Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Genetic Optimization for Increasing Hydrogen Production in Microalgae

  • Cecilia FaraloniEmail author
  • Giuseppe Torzillo
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_950-1


Hydrogen; microalgae; Chlamydomonas reinhardtii; D1 protein; PSII; Fluorescence yield; Hydrogenase; Anaerobiosis

Definition of the Subject

In recent years, the increasing depletion of fossil resources has increased the necessity to search for alternative sources of energy. What seems imperative is that all efforts have to be addressed to improve the utilization of renewable source of energy. It is well known that under particular conditions, microalgae are capable to produce hydrogen as almost pure biogas. In this respect, the goal would be to use the sole solar light energy and water, a clean and green sustainable source of energy. However, this process has some limitation. The main bottleneck is represented by the reduced photosynthetic efficiency of photosynthetic cells to convert solar light energy into chemical energy (or hydrogen). Many studies have been carried out all over the years in order to solve this problem, but at the moment, only a small improvement has been...

This is a preview of subscription content, log in to check access.


Primary Literature

  1. 1.
    Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240CrossRefGoogle Scholar
  2. 2.
    Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert energy into biomass? Curr Opin Biotechnol 19:153–159CrossRefGoogle Scholar
  3. 3.
    Faraloni C, Torzillo G (2013) Xanthophyll cycle induction by anaerobiosis conditions under low light in Chlamydomonas reinhardtii. J Appl Phycol 25:1457–1471CrossRefGoogle Scholar
  4. 4.
    Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280CrossRefGoogle Scholar
  5. 5.
    Pirt SJ, Lee KYK, Richmond A, Pirt Watts M (1980) The photosynthesis efficiency of Chlorella biomass grown with reference to solar energy utilisation. J Chem Technol Biotechnol 30:25–34CrossRefGoogle Scholar
  6. 6.
    Srirangan K, Pyne ME, Perry Chou C (2011) Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. Bioresour Technol 102(18):8589–8560CrossRefGoogle Scholar
  7. 7.
    Bhattacharya D, Yoon HS, Hacket JD (2004) Photosynthetic eukaryotes inite: endosymbiosis connects the dots. Bioessays 26:50–60CrossRefGoogle Scholar
  8. 8.
    Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063CrossRefGoogle Scholar
  9. 9.
    Norton TA, Melkonian M, Andersen RA (1996) Algal biodiversity. Phycologia 35:308–326CrossRefGoogle Scholar
  10. 10.
    Borowitzka MA (2013) High value product from microalgae- their development and commercialization. J Appl Phycol 25:743–756CrossRefGoogle Scholar
  11. 11.
    Leu S, Boussiba S (2014) Advances in the production of high value products by microalgae. Int Biotechnol 10:169–183Google Scholar
  12. 12.
    Davis R, Aden A, Pienkova PT (2011) Techno-economic analysis of autotrophic microalgae for fuel production. Appl Energy 88:3524–3531CrossRefGoogle Scholar
  13. 13.
    Finazzi G, Furia A, Barbagallo RM, Forti G (1999) State transitions, cyclic and linear transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413:117–129CrossRefGoogle Scholar
  14. 14.
    Meyer J (2007) FeFe hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64(9):1063–1084CrossRefGoogle Scholar
  15. 15.
    Debajyoti D, Debojyoti D, Surabhi C, Sanjoy KB (2005) Hydrogen production by Cyanobacteria. Microb Cell Factories 4:36CrossRefGoogle Scholar
  16. 16.
    Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102(18):8423–8431CrossRefGoogle Scholar
  17. 17.
    Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276(9):6125–6132CrossRefGoogle Scholar
  18. 18.
    Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25(4):455–501CrossRefGoogle Scholar
  19. 19.
    Nicolet Y, de Lacey AL, Vernède X, Fernandez VM, Hatchikian EC, Fontecilla-Camps JC (2001) Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 123:1596–1601CrossRefGoogle Scholar
  20. 20.
    Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032CrossRefGoogle Scholar
  21. 21.
    Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270:2750–2758CrossRefGoogle Scholar
  22. 22.
    Ogata H, Lubitz W, Higuchi Y (2009) [NiFe] hydrogenases:structural and spectroscopic studies of the reaction mechanism. Dalton Trans 37:7577–7587CrossRefGoogle Scholar
  23. 23.
    Meuser JE, D'Adamo S, Jinkerson RE, Mus F, Yang W, Ghirardi ML, Seibert M, Grossman AR, Posewitz MC (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: Insight into the role of HYDA2 in H2 production. Biochem Biophys Res Commun 417(2):704–709CrossRefGoogle Scholar
  24. 24.
    Boyer ME, Stapleton JA, Kuchenreuther JM, Wang CW, Swartz JR (2008) Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol Bioeng 99(1):59–67CrossRefGoogle Scholar
  25. 25.
    Posewitz MC, King PW, Smolinski SL, Smith RD, Ginley AR, Ghirardi ML (2005) Identification of genes required for hydrogenase activity in Chlamydomonas reinhardtii. Biochem Soc Trans 33:102–104CrossRefGoogle Scholar
  26. 26.
    Böck A, King PW, Blokesch M, Posewitz MC (2006) Maturation of hydrogenases. Adv Microb Physiol 51:1–72CrossRefGoogle Scholar
  27. 27.
    Skjånes K, Pinto F, Lindblad P (2010) Evidence for transcription of three genes with characteristics of hydrogenases in the green alga Chlamydomonas noctigama. Int J Hydrog Energy 35(3):1074–1088CrossRefGoogle Scholar
  28. 28.
    Posewitz MC, Mulder DW, Peters JW (2008) New frontiers in hydrogenase structure and biosynthesis. Curr Chem Biol 2:178–199Google Scholar
  29. 29.
    English CM, Eckert C, Brown K, Seibert M, King PW (2009) Recombinant and in vitro expression system for hydrogenases: new frontiers in basic and applied studies for biological and synthetic production. Dalton Trans 45:9970–9978CrossRefGoogle Scholar
  30. 30.
    Bothe H, Schmitz O, Yates MG, Newton WE (2010) Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 74(4):529–551CrossRefGoogle Scholar
  31. 31.
    Carrieri D, Momot D, Brasg IA, Ananyev G, Lenz O, Bryant DA, Dismukes GC (2010) Boosting autofermentation rates and product yields with sodium stress cycling. Application to renewable fuel production by cyanobacteria. Appl Environ Microbiol 76:6455–6462CrossRefGoogle Scholar
  32. 32.
    Skizim NJ, Ananyev GM, Krishnan A, Dismukes GC (2012) Metabolic Pathways for Photobiological Hydrogen Production by Nitrogenase- and Hydrogenase-containing Unicellular Cyanobacteria Cyanothece. J Biol Chem 287(4):2777–2786CrossRefGoogle Scholar
  33. 33.
    Shestakov SV, Mikheeva LE (2006) Genetic control of hydrogen metabolism in cyanobacteria. Russ J Genet 42(11):1272–1284CrossRefGoogle Scholar
  34. 34.
    Oncel S (2013) Microalgae for a macroenergy world. Renew Sust Energ Rev 26:241–264CrossRefGoogle Scholar
  35. 35.
    Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, Tsygangov AA, Seibert M (2003) The dependence of algal H2 production on photosystem II and O2 consumption in sulfur-deprived Chlamydomonas reinhardtii cells. BBA 1607:153–160Google Scholar
  36. 36.
    Melis A, Zhang L, Forestier M, Ghirardi M, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135CrossRefGoogle Scholar
  37. 37.
    Scoma A, Giannelli L, Faraloni C, Torzillo G (2012) Outdoor H2 production in a 50-liter tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii. JBiotechnol 157:620–627CrossRefGoogle Scholar
  38. 38.
    Oncel S, Kose A, Faraloni C, Imamoglu E, Elibol M, Torzillo G, Vardar Sukan F (2015) Biohydrogen production from model microalgae Chlamydomonas reinhardtii: a simulation of environmental conditions for outdoor experiments. Int J Hydrog Energy 40(24):7502–7510. Special IssueCrossRefGoogle Scholar
  39. 39.
    Philipps G, Happe T, Hemschemeier A (2012) Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii. Planta 235:729–745CrossRefGoogle Scholar
  40. 40.
    Hemschemeier A, Jacobs J, Happe T (2008) The pyruvate formate-lyase (Pfl1) of Chlamydomonas reinhardtii—a biochemical and physiological characterization of a typically bacterial enzyme in a eukaryotic alga. Eukaryot Cell 7:518–526CrossRefGoogle Scholar
  41. 41.
    Mus F, Cournac L, Cardettini V, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical PQ reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 1708:322–332CrossRefGoogle Scholar
  42. 42.
    Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9(7):1514–1532CrossRefGoogle Scholar
  43. 43.
    Terashima M, Specht M, Hippler M (2011) The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 57(3):151–168CrossRefGoogle Scholar
  44. 44.
    Ghirardi ML, Dubini A, Yu J, Maness PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38:52–61CrossRefGoogle Scholar
  45. 45.
    Hallenbeck P, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9CrossRefGoogle Scholar
  46. 46.
    Melis A (2007) Photosynthetic H2 metabolism in Chlamydomonas reinhardtii (unicellular green algae). Planta 226:1075–1086CrossRefGoogle Scholar
  47. 47.
    Mathews J, Wang G (2009) Metabolic pathway engineering for enhanced biohydrogen production. Int J Hydrogen Energ 34:7404–7416CrossRefGoogle Scholar
  48. 48.
    Carrieri D, Wawrousek K, Eckert C, Yu J, Maness PC (2011) The role of the bidirectional hydrogenase in cyanobacteria. Bioresour Technol 102(18):8368–8377CrossRefGoogle Scholar
  49. 49.
    Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The Regulation of Photosynthetic Electron Transport during Nutrient Deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139CrossRefGoogle Scholar
  50. 50.
    Fouchard S, Hemschemeier A, Caruana A, Pruvost J, Legrand J, Happe T, Peltier G, Cournac L (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71(10):6199–6205CrossRefGoogle Scholar
  51. 51.
    Faraloni C, Torzillo G (2010) Phenotypic characterization and hydrogen production in Chlamydomonas reinhardtii QB-binding D1-protein mutants under sulfur starvation: changes in chl fluorescence and pigment composition. J Phycol 46:788–799CrossRefGoogle Scholar
  52. 52.
    Chochois V, Dauvillée D, Beyly A, Tolleter D, Cuiné S, Timpano H, Ball S, Cournac L, Peltier G (2009) Hydrogen Production in Chlamydomonas: Photosystem II-dependent and-independent pathways differ in their requirement for starch metabolism. Plant Physiol 151:631–640CrossRefGoogle Scholar
  53. 53.
    Ghirardi ML, Zhang L, Lee JW, Flynn T, Seibert M, Greenbaum E, Melis A (2000) Microalgae: a green source of renewable H2. TIBTECH 18:506–511CrossRefGoogle Scholar
  54. 54.
    Kruse O, Rupprecht J, Bade KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34176CrossRefGoogle Scholar
  55. 55.
    Scoma A, Krawietz D, Faraloni C, Giannelli L, Happe T, Torzillo G (2012) Sustained H2 production in a Chlamydomonas reinhardtii D1 protein mutant. J Biotechnol 157:613–619CrossRefGoogle Scholar
  56. 56.
    Volgusheva A, Styring S, Mamedov F (2013) Increased photosystem II stability promotes H2 production in sulfur-deprived Chlamydomonas reinhardtii. PNAS 110(18):7223–7228CrossRefGoogle Scholar
  57. 57.
    Melis A, Seibert M, Happe T (2004) Genomics of green algal hydrogen research. Photosynth Res 82:277–288CrossRefGoogle Scholar
  58. 58.
    Torzillo G, Scoma A, Faraloni C, Ena A, Johanningmeier U (2009) Increased hydrogen photoproduction by means of a sulfur-deprived Chlamydomonas reinhardtii D1 protein mutant. Int J Hydrog Energy 34:4529–4536CrossRefGoogle Scholar
  59. 59.
    Trebst A (1987) The three-dimensional structure of the herbicide binding niche on the reaction center polypeptides of photosystem II. Z Naturforsch 42:742Google Scholar
  60. 60.
    Sobolev V, Edelman M (1995) Modeling the Quinone-B binding site of the photosystem-II-reaction center using notions of complementary and contact-surface between atoms. Proteins Truct Funct Genet 21:214–225CrossRefGoogle Scholar
  61. 61.
    Kettunen R, Tyystjärvi E, Aro EM (1996) Degradation pattern of photosystem II reaction center protein D1 in intact leaves. Plant Physiol 111:1183–1190CrossRefGoogle Scholar
  62. 62.
    Bayro-Kaiser V, Nelson N (2016) Temperature-sensitive PSII: a novel approach for sustained photosynthetic hydrogen production. Phptos Res.  https://doi.org/10.1007/s1120-016-0232-3
  63. 63.
    Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, Peltier G (2002) In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129:1921–1928CrossRefGoogle Scholar
  64. 64.
    Cardol P, Gloire G, Havaux M, Remacle C, Matagne R, Franck F (2003) Photosynthesis and state transitions in mitochondrial mutants of Chlamydomonas reinhardtii affected in respiration. Plant Physiol 133:2010–2020CrossRefGoogle Scholar
  65. 65.
    Endo T, Asada K (1996) Dark induction of the nonphotochemical quenching of chlorophyll fluorescence by acetate in Chlamydomonas reinhardtii. Plant Cell Physiol 37(4):551–555CrossRefGoogle Scholar
  66. 66.
    Doebbe A, Rupprecht J, Beckmann J, Mussgnug JH, Hallmann A, Hankmer B, Kruse O (2007) Functional integration of the HUP1 hexose symporter gene into the genome of C. reinhardtii: impacts on biological H2 production. J Biotechnol 131:27–33CrossRefGoogle Scholar
  67. 67.
    Wu S, Xu L, Wang R, Liu X, Wang QW (2011) A high yield mutant of Chlamydomonas reinhardtii for photoproduction of hydrogen. Int J Hydrog Energy 36:14134–14140CrossRefGoogle Scholar
  68. 68.
    Chien LF, Kuo TT, Liu BH, Lin HD, Feng TY, Huang CC (2012) Solar-to-bioH2 production enhanced by homologous overexpression of hydrogenase in green alga Chlorella sp. DT. Int J Hydrog Energy 2012:17738–17748CrossRefGoogle Scholar
  69. 69.
    Kosourov SN, Ghirardi ML, Seibert M (2011) A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. Int J Hydrog Energy 36:2044–2048CrossRefGoogle Scholar
  70. 70.
    Strasser R, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photo-Dermatology 61:32–42CrossRefGoogle Scholar
  71. 71.
    Finazzi G, Barbagallo RP, Bergo E, Barbato R, Forti G (2001) Photoinhibition of Chlamydomonas reinhardtii in state 1 and state 2. J Biol Chem 276:22251–22257CrossRefGoogle Scholar
  72. 72.
    Bennoun P (2002) The present model for chlororespiration. Photosynth Res 73:273–277CrossRefGoogle Scholar
  73. 73.
    Toth SZ, Schansker G, Garab G, Strasser RJ (2007) Photosynthetic electron transport activity in heat treated barley leaves, the role of internal alternative electron donors to photosystem II. BBA-Bioenergetics 1767:295–305CrossRefGoogle Scholar
  74. 74.
    Antal TK, Volgusheva AA, Kukarskikh GP, Krendeleva TE, Tusov VB, Rubin AB (2006) Examination of chlorophyll fluorescence in sulfur-deprived cells of Chlamydomonas reinhardtii. Biofizika 51(2):292–298Google Scholar
  75. 75.
    Antal TK, Krendeleva TE, Rubin AB (2007) Study of photosystem 2 heterogeneity in the sulfur-deficient green alga Chlamydomonas reinhardtii. Photosynth Res 94(1):13–22CrossRefGoogle Scholar
  76. 76.
    Oh YK, Raj SM, Jung GY, Park S (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 102:8357–8367CrossRefGoogle Scholar
  77. 77.
    Johanningmeier U, Heiss S (1993) Construction of a Chlamydomonas reinhardtii mutant with an intronless psbA gene. Plant Mol Biol 22(1):91–99CrossRefGoogle Scholar

Books and Reviews

  1. Edelman M, Mattoo AK, Marder JB (1984) Three hats of the rapidly metabolized 32 kD protein thylakoids. In: Ellis RT (ed) Chloroplast biogenesis. Cambridge University Press, Cambridge, pp 283–302Google Scholar
  2. Ohad I, Kren N, Zer H, Gong H, Mor TS, Gal A, Tal S, Domovich Y (1994) Light-induced degradation of the photosystem II reaction centre D1 protein in vivo, an integrative approach. In: Backer NR, Bowyer JR (eds) Photoinhibition of photosynthesis, from molecular mechanisms to the field. Bios Scientific Publishers, Oxford, pp 161–178Google Scholar
  3. Torzillo G, Seibert M (2013) Hydrogen production by microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, Oxford, pp 417–444CrossRefGoogle Scholar
  4. Torzillo G, Scoma A, Faraloni C, Giannelli L (2014) Advances in the biotechnology of hydrogen production with the microalga Chlamydomonas reinhardtii. Crit Rev Biotechnol 35(4):485–496CrossRefGoogle Scholar
  5. Vermaas WFJ, Ikeuchi M (1991) Photosystem II. In: Bogorad L, Vasil IK (eds) The photosynthetic apparatus, molecular biology and operation, Cell culture and somatic cell genetics of plants, vol 7B. Academic Press, San Diego, pp 25–111CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Istituto per lo Studio degli Ecosistemi, Sede di FirenzeFirenzeItaly

Section editors and affiliations

  • Timothy E. Lipman
    • 1
  1. 1.TSRCUniversity of California BerkeleyBerkeleyUSA