    Article  CAS  Google Scholar 

  116. Meadows ML (1997) Summary report control of NOx emissions by reburning. U.S. Environmental Protection Agency, Washington, DC. EPA/625/R-96/001 (NTIS 97-208201)

    Google Scholar 

  117. Wendt J, Sternling C, Matovich M (1973) Reduction of sulfur trioxide and nitrogen oxides by secondary fuel injection. In: 14th symposium (international) on combustion, Elsevier, Amsterdam, pp 897–904

    Google Scholar 

  118. Yagiela A, Maringo G, Newell R, Farzan H (1992) Demonstration of coal reburning for cyclone boiler NOx control. In: First annual clean coal technology conference, Cleveland

    Google Scholar 

  119. Folsom B, Payne R, Sommer T, Engelhardt D, Ritz H (1995) Demonstration of gas reburning-low NOx burner technology for cost-effective NOx emission control. In: Fourth annual clean coal technology conference, Denver

    Google Scholar 

  120. Folsom B, Sommer T, Englehardt D, O’Dea D, Hunsicker S, Watts (1997) Coal reburning for cost-effective NOx compliance. In: 5th annual clean coal technology conference, Tampa

    Google Scholar 

  121. Savichky W, Gaufillet G, Mahlmeister M, Englehardt D, Mereb J, Watts J (1998) Micronized coal reburning demonstration of NOx control. In: 6th annual clean coal technology conference, Reno

    Google Scholar 

  122. Cremer MA, Adams BR, O’Connor DC, Bhamidipati VN, Broderick RG (2001) Design and demonstration of rich reagent injection (RRI) for NOx reduction at Conectiv’s B.L. England Station. US EPA/DOE/EPRI combined power plant air pollutant control symposium: the Mega symposium, Chicago, AWMA, Washington, DC

    Google Scholar 

  123. Wan HP, Yang CS, Adams BR, Chen SL (2008) Controlling LOI from coal reburning in a coal-fired boiler. Fuel 87:290–296

    Article  CAS  Google Scholar 

  124. Wu KT, Lee HT, Juch CI, Wan HP, Shim HS, Adams BR, Chen SL (2004) Study of syngas co-firing and reburning in a coal fired boiler. Fuel 83:1991–2000

    Article  CAS  Google Scholar 

  125. Lyon R (1987) Thermal DeNOx: controlling nitrogen oxides emissions by a noncatalytic process. Environ Sci Technol 21(3):231

    Article  CAS  Google Scholar 

  126. Blejchař T, Dolníčková D (2013) Numerical simulation of SNCR technology with simplified chemical kinetics model. In: EPJ web of conferences, 45, 01015, EDP Sciences

    Google Scholar 

  127. Javed M, Ahmed Z, Ibrahim M, Irfan N (2008) A comparative kinetic study of SNCR process using ammonia. Braz J Chem Eng 25(1):109–117

    Article  CAS  Google Scholar 

  128. Muzio L, Quartucy G (1993) State-of-the-art assessment of SNCR technology. Topical report no. TR-102414. Electric Power Research Institute, Palo Alto

    Google Scholar 

  129. U.S. Department of Energy (2005) Selective catalytic reduction (SCR) technology for the control of nitrogen oxide emissions from coal-fired boilers. Topical report no 23. U.S. Department of Energy, Pittsburgh

    Google Scholar 

  130. Forzatti P (2001) Present status and perspectives in de-NOx SCR catalysis. Appl Catal A Gen 222(1–2):221–236

    Article  CAS  Google Scholar 

  131. Yun BK, Kim MY (2013) Modeling the selective catalytic reduction of NOx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases. Appl Therm Eng 50:152–158

    Article  CAS  Google Scholar 

  132. Dumesic JA, Topsøe NY, Topsøe H, Chen Y, Slabiak T (1996) Kinetics of selective catalytic reduction of nitric oxide by ammonia over Vanadia/Titania. J Catal 163(2):409–417

    Article  CAS  Google Scholar 

  133. Castaldini C, Angwin M (1977) Boiler design and operating variables affecting uncontrolled sulfur emissions from pulverized-coal-fired steam generators. EPA-450/3-77-047. U.S. Environmental Protection Agency, Research Triangle Park

    Google Scholar 

  134. Folkedahl BC, Zygarlicke CJ (2004) Sulfur retention in North Dakota lignite coal ash. Preprints of the papers of the spring national meeting of the Division of Fuel Chemistry 49(1):167–168. American Chemical Society, Anaheim

    Google Scholar 

  135. Srivastava RK (2000) Controlling SO2 emissions: a review of technologies. EPA/600/R-00/093. U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC

    Google Scholar 

  136. Kohl A, Riesenfeld F (1985) Gas purification, 4th edn. Gulf, Houston

    Google Scholar 

  137. Weiler H, Ellison W (1997) Wet gypsum-yielding FGD experience using quicklime reagent. TR-108683-V2. Electric Power Research Institute, Palo Alto

    Google Scholar 

  138. United Engineers and Constructors, Inc (1991) Economic evaluation of flue gas desulfurization systems. GS-7193, vol 1. Electric Power Research Institute, Palo Alto

    Google Scholar 

  139. United Engineers and Constructors, Inc (1992) Economic evaluation of flue gas desulfurization systems. GS-7193, vol 2. Electric Power Research Institute, Palo Alto

    Google Scholar 

  140. United Engineers and Constructors, Inc (1995) Economic evaluation of flue gas desulfurization systems. GS-7193-V3, vol 3. Electric Power Research Institute, Palo Alto

    Google Scholar 

  141. Fox MR, Hunt TG (1990) Flue gas desulfurization using dry sodium injection. Presented at the EPA/EPRI 1990 SO2 control symposium, New Orleans

    Google Scholar 

  142. Zhou W, Maly P, Brooks J, Nareddy S, Swanson L, Moyeda D (2010) Design and test furnace sorbent injection for SO2 removal in a tangentially fired boiler. Environ Eng Sci 27(4):337–345. Mary Ann Liebert, New Rochelle

    Article  CAS  Google Scholar 

  143. Stouffer M, Withum J, Rosenhoover W, Maskew J (1994) Advanced in-duct sorbent injection for SO2 control. Final technical report, DOE/PC/90360-49

    Google Scholar 

  144. Arif A, Stephen C, Branken D, Everson R, Neomagus H, Piketh S (2015) Modeling wet flue gas desulfurization. In: Conference of the National Association for Clean Air (NACA 2015), Bloemfontein, South Africa

    Google Scholar 

  145. Neveux T, le Moullec Y (2011) Wet industrial flue gas desulfurization unit: model development and validation on industrial data. Ind Eng Chem Res 50:7579–7592

    Article  CAS  Google Scholar 

  146. Gómeza A, Fueyoa N, Tomás A (2007) Detailed modelling of a flue-gas desulfurisation plant. Comput Chem Eng 31(11):1419–1431

    Article  CAS  Google Scholar 

  147. Maroccoa L, Inzoli F (2009) Multiphase Euler–Lagrange CFD simulation applied to wet flue gas desulphurisation technology. Int J Multiphase Flow 35(2):185–194

    Article  CAS  Google Scholar 

  148. Dou BL, Pan WG, Jin Q, Wang WH, Li Y (2009) Prediction of SO2 removal efficiency for wet flue gas desulfurization. Energy Convers Manag 50:2547–2553

    Article  CAS  Google Scholar 

  149. Zhong Y, Gao X, Huo W, Luo ZY, Ni MJ, Cen KF (2008) A model for performance optimization of wet flue gas desulfurization systems of power plants. Fuel Process Technol 89:1025–1032

    Article  CAS  Google Scholar 

  150. Masters K (1985) Spray drying handbook, 4th edn. Wiley, New York

    Google Scholar 

  151. Scala F, D'Ascenzo M, Lancia A (2004) Modeling flue gas desulfurization by spray-dry absorption. Sep Purif Technol 34(1–3):143–153

    Article  CAS  Google Scholar 

  152. Partridge GP, Davis WT, Counce RM, Reed GD (1990) A mechanistically based mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray dryer. Chem Eng Commun 96:97–112

    Article  CAS  Google Scholar 

  153. Newton GH, Kramlich J, Payne R (1990) Modeling the SO2-slurry droplet reaction. AICHE J 36:1865–1872

    Article  CAS  Google Scholar 

  154. Hill FF, Zank J (2000) Flue gas desulphurization by spray dry absorption. Chem Eng Process 39:45–52

    Article  CAS  Google Scholar 

  155. Karlsson HT, Klingspor J (1987) Tentative modelling of spray-dry scrubbing of SO2. Chem Eng Technol 10:104–112

    Article  Google Scholar 

  156. Dantuluri SR, Davis WT, Counce RM, Reed GD (1990) Mathematical model of sulfur dioxide absorption into a calcium hydroxide slurry in a spray dryer. Sep Sci Technol 25:1843–1855

    Article  CAS  Google Scholar 

  157. Ramachandran PA, Sharma MM (1969) Absorption with fast reaction in a slurry containing sparingly soluble fine particles. Chem Eng Sci 24:1681–1686

    Article  CAS  Google Scholar 

  158. Scala F, D’Ascenzo M (2002) Absorption with instantaneous reaction in a droplet with sparingly soluble fines. AICHE J 48:1719–1726

    Article  CAS  Google Scholar 

  159. Marocco L, Mora A (2013) CFD modeling of the Dry-Sorbent-Injection process for flue gas desulfurization using hydrated lime. Sep Purif Technol 108:205–214

    Article  CAS  Google Scholar 

  160. Schantz M, Sewell M (2013) The growth of dry sorbent injection (DSI) and the impact on coal combustion residue. In: 2013 World of Coal Ash (WOCA) conference, Center for Applied Energy Research, Lexington, KY

    Google Scholar 

  161. Muziak J (2005) Successful mitigation of SO3 by dry sorbent injection of trona upstream of the ESP. 2005 EPA/DOE/EPRI mega symposium, Air and Waste Management Association, Pittsburgh, PA

    Google Scholar 

  162. (2016) Dry sorbent injection for acid gas control: process chemistry, waste disposal and plant operational impacts. White paper, Institute of Clean Air Companies. Arlington

    Google Scholar 

  163. Shi L, Liu G, Higgins BS, Benson L (2011) Computational modeling of furnace sorbent injection for SO2 removal from coal-fired utility boilers. Fuel Process Technol 92(3):372–378

    Article  CAS  Google Scholar 

  164. Srivastava RK, Miller CA, Erickson C, Jambhekar R (2004) Emissions of sulfur trioxide from coal-fired power plants. J Air Waste Manag Assoc 54:750–762. Air and Waste Management Association, Pittsburgh

    Article  CAS  Google Scholar 

  165. Blythe G, Dombrowski K (2004) SO3 mitigation guide update. Report no. 1004168. Electric Power Research Institute, Palo Alto

    Google Scholar 

  166. Walsh PM, McCain JD, Cushing KM (2006) Evaluation and mitigation of visible acidic aerosol plumes from coal fired power boilers. EPA/600/R-06/156

    Google Scholar 

  167. Senior C, Fry A, Montgomery C, Sarofim A, Wendt J (2006) Modeling tool for evaluation of utility mercury control strategies. Paper #23, DOE-EPRI-EPA-A&WMA Power plant air pollutant control “mega” symposium, Washington, DC

    Google Scholar 

  168. Senior CL, Sarofim AF, Zeng T, Helble JJ, Mamani-Paco R (2000) Gas-phase transformations of mercury in coal-fired power plants. Fuel Process Technol 63(2–3):197–213

    Article  CAS  Google Scholar 

  169. (2004) Control of mercury emissions from coal-fired electric utility boilers. Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park

    Google Scholar 

  170. (2014) Mercury emissions capture efficiency with activated carbon injection at a Russian coal-fired thermal power plant. Scientific report, EPA600/R-14/29, US EPA, Washington, DC

    Google Scholar 

  171. Afonso RF, Senior CL (2001) Assessment of mercury emissions from full scale power plants. Paper presented at the EPRI-EPA-DOE-AWMA mega symposium and mercury conference, Chicago, AWMA, Washington, DC

    Google Scholar 

  172. Kilgroe JD, Sedman CB, Srivastava RK, Ryan JV, Lee CW, Thornloe SA (2002) Control of mercury emissions from coal-fired electric utility boilers: interim report. EPA –600/R-01-109. National Risk Management Laboratory, US EPA, Research Triangle Park, NC

    Google Scholar 

  173. Laudal D (2002) Effect of selective catalytic reduction on mercury. 2002 field studies update, EPRI, Palo Alto. Product ID 1005558.

    Google Scholar 

  174. Chu P, Laudal D, Brickett L, Lee CW (2003) Power plant evaluation of the effect of SCR technology on mercury. Presented at the DOE-EPRI-U.S. EPA -A&WMA combined power plant air pollutant control symposium – The mega symposium, Washington, DC

    Google Scholar 

  175. La Marca C, Cioni M, Pintus N, Rossi N, Malloggi S, Barbieri A (2003) Macro and micro-pollutant emission reduction in coal-fired power plant. In: Presented at 7th international conference on energy for a clean environment (Clean Air 2003), Lisbon

    Google Scholar 

  176. Gutberlet H, Schlüter A, Licata A (2000) SCR impacts on mercury emissions from coal-fired boilers. Presented at EPRI SCR workshop, memphis

    Google Scholar 

  177. Sjostrom S, Durham M, Bustard CJ, Martin C (2010) Activated carbon injection for mercury control: overview. Fuel 89(6):1320–1322

    Article  CAS  Google Scholar 

  178. Looney B, Meeks N, Cecil J, Huston R, Wong J, Johnson E (2013) Advanced activated carbons for efficient solutions. Presented at EUEC presentation

    Google Scholar 

  179. Cremer M, Senior C, Chiodo A, Wang D, Valentine J (2004) CFD modeling of activated carbon injection for mercury control in coal fired power plants. In: Joint EPRI DOE EPA combined utility air pollution control symposium, the mega symposium, AWMA, Washington, DC

    Google Scholar 

  180. Hower JC, Senior CL, Suuberg EM, Hurt RH, Wilcox JL, Olson ES (2010) Mercury capture by native fly ash carbons in coal-fired power plants. Prog Energy Combust Sci 36(4):510–529

    Article  CAS  Google Scholar 

  181. Padak B, Wilcox J (2009) Understanding mercury binding on activated carbon. Carbon 47(12):2855–2864

    Article  CAS  Google Scholar 

  182. Wilcox J, Rupp E, Ying SC, Lim DH, Suarez Negreira A, Kirchofer A, Feng F, Lee K (2012) Mercury adsorption and oxidation in coal combustion and gasification processes. Int J Coal Geol 90–91:4–20

    Article  CAS  Google Scholar 

  183. Niksa S, Helble JJ, Fujiwara N (2001) Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems. Environ Sci Technol 35(18):3701–3706

    Article  CAS  Google Scholar 

  184. Qiu J, Sterling RO, Helble JJ (2003) In development of an improved model for determining the effects of SO2 on homogeneous mercury oxidation. In: 28th international technical conference on coal utilization & fuel systems, Clearwater

    Google Scholar 

  185. Senior CL, Sadler B, Sarofim AF (2005) Modeling mercury behavior in practical combustion systems. In: 229th american chemical society national meeting, San Diego

    Google Scholar 

  186. Senior CL (2006) Oxidation of mercury across SCR catalysts in coal-fired power plants. J Air Waste Manag Assoc 56:23–31

    Article  CAS  Google Scholar 

  187. Understanding mercury chemistry via the reaction engineering international (REI) ProMerc™ model. EPRI report 1014893

    Google Scholar 

  188. Adams B, Van Otten B (2014) Evaluation of mercury control strategies in the presence of SO3. Paper #18, power plant pollutant control “mega” symposium, Baltimore

    Google Scholar 

  189. Ciferno JD, Fout TE, Jones AP, Murphy JT (2009) Capture carbon from existing coal-fired power plants, chemical engineering progress. American Institute of Chemical Engineers, New York, pp 33–41

    Google Scholar 

  190. https://www.netl.doe.gov/research/coal/energy-systems/advanced-combustion/project-portfolio

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley R. Adams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Adams, B.R. (2017). Mitigation of Airborne Pollutants in Coal Combustion: Use of Simulation. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_959-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_959-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics