Skip to main content

Hydrogen Production Through Pyrolysis

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Introduction

Growing worldwide consumption of energy during the last decades is an outcome of growing world’s population and also the strong dependence of human’s lifestyle to energy carriers. As an example, 20% of global energy consumption belongs to the transportation section. Although fossil hydrocarbon-based energy carriers opened new vistas within the procedures of energy production, decreasing sources of natural gas and crude oil is making the governments and industries explore alternatives and even invent novel methods for manufacturing fuels. In addition to the depletion of fossil hydrocarbon sources, increasing emission of greenhouse gases (GHG), as well as NO x and SO x , is a real challenge of consuming fossil fuels. Global warming, change in climate patterns, and defects in biodiversity are the potential drawbacks of such emissions [1,2,3,4,5,6]. Besides, necessities of primary separation of impurities such as nitrogen, carbon dioxide, hydrogen sulfide, mercaptans, and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. Mortensen PM, Grunwaldt J-D, Jensen PA, Knudsen K, Jensen AD (2011) A review of catalytic upgrading of bio-oil to engine fuels. Appl Catal A Gen 407:1–19

    Article  CAS  Google Scholar 

  2. Balat M (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers Manag 52:858–875

    Article  CAS  Google Scholar 

  3. Sorrell S, Speirs J, Bentley R, Brandt A, Miller R (2010) Global oil depletion: a review of the evidence. Energy Policy 38:5290–5295

    Article  Google Scholar 

  4. van Ruijven B, van Vuuren DP (2009) Oil and natural gas prices and greenhouse gas emission mitigation. Energy Policy 37:4797–4808

    Article  Google Scholar 

  5. Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  6. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  7. Bakhtyari A, Mofarahi M (2014) Pure and binary adsorption equilibria of methane and nitrogen on zeolite 5A. J Chem Eng Data 59:626–639

    Article  CAS  Google Scholar 

  8. Mofarahi M, Bakhtyari A (2015) Experimental investigation and thermodynamic modeling of CH4/N2 adsorption on zeolite 13X. J Chem Eng Data 60:683–696

    Article  CAS  Google Scholar 

  9. Parvasi P, Khaje Hesamedini A, Jahanmiri A, Rahimpour MR (2014) A novel modeling and experimental study of crude oil desalting using microwave. Sep Sci Technol 49:1029–1044

    Article  CAS  Google Scholar 

  10. Kohl AL, Nielsen R (1997) Gas purification. Gulf Professional Publishing. Houston, Texas

    Google Scholar 

  11. Kothari R, Buddhi D, Sawhney R (2008) Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sust Energ Rev 12:553–563

    Article  CAS  Google Scholar 

  12. Balat M (2008) Potential importance of hydrogen as a future solution to environmental and transportation problems. Int J Hydrog Energy 33:4013–4029

    Article  CAS  Google Scholar 

  13. Suban M, Tušek J, Uran M (2001) Use of hydrogen in welding engineering in former times and today. J Mater Process Technol 119:193–198

    Article  CAS  Google Scholar 

  14. Saxena R, Seal D, Kumar S, Goyal H (2008) Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sustain Energy Rev 12:1909–1927

    Article  CAS  Google Scholar 

  15. Mohammed M, Salmiaton A, Azlina WW, Amran MM, Fakhru’l-Razi A, Taufiq-Yap Y (2011) Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renew Sustain Energy Rev 15:1258–1270

    Article  CAS  Google Scholar 

  16. Hossain MA, Jewaratnam J, Ganesan P (2016) Prospect of hydrogen production from oil palm biomass by thermochemical process–a review. Int J Hydrog Energy 41:16637–16655

    Article  CAS  Google Scholar 

  17. Ni M, Leung MK, Sumathy K, Leung DY (2006) Potential of renewable hydrogen production for energy supply in Hong Kong. Int J Hydrog Energy 31:1401–1412

    Article  CAS  Google Scholar 

  18. Dutta S (2014) A review on production, storage of hydrogen and its utilization as an energy resource. J Ind Eng Chem 20:1148–1156

    Article  CAS  Google Scholar 

  19. Konieczny A, Mondal K, Wiltowski T, Dydo P (2008) Catalyst development for thermocatalytic decomposition of methane to hydrogen. Int J Hydrog Energy 33:264–272

    Article  CAS  Google Scholar 

  20. Mohan SV, Bhaskar YV, Sarma P (2007) Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Water Res 41:2652–2664

    Article  CAS  Google Scholar 

  21. Dupont V, Steam reforming of sunflower oil for hydrogen GAS (2007) Production/oxidación catalítica del aceite de girasol en la producción del gas hidrógeno/reformage à la vapeur de l’huile de tournesol dans la production de gaz hydrogène. Helia 30:103–132

    Article  Google Scholar 

  22. Armor J (2005) Catalysis and the hydrogen economy. Catal Lett 101:131–135

    Article  CAS  Google Scholar 

  23. McDowall W, Eames M (2007) Towards a sustainable hydrogen economy: a multi-criteria sustainability appraisal of competing hydrogen futures. Int J Hydrog Energy 32:4611–4626

    Article  CAS  Google Scholar 

  24. Cherry RS (2004) A hydrogen utopia? Int J Hydrog Energy 29:125–129

    Article  CAS  Google Scholar 

  25. Hoang D, Chan S (2004) Modeling of a catalytic autothermal methane reformer for fuel cell applications. Appl Catal A Gen 268:207–216

    Article  CAS  Google Scholar 

  26. H. Energy (2003) Fuel cells – a vision of our future. Summary Report, High Level Group for Hydrogen and Fuel Cells

    Google Scholar 

  27. Balat M (2005) Current alternative engine fuels. Energy Sources 27:569–577

    Article  CAS  Google Scholar 

  28. Al-Baghdadi M (2003) Hydrogen–ethanol blending as an alternative fuel of spark ignition engines. Renew Energy 28:1471–1478

    Article  CAS  Google Scholar 

  29. Al-Baghdadi MA-RS (2002) A study on the hydrogen–ethyl alcohol dual fuel spark ignition engine. Energy Convers Manag 43:199–204

    Article  CAS  Google Scholar 

  30. Forsberg CW (2007) Future hydrogen markets for large-scale hydrogen production systems. Int J Hydrog Energy 32:431–439

    Article  CAS  Google Scholar 

  31. Khanipour M, Mirvakili A, Bakhtyari A, Farniaei M, Rahimpour MR (2017) Enhancement of synthesis gas and methanol production by flare gas recovery utilizing a membrane based separation process. Fuel Process Technol 166:186–201

    Article  CAS  Google Scholar 

  32. Wiltowski T, Mondal K, Campen A, Dasgupta D, Konieczny A (2008) Reaction swing approach for hydrogen production from carbonaceous fuels. Int J Hydrog Energy 33:293–302

    Article  CAS  Google Scholar 

  33. Balat H, Kırtay E (2010) Hydrogen from biomass – present scenario and future prospects. Int J Hydrog Energy 35:7416–7426

    Article  CAS  Google Scholar 

  34. Acar C, Dincer I (2014) Comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrog Energy 39:1–12

    Article  CAS  Google Scholar 

  35. Dincer I, Acar C (2015) Review and evaluation of hydrogen production methods for better sustainability. Int J Hydrog Energy 40:11094–11111

    Article  CAS  Google Scholar 

  36. Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrog Energy 26:185–190

    Article  CAS  Google Scholar 

  37. Kaneko H, Gokon N, Hasegawa N, Tamaura Y (2005) Solar thermochemical process for hydrogen production using ferrites. Energy 30:2171–2178

    Article  CAS  Google Scholar 

  38. Levchenko A, Dobrovolsky YA, Bukun N, Leonova L, Zyubina T, Neudachina V, Yashina L, Tarasov A, Shatalova T, Shtanov V (2007) Chemical and electrochemical processes in low-temperature superionic hydrogen sulfide sensors. Russ J Electrochem 43:552–560

    Article  CAS  Google Scholar 

  39. Amao Y, Tomonou Y, Okura I (2003) Highly efficient photochemical hydrogen production system using zinc porphyrin and hydrogenase in CTAB micellar system. Sol Energy Mater Sol Cells 79:103–111

    Article  CAS  Google Scholar 

  40. Nada A, Barakat M, Hamed H, Mohamed N, Veziroglu T (2005) Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. Int J Hydrog Energy 30:687–691

    Article  CAS  Google Scholar 

  41. Sediroglu V, Eroglu In, Yücel M, Türker L, Gündüz U (1999) The biocatalytic effect of iHalobacterium halobium on photoelectrochemical hydrogen production. J Biotechnol 70:115–124

    Article  CAS  Google Scholar 

  42. Sediroglu V, Yucel M, Gunduz U, Turker L, Eroglu I (1998) The effect of halobacterium halobium on photoelectrochemical hydrogen production. In: BioHydrogen. Springer, Boston, pp 295–304

    Google Scholar 

  43. Levent M, Gunn DJ, El-Bousiffi MA (2003) Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor. Int J Hydrog Energy 28:945–959

    Article  CAS  Google Scholar 

  44. Gunn D, El-Bousiffi M (2004) Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor. Int J Hydrog Energy 29:1427–1428

    Article  CAS  Google Scholar 

  45. Farniaei M, Abbasi M, Rahnama H, Rahimpour MR, Shariati A (2014) Syngas production in a novel methane dry reformer by utilizing of tri-reforming process for energy supplying: modeling and simulation. J Nat Gas Sci Eng 20:132–146

    Article  CAS  Google Scholar 

  46. Rahimpour MR, Hesami M, Saidi M, Jahanmiri A, Farniaei M, Abbasi M (2013) Methane steam reforming thermally coupled with fuel combustion: application of chemical looping concept as a novel technology. Energy Fuel 27:2351–2362

    Article  CAS  Google Scholar 

  47. Basile A, Palma V, Ruocco C, Bagnato G, Jokar S, Rahimpour MR, Shariati A, Rossi C, Iulianelli A (2015) Pure hydrogen production via ethanol steam reforming reaction over a novel Pt-Co based catalyst in a dense Pd-Ag membrane reactor (An experimental study). Int J Mem Sci Technol 2:5–14

    Article  Google Scholar 

  48. Jokar SM, Rahimpour MR, Shariati A, Iulianelli A, Bagnato G, Vita A, Dalena F, Basile A (2016) Pure hydrogen production in membrane reactor with mixed reforming reaction by utilizing waste gas: a case study. PRO 4:33

    Google Scholar 

  49. Lee JK, Park D (1998) Hydrogen production from fluidized bed steam reforming of hydrocarbons. Korean J Chem Eng 15:658–662

    Article  CAS  Google Scholar 

  50. Ko K-D, Lee JK, Park D, Shin SH (1995) Kinetics of steam reforming over a Ni/alumina catalyst. Korean J Chem Eng 12:478–480

    Article  CAS  Google Scholar 

  51. Seo JG, Youn MH, Park S, Lee J, Lee SH, Lee H, Song IK (2008) Hydrogen production by steam reforming of LNG over Ni/Al2O3-ZrO2 catalysts: effect of ZrO2 and preparation method of Al2O3-ZrO2. Korean J Chem Eng 25:95–98

    Article  CAS  Google Scholar 

  52. Seo JG, Youn MH, Cho KM, Park S, Lee SH, Lee J, Song IK (2008) Effect of Al2O3-ZrO2 xerogel support on hydrogen production by steam reforming of LNG over Ni/Al2O3-ZrO2 catalyst. Korean J Chem Eng 25:41–45

    Article  CAS  Google Scholar 

  53. Yu C-Y, Lee D-W, Park S-J, Lee K-Y, Lee K-H (2009) Study on a catalytic membrane reactor for hydrogen production from ethanol steam reforming. Int J Hydrog Energy 34:2947–2954

    Article  CAS  Google Scholar 

  54. Barbieri G, Di Maio FP (1997) Simulation of the methane steam re-forming process in a catalytic Pd-membrane reactor. Ind Eng Chem Res 36:2121–2127

    Article  CAS  Google Scholar 

  55. Wang J, Wan W (2009) Application of desirability function based on neural network for optimizing biohydrogen production process. Int J Hydrog Energy 34:1253–1259

    Article  CAS  Google Scholar 

  56. Kim P, Kim Y, Kim H, Song IK, Yi J (2004) Synthesis and characterization of mesoporous alumina with nickel incorporated for use in the partial oxidation of methane into synthesis gas. Appl Catal A Gen 272:157–166

    Article  CAS  Google Scholar 

  57. Gao X, Huang CJ, Zhang N, Li J, Weng WZ, Wan H (2008) Partial oxidation of methane to synthesis gas over Co/Ca/Al 2 O 3 catalysts. Catal Today 131:211–218

    Article  CAS  Google Scholar 

  58. Karimipourfard D, Kabiri S, Rahimpour MR (2014) A novel integrated thermally double coupled configuration for methane steam reforming, methane oxidation and dehydrogenation of propane. J Nat Gas Sci Eng 21:134–146

    Article  CAS  Google Scholar 

  59. Onozaki M, Watanabe K, Hashimoto T, Saegusa H, Katayama Y (2006) Hydrogen production by the partial oxidation and steam reforming of tar from hot coke oven gas. Fuel 85:143–149

    Article  CAS  Google Scholar 

  60. Takeguchi T, Furukawa S-N, Inoue M, Eguchi K (2003) Autothermal reforming of methane over Ni catalysts supported over CaO–CeO 2–ZrO 2 solid solution. Appl Catal A Gen 240:223–233

    Article  CAS  Google Scholar 

  61. Youn MH, Seo JG, Cho KM, Jung JC, Kim H, La KW, Park DR, Park S, Lee SH, Song IK (2008) Effect of support on hydrogen production by auto-thermal reforming of ethanol over supported nickel catalysts. Korean J Chem Eng 25:236–238

    Article  CAS  Google Scholar 

  62. Youn MH, Seo JG, Park S, Jung JC, Park DR, Song IK (2008) Hydrogen production by auto-thermal reforming of ethanol over Ni catalysts supported on ZrO 2: effect of preparation method of ZrO 2 support. Int J Hydrog Energy 33:7457–7463

    Article  CAS  Google Scholar 

  63. Luna AEC, Iriarte ME (2008) Carbon dioxide reforming of methane over a metal modified Ni-Al 2 O 3 catalyst. Appl Catal A Gen 343:10–15

    Article  CAS  Google Scholar 

  64. Nandini A, Pant KK, Dhingra SC (2006) Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 catalyst. Appl Catal A Gen 308:119–127

    Article  CAS  Google Scholar 

  65. Muradov N (1993) How to produce hydrogen from fossil fuels without CO2 emission. Int J Hydrog Energy 18:211–215

    Article  CAS  Google Scholar 

  66. Nikolaidis P, Poullikkas A (2017) A comparative overview of hydrogen production processes. Renew Sustain Energy Rev 67:597–611

    Article  CAS  Google Scholar 

  67. Palma V, Vaiano V, Barba D, Colozzi M, Palo E, Barbato L, Cortese S (2015) H2 production by thermal decomposition of H2S in the presence of oxygen. Int J Hydrog Energy 40:106–113

    Article  CAS  Google Scholar 

  68. Abbasi M, Farniei M, Rahimpour MR, Shariati A (2015) Hydrogen production in an environmental-friendly process by application of chemical looping combustion via Ni-and Fe-based oxygen carriers. Theor Found Chem Eng 49:884–900

    Article  CAS  Google Scholar 

  69. Abbasi M, Farniaei M, Rahimpour MR, Shariati A (2014) Methane dry reformer by application of chemical looping combustion via Mn-based oxygen carrier for heat supplying and carbon dioxide providing. Chem Eng Process Process Intensif 79:69–79

    Article  CAS  Google Scholar 

  70. Abbasi M, Farniaei M, Rahimpour MR, Shariati A (2013) Enhancement of hydrogen production and carbon dioxide capturing in a novel methane steam reformer coupled with chemical looping combustion and assisted by hydrogen perm-selective membranes. Energy Fuel 27:5359–5372

    Article  CAS  Google Scholar 

  71. Alirezaei I, Hafizi A, Rahimpour MR, Raeissi S (2016) Application of zirconium modified Cu-based oxygen carrier in chemical looping reforming. J CO2 Util 14:112–121

    Article  CAS  Google Scholar 

  72. Hafizi A, Jafari M, Rahimpour MR, Hassanajili S (2016) Experimental investigation of sorption enhanced chemical looping reforming for high purity hydrogen production using CeO 2–CaO CO 2 sorbent and 15Fe–5Ca/Al 2 O 3 oxygen carrier. J Taiwan Inst Chem Eng 65:185–196

    Article  CAS  Google Scholar 

  73. Hafizi A, Rahimpour MR, Hassanajili S (2016) High purity hydrogen production via sorption enhanced chemical looping reforming: application of 22Fe 2 O 3/MgAl 2 O 4 and 22Fe 2 O 3/Al 2 O 3 as oxygen carriers and cerium promoted CaO as CO 2 sorbent. Appl Energy 169:629–641

    Article  CAS  Google Scholar 

  74. Hafizi A, Rahimpour MR, Hassanajili S (2016) Hydrogen production by chemical looping steam reforming of methane over Mg promoted iron oxygen carrier: optimization using design of experiments. J Taiwan Inst Chem Eng 62:140–149

    Article  CAS  Google Scholar 

  75. Hafizi A, Jafari M, Rahimpour MR, Hassanajili S (2016) Experimental investigation of sorption enhanced chemical looping reforming for high purity hydrogen production using CeO 2–CaO CO 2 sorbent and 15Fe–5Ca/Al 2 O 3 oxygen carrier. J Taiwan Inst Chem Eng 65:185–196

    Article  CAS  Google Scholar 

  76. Bakhtyari A, Darvishi A, Rahimpour MR (2016) A heat exchanger reactor equipped with membranes to produce dimethyl ether from syngas and methyl formate and hydrogen from methanol. Int J 3:65

    Google Scholar 

  77. Bakhtyari A, Haghbakhsh R, Rahimpour MR (2016) Investigation of thermally double coupled double membrane heat exchanger reactor to produce dimethyl ether and methyl formate. J Nat Gas Sci Eng 32:185–197

    Article  CAS  Google Scholar 

  78. Bakhtyari A, Mohammadi M, Rahimpour MR (2015) Simultaneous production of dimethyl ether (DME), methyl formate (MF) and hydrogen from methanol in an integrated thermally coupled membrane reactor. J Nat Gas Sci Eng 26:595–607

    Article  CAS  Google Scholar 

  79. Bakhtyari A, Parhoudeh M, Rahimpour MR (2016) Optimal conditions in converting methanol to dimethyl ether, methyl formate, and hydrogen utilizing a double membrane heat exchanger reactor. J Nat Gas Sci Eng 28:31–45

    Article  CAS  Google Scholar 

  80. Bayat M, Rahimpour MR (2011) Simultaneous utilization of two different membranes for intensification of ultrapure hydrogen production from recuperative coupling autothermal multitubular reactor. Int J Hydrog Energy 36:7310–7325

    Article  CAS  Google Scholar 

  81. Brown LF (2001) A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles. Int J Hydrog Energy 26:381–397

    Article  CAS  Google Scholar 

  82. Simpson AP, Lutz AE (2007) Exergy analysis of hydrogen production via steam methane reforming. Int J Hydrog Energy 32:4811–4820

    Article  CAS  Google Scholar 

  83. Jin H, Xu Y, Lin R, Han W (2008) A proposal for a novel multi-functional energy system for the production of hydrogen and power. Int J Hydrog Energy 33:9–19

    Article  CAS  Google Scholar 

  84. Rahimpour MR, Ghaemi M, Jokar S, Dehghani O, Jafari M, Amiri S, Raeissi S (2013) The enhancement of hydrogen recovery in PSA unit of domestic petrochemical plant. Chem Eng J 226:444–459

    Article  CAS  Google Scholar 

  85. Ravanchi MT, Kaghazchi T, Kargari A (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination 235:199–244

    Article  CAS  Google Scholar 

  86. Chang H-F, Pai W-J, Chen Y-J, Lin W-H (2010) Autothermal reforming of methane for producing high-purity hydrogen in a Pd/Ag membrane reactor. Int J Hydrog Energy 35:12986–12992

    Article  CAS  Google Scholar 

  87. Wilhelm D, Simbeck D, Karp A, Dickenson R (2001) Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process Technol 71:139–148

    Article  CAS  Google Scholar 

  88. Aasberg-Petersen K, Christensen TS, Nielsen CS, Dybkjær I (2003) Recent developments in autothermal reforming and pre-reforming for synthesis gas production in GTL applications. Fuel Process Technol 83:253–261

    Article  CAS  Google Scholar 

  89. Simeone M, Salemme L, Allouis C (2008) Reactor temperature profile during autothermal methane reforming on Rh/Al 2 O 3 catalyst by IR imaging. Int J Hydrog Energy 33:4798–4808

    Article  CAS  Google Scholar 

  90. Ding O, Chan S (2008) Autothermal reforming of methane gas—modelling and experimental validation. Int J Hydrog Energy 33:633–643

    Article  CAS  Google Scholar 

  91. Balat M, Balat M (2009) Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrog Energy 34:3589–3603

    Article  CAS  Google Scholar 

  92. Hites RA (2006) Persistent organic pollutants in the Great Lakes: an overview. In: Persistent organic pollutants in the Great Lakes. Springer, Berlin\Heidelberg, pp 1–12

    Chapter  Google Scholar 

  93. Lund H (2007) Renewable energy strategies for sustainable development. Energy 32:912–919

    Article  Google Scholar 

  94. Ćosić B, Krajačić G, Duić N (2012) A 100% renewable energy system in the year 2050: the case of Macedonia. Energy 48:80–87

    Article  Google Scholar 

  95. Mathiesen BV, Lund H, Karlsson K (2011) 100% Renewable energy systems, climate mitigation and economic growth. Appl Energy 88:488–501

    Article  Google Scholar 

  96. Granovskii M, Dincer I, Rosen MA (2007) Exergetic life cycle assessment of hydrogen production from renewables. J Power Sources 167:461–471

    Article  CAS  Google Scholar 

  97. Charvin P, Stéphane A, Florent L, Gilles F (2008) Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles. Energy Convers Manag 49:1547–1556

    Article  CAS  Google Scholar 

  98. Tarnay DS (1985) Hydrogen production at hydro-power plants. Int J Hydrog Energy 10:577–584

    Article  CAS  Google Scholar 

  99. Sigurvinsson J, Mansilla C, Arnason B, Bontemps A, Maréchal A, Sigfusson T, Werkoff F (2006) Heat transfer problems for the production of hydrogen from geothermal energy. Energy Convers Manag 47:3543–3551

    Article  CAS  Google Scholar 

  100. Utgikar V, Ward B (2006) Life cycle assessment of ISPRA mark 9 thermochemical cycle for nuclear hydrogen production. J Chem Technol Biotechnol 81:1753–1759

    Article  CAS  Google Scholar 

  101. C.E.G. Padró, V. Putsche (1999) Survey of the economics of hydrogen technologies. National Renewable Energy Laboratory Golden, CO

    Google Scholar 

  102. S. Shah (2015) Hydrogen production processes from biomass. Master Science Thesis, Aalto University

    Google Scholar 

  103. Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119

    Article  CAS  Google Scholar 

  104. Encinar J, Beltran F, Ramiro A, Gonzalez J (1998) Pyrolysis/gasification of agricultural residues by carbon dioxide in the presence of different additives: influence of variables. Fuel Process Technol 55:219–233

    Article  CAS  Google Scholar 

  105. Demirbaş A (2001) Yields of hydrogen-rich gaseous products via pyrolysis from selected biomass samples. Fuel 80:1885–1891

    Article  Google Scholar 

  106. Parthasarathy P, Narayanan KS (2014) Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield – a review. Renew Energy 66:570–579

    Article  CAS  Google Scholar 

  107. Rollin JA, del Campo JM, Myung S, Sun F, You C, Bakovic A, Castro R, Chandrayan SK, Wu C-H, Adams MW (2015) High-yield hydrogen production from biomass by in vitro metabolic engineering: mixed sugars coutilization and kinetic modeling. Proc Natl Acad Sci 112:4964–4969

    Article  CAS  Google Scholar 

  108. Demirbaş A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378

    Article  Google Scholar 

  109. Huber GW, Corma A (2007) Synergies between bio-and oil refineries for the production of fuels from biomass. Angew Chem Int Ed 46:7184–7201

    Article  CAS  Google Scholar 

  110. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323

    Article  CAS  Google Scholar 

  111. Wyman CE, Decker SR, Himmel ME, Brady JW, Skopec CE, Viikari L (2005) Hydrolysis of cellulose and hemicellulose. Polysaccharides Struct Divers Funct Versatility 1:1023–1062

    Google Scholar 

  112. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    Article  CAS  Google Scholar 

  113. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  Google Scholar 

  114. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee Y (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    Article  CAS  Google Scholar 

  115. Kamm B, Gruber PR, Kamm M (2006) Biorefineries–industrial processes and products, Wiley Online Library. WILEY-VCH, Weinheim

    Google Scholar 

  116. Zakaria ZY, Amin NAS, Linnekoski J (2013) A perspective on catalytic conversion of glycerol to olefins. Biomass Bioenergy 55:370–385

    Article  CAS  Google Scholar 

  117. Corma A, Huber GW, Sauvanaud L, O’Connor P (2008) Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal 257:163–171

    Article  CAS  Google Scholar 

  118. Murata K, Takahara I, Inaba M (2008) Propane formation by aqueous-phase reforming of glycerol over Pt/H-ZSM5 catalysts. React Kinet Catal Lett 93:59–66

    Article  CAS  Google Scholar 

  119. Stedile T, Ender L, Meier HF, Simionatto EL, Wiggers VR (2015) Comparison between physical properties and chemical composition of bio-oils derived from lignocellulose and triglyceride sources. Renew Sustain Energy Rev 50:92–108

    Article  CAS  Google Scholar 

  120. Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111:119–132

    Article  CAS  Google Scholar 

  121. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  122. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889

    Article  CAS  Google Scholar 

  123. Isahak WNRW, Hisham MWM, Yarmo MA, Hin T-y Y (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sustain Energy Rev 16:5910–5923

    Article  CAS  Google Scholar 

  124. Papari S, Hawboldt K (2015) A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew Sustain Energy Rev 52:1580–1595

    Article  CAS  Google Scholar 

  125. Sharma A, Pareek V, Zhang D (2015) Biomass pyrolysis—a review of modelling, process parameters and catalytic studies. Renew Sustain Energy Rev 50:1081–1096

    Article  CAS  Google Scholar 

  126. Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N (2008) Direct liquefaction of biomass. Chem Eng Technol 31:667–677

    Article  CAS  Google Scholar 

  127. Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342

    Article  CAS  Google Scholar 

  128. Elliott D, Beckman D, Bridgwater A, Diebold J, Gevert S, Solantausta Y (1991) Developments in direct thermochemical liquefaction of biomass: 1983–1990. Energy Fuel 5:399–410

    Article  CAS  Google Scholar 

  129. Saber M, Nakhshiniev B, Yoshikawa K (2016) A review of production and upgrading of algal bio-oil. Renew Sustain Energy Rev 58:918–930

    Article  CAS  Google Scholar 

  130. Rahimpour MR, Biniaz P, Makarem MA (2017) 14 – Integration of microalgae into an existing biofuel industry. In: Bioenergy systems for the future. Woodhead Publishing, Kidlington, pp 481–519

    Chapter  Google Scholar 

  131. Klass DL (1998) Chapter 1 – energy consumption, reserves, depletion, and environmental issues. In: Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego, pp 1–27

    Google Scholar 

  132. Bridgwater A, Peacocke G (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4:1–73

    Article  CAS  Google Scholar 

  133. Czernik S, Bridgwater A (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598

    Article  CAS  Google Scholar 

  134. Moffatt J, Overend R (1985) Direct liquefaction of wood through solvolysis and catalytic hydrodeoxygenation: an engineering assessment. Biomass 7:99–123

    Article  CAS  Google Scholar 

  135. Vanasse C, Chornet E, Overend R (1988) Liquefaction of lignocellulosics in model solvents: creosote oil and ethylene glycol. Can J Chem Eng 66:112–120

    Article  CAS  Google Scholar 

  136. Goudriaan F, Van de Beld B, Boerefijn F, Bos G, Naber J, Van der Wal S, Zeevalkink J (2008) Thermal efficiency of the HTU® process for biomass liquefaction. In: Progress in thermochemical biomass conversion, Blackwell Science Ltd. Osney Mead, Oxford, pp 1312–1325

    Google Scholar 

  137. Elliott DC, Schiefelbein GF (1989) Liquid hydrocarbon fuels from biomass. Pap Am Chem Soc 34:1160

    CAS  Google Scholar 

  138. Yuan X, Wang J, Zeng G, Huang H, Pei X, Li H, Liu Z, Cong M (2011) Comparative studies of thermochemical liquefaction characteristics of microalgae using different organic solvents. Energy 36:6406–6412

    Article  CAS  Google Scholar 

  139. Miao X, Wu Q, Yang C (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71:855–863

    Article  CAS  Google Scholar 

  140. Bakhtyari A, Makarem MA, Rahimpour MR (2017) 4 – light olefins/bio-gasoline production from biomass. In: Bioenergy systems for the future. Woodhead Publishing, Kidlington, pp 87–148

    Chapter  Google Scholar 

  141. Gollakota AR, Reddy M, Subramanyam MD, Kishore N (2016) A review on the upgradation techniques of pyrolysis oil. Renew Sustain Energy Rev 58:1543–1568

    Article  CAS  Google Scholar 

  142. Towler GP, Oroskar AR, Smith SE (2004) Development of a sustainable liquid fuels infrastructure based on biomass. Environ Prog 23:334–341

    Article  CAS  Google Scholar 

  143. Elliott D, Baker E, Beckman D, Solantausta Y, Tolenhiemo V, Gevert S, Hörnell C, Östman A, Kjellström B (1990) Technoeconomic assessment of direct biomass liquefaction to transportation fuels. Biomass 22:251–269

    Article  CAS  Google Scholar 

  144. Liu S, Zhu J, Chen M, Xin W, Yang Z, Kong L (2014) Hydrogen production via catalytic pyrolysis of biomass in a two-stage fixed bed reactor system. Int J Hydrog Energy 39:13128–13135

    Article  CAS  Google Scholar 

  145. Fremaux S, Beheshti S-M, Ghassemi H, Shahsavan-Markadeh R (2015) An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed. Energy Convers Manag 91:427–432

    Article  CAS  Google Scholar 

  146. Ni M, Leung DYC, Leung MKH, Sumathy K (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  CAS  Google Scholar 

  147. Iribarren D, Susmozas A, Petrakopoulou F, Dufour J (2014) Environmental and exergetic evaluation of hydrogen production via lignocellulosic biomass gasification. J Clean Prod 69:165–175

    Article  CAS  Google Scholar 

  148. Zaman J, Chakma A (1995) Production of hydrogen and sulfur from hydrogen sulfide. Fuel Process Technol 41:159–198

    Article  CAS  Google Scholar 

  149. Edlund DJ, Pledger WA (1993) Thermolysis of hydrogen sulfide in a metal-membrane reactor. J Membr Sci 77:255–264

    Article  CAS  Google Scholar 

  150. Itoh N (1987) A membrane reactor using palladium. AIChE J 33:1576–1578

    Article  CAS  Google Scholar 

  151. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  Google Scholar 

  152. Wang D, Czernik S, Montane D, Mann M, Chornet E (1997) Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Ind Eng Chem Res 36:1507–1518

    Article  CAS  Google Scholar 

  153. Demirbas MF (2006) Hydrogen from various biomass species via pyrolysis and steam gasification processes. Energy Sources Part A 28:245–252

    Article  CAS  Google Scholar 

  154. Demirbaş A, Çağlar A (1998) Catalytic steam reforming of biomass and heavy oil residues to hydrogen, energy, education. Sci Technol 11:45–52

    Google Scholar 

  155. Koroneos C, Dompros A, Roumbas G (2008) Hydrogen production via biomass gasification-a life cycle assessment approach. Chem Eng Process Process Intensif 47:1267–1274

    Article  CAS  Google Scholar 

  156. Damen K, Troost Mv, Faaij A, Turkenburg W (2006) A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: review and selection of promising conversion and capture technologies. Prog Energy Combust Sci 32:215–246

    Article  CAS  Google Scholar 

  157. Demirbaş A (2002) Gaseous products from biomass by pyrolysis and gasification: effects of catalyst on hydrogen yield. Energy Convers Manag 43:897–909

    Article  Google Scholar 

  158. Yang H, Yan R, Chen H, Lee DH, Liang DT, Zheng C (2006) Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Process Technol 87:935–942

    Article  CAS  Google Scholar 

  159. Bridgwater A (1999) Principles and practice of biomass fast pyrolysis processes for liquids. J Anal Appl Pyrolysis 51:3–22

    Article  CAS  Google Scholar 

  160. Magrini-Bair KA, Czernik S, French R, Chornet E (2003) Fluidizable catalysts for hydrogen production from biomass pyrolysis/steam reforming, FY 2003 Progress Report, National Renewable Energy Laboratory

    Google Scholar 

  161. Demirbas A, Arin G (2004) Hydrogen from biomass via pyrolysis: relationships between yield of hydrogen and temperature. Energy Sources 26:1061–1069

    Article  CAS  Google Scholar 

  162. Xianwen D, Chuangzhi W, Haibin L, Yong C (2000) The fast pyrolysis of biomass in CFB reactor. Energy Fuel 14:552–557

    Article  CAS  Google Scholar 

  163. Garcıa L, Salvador M, Arauzo J, Bilbao R (2001) Catalytic pyrolysis of biomass: influence of the catalyst pretreatment on gas yields. J Anal Appl Pyrolysis 58:491–501

    Article  Google Scholar 

  164. Chen G, Andries J, Spliethoff H (2003) Catalytic pyrolysis of biomass for hydrogen rich fuel gas production. Energy Convers Manag 44:2289–2296

    Article  CAS  Google Scholar 

  165. Simell PA, Hirvensalo EK, Smolander VT, Krause AOI (1999) Steam reforming of gasification gas tar over dolomite with benzene as a model compound. Ind Eng Chem Res 38:1250–1257

    Article  CAS  Google Scholar 

  166. Williams PT, Brindle AJ (2002) Catalytic pyrolysis of tyres: influence of catalyst temperature. Fuel 81:2425–2434

    Article  CAS  Google Scholar 

  167. Narváez I, Corella J, Orío A (1997) Fresh tar (from a biomass gasifier) elimination over a commercial steam-reforming catalyst. Kinetics and effect of different variables of operation. Ind Eng Chem Res 36:317–327

    Article  Google Scholar 

  168. Sutton D, Kelleher B, Ross JR (2002) Catalytic conditioning of organic volatile products produced by peat pyrolysis. Biomass Bioenergy 23:209–216

    Article  CAS  Google Scholar 

  169. Czernik S, French R, Evans R, Chornet E (2003) Hydrogen from post-consumer residues. In: US DOE hydrogen and fuel cells merit review meeting. Berkeley

    Google Scholar 

  170. Zanzi R, Sjöström K, Björnbom E (2002) Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy 23:357–366

    Article  CAS  Google Scholar 

  171. Zabaniotou A, Ioannidou O, Antonakou E, Lappas A (2008) Experimental study of pyrolysis for potential energy, hydrogen and carbon material production from lignocellulosic biomass. Int J Hydrog Energy 33:2433–2444

    Article  CAS  Google Scholar 

  172. Evans R, Boyd L, Elam C, Czernik S, French R, Feik C, Philips S, Chaornet E, Parent Y (2003) Hydrogen from biomass-catalytic reforming of pyrolysis vapors. In: US DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program—2003 Annual Merit Review Meeting

    Google Scholar 

  173. Yeboah Y, Bota K, Day D, McGee D, Realff M, Evans R, Chornet E, Czernik S, Feik C, French R (2002) Hydrogen from biomass for urban transportation. In: Proceedings of the US DOE hydrogen program review. San Ramon, California, pp 130–140

    Google Scholar 

  174. Onay O, Mete Koçkar O (2004) Fixed-bed pyrolysis of rapeseed (Brassica napus L.) Biomass Bioenergy 26:289–299

    Article  CAS  Google Scholar 

  175. Abedi J, Yeboah YD, Realff M, McGee D, Howard J, Bota KB (2001) An integrated approach to hydrogen production from agricultural residues for use in urban transportation. In: Proceedings of the 2001 DOE hydrogen program review, NREL/CP-570-30535, National Renewable Energy Laboratory

    Google Scholar 

  176. Encinar JM, Beltrán FJ, González JF, Moreno MJ (1997) Pyrolysis of maize, sunflower, grape and tobacco residues. J Chem Technol Biotechnol 70:400–410

    Article  CAS  Google Scholar 

  177. Shafizadeh F (1982) Introduction to pyrolysis of biomass. J Anal Appl Pyrolysis 3:283–305

    Article  CAS  Google Scholar 

  178. Balci S, Dogu T, Yucel H (1993) Pyrolysis kinetics of lignocellulosic materials. Ind Eng Chem Res 32:2573–2579

    Article  CAS  Google Scholar 

  179. White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91:1–33

    Article  CAS  Google Scholar 

  180. Di Blasi C (1998) Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels. J Anal Appl Pyrolysis 47:43–64

    Article  Google Scholar 

  181. Nunn TR, Howard JB, Longwell JP, Peters WA (1985) Product compositions and kinetics in the rapid pyrolysis of sweet gum hardwood. Ind Eng Chem Process Des Dev 24:836–844

    Article  CAS  Google Scholar 

  182. Alves S, Figueiredo J (1989) Kinetics of cellulose pyrolysis modelled by three consecutive first-order reactions. J Anal Appl Pyrolysis 17:37–46

    Article  CAS  Google Scholar 

  183. Diebold JP (1994) A unified, global model for the pyrolysis of cellulose. Biomass Bioenergy 7:75–85

    Article  CAS  Google Scholar 

  184. Vargas JM, Perlmutter DD (1986) Interpretation of coal pyrolysis kinetics. Ind Eng Chem Process Des Dev 25:49–54

    Article  CAS  Google Scholar 

  185. Mangut V, Sabio E, Gañán J, González J, Ramiro A, González C, Román S, Al-Kassir A (2006) Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Process Technol 87:109–115

    Article  CAS  Google Scholar 

  186. Muradov N (2001) Hydrogen via methane decomposition: an application for decarbonization of fossil fuels. Int J Hydrog Energy 26:1165–1175

    Article  CAS  Google Scholar 

  187. Muradov N, Veziroǧlu T (2005) From hydrocarbon to hydrogen–carbon to hydrogen economy. Int J Hydrog Energy 30:225–237

    Article  CAS  Google Scholar 

  188. Muradov N (2001) Catalysis of methane decomposition over elemental carbon. Catal Commun 2:89–94

    Article  CAS  Google Scholar 

  189. De Falco M, Marrelli L, Iaquaniello G (2011) Membrane reactors for hydrogen production processes. Springer, Surrey

    Book  Google Scholar 

  190. Zhang X, Tang Y, Qu S, Da J, Hao Z (2015) H2S-selective catalytic oxidation: catalysts and processes. ACS Catal 5:1053–1067

    Article  CAS  Google Scholar 

  191. Miltner A, Wukovits W, Pröll T, Friedl A (2010) Renewable hydrogen production: a technical evaluation based on process simulation. J Clean Prod 18:S51–S62

    Article  CAS  Google Scholar 

  192. Reverberi AP, Klemeš JJ, Varbanov PS, Fabiano B (2016) A review on hydrogen production from hydrogen sulphide by chemical and photochemical methods. J Clean Prod Part B 136:72–80

    Article  CAS  Google Scholar 

  193. Kaloidas V, Papayannakos N (1987) Hydrogen production from the decomposition of hydrogen sulphide. Equilibrium studies on the system H2S/H2/Si,(i= 1,…, 8) in the gas phase. Int J Hydrog Energy 12:403–409

    Article  CAS  Google Scholar 

  194. Chiarioni A, Reverberi A, Fabiano B, Dovi V (2006) An improved model of an ASR pyrolysis reactor for energy recovery. Energy 31:2460–2468

    Article  CAS  Google Scholar 

  195. Cox BG, Clarke PF, Pruden BB (1998) Economics of thermal dissociation of H 2 S to produce hydrogen. Int J Hydrog Energy 23:531–544

    Article  CAS  Google Scholar 

  196. Adewale R, Salem DJ, Berrouk AS, Dara S (2016) Simulation of hydrogen production from thermal decomposition of hydrogen sulfide in sulfur recovery units. J Clean Prod 112:4815–4825

    Article  CAS  Google Scholar 

  197. Moghiman M, Javadi S, Moghiman A, Hosseini SB (2010) A numerical study on thermal dissociation of H2S. World Acad Sci Eng Technol 62:824–829

    Google Scholar 

  198. Ozaki J-i, Yoshimoto Y, Oya A, Takarada T, Kuzunetsov VV, Ismagilov ZR (2001) H 2 S decomposition activity of TS carbon derived from furan resin. Carbon 39:1611–1612

    Article  CAS  Google Scholar 

  199. Guldal N, Figen H, Baykara S (2015) New catalysts for hydrogen production from H 2 S: preliminary results. Int J Hydrog Energy 40:7452–7458

    Article  CAS  Google Scholar 

  200. Cao D, Adesina A (1999) Fluidised bed reactor studies of H 2 S decomposition over supported bimetallic Ru catalysts. Catal Today 49:23–31

    Article  CAS  Google Scholar 

  201. Rahimpour MR, Dehghani Z (2016) Membrane reactors for methanol synthesis from forest-derived feedstocks. Membr Technol Biorefining, pp 383–410

    Google Scholar 

  202. Rahimpour MR, Nategh M (2016) Hydrogen production from pyrolysis-derived bio-oil using membrane reactors. Membr Technol Biorefining, pp 411–434

    Google Scholar 

  203. Rahimpour MR (2015) 10 – Membrane reactors for biodiesel production and processing. In: Membrane reactors for energy applications and basic chemical production. Woodhead Publishing, Amsterdam/Boston, pp 289–312

    Chapter  Google Scholar 

  204. Bagnato G, Iulianelli A, Vita A, Italiano C, Laganà M, Fabiano C, Rossi C, Basile A (2015) Pure hydrogen production from steam reforming of bio-sources. Int J 2:49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rahimpour .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Cite this entry

Bakhtyari, A., Makarem, M.A., Rahimpour, M.R. (2018). Hydrogen Production Through Pyrolysis. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_956-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_956-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics