Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Volcanoes, Observations, and Impact

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_731-3

Glossary

Caldera

Large crater formed by collapse of an overlying structure when an eruption empties a magma reservoir.

Effusive

Nonexplosive eruption of fluid molten material that later solidifies.

Fumarole

A volcanic vent that emits hot gas.

Infrasound

Sound waves at frequencies below the range of human hearing (< 20 Hz).

Interferogram

A pattern of satellite radar wave “fringes” formed by interference, analogous to the colorful pattern from light reflected by a thin film of oil or gas, that can indicate ground deformation.

Lahar

Heavy flow of mud, water, and debris triggered by interactions of hot material with ice or water or by heavy rainfall on recently erupted unconsolidated material.

Phreatic

Explosion caused by heating and expansion of groundwater.

Pyroclastic

Composed of rock fragments ejected explosively from an erupting volcano.

Tremor

Continuous vibration of the ground related to magma movement.

Volatiles

Dissolved gases contained in magma.

Definition of the Subject

Volcanoes...

This is a preview of subscription content, log in to check access

Bibliography

  1. 1.
    Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world, 3rd edn. University of California Press, BerkeleyGoogle Scholar
  2. 2.
    Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geogr 27:230–259CrossRefGoogle Scholar
  3. 3.
    Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198CrossRefGoogle Scholar
  4. 4.
    Rose WI, Chesner CA (1987) Dispersal of ash in the great Toba eruption, 75 ka. Geology 15:13–917CrossRefGoogle Scholar
  5. 5.
    Hough S (2009) Predicting the unpredictable: the tumultuous science of earthquake prediction. Princeton University Press, PrincetonCrossRefGoogle Scholar
  6. 6.
    White RA, McCausland WA, Lockhart AB (2011) Volcano monitoring: keep it simple – less can be more during volcano crises; 25 years of VDAP experience. Seism Res Lett 82:330Google Scholar
  7. 7.
    Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  8. 8.
    Lockwood JP, Hazlett W (2010) Volcanoes – global perspectives. Wiley-Blackwell, HobokenGoogle Scholar
  9. 9.
    National Academy of Sciences, Engineering, and Medicine (2017) Volcanic eruptions and their repose, unrest, precursors, and timing. The National Academies Press, Washington, DC. 134 pp.  https://doi.org/10.17226/24650
  10. 10.
    Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238CrossRefGoogle Scholar
  11. 11.
    Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H (eds) Encyclopedia of volcanoes. Academic, San DiegoGoogle Scholar
  12. 12.
    Decker RW (1986) Forecasting volcanic eruptions. Annu Rev Earth Planet Sci 14:267–291CrossRefGoogle Scholar
  13. 13.
    Simkin T, Siebert L (1994) Volcanoes of the world. Geoscience, TucsonGoogle Scholar
  14. 14.
    McNutt SR (1996) Seismic monitoring of volcanoes: a review of the state-of-the-art and recent trends. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, BerlinGoogle Scholar
  15. 15.
    McNutt SR (2000) Seismic monitoring. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H (eds) Encyclopedia of volcanoes. Academic, San DiegoGoogle Scholar
  16. 16.
    Minakami T, Ishikawa T, Yagi K (1951) The 1944 eruption of volcano Usu in Hokkaido, Japan. Bull Volcanol 11:145–157CrossRefGoogle Scholar
  17. 17.
    Ômori F (1911) The Usu-san eruption and earthquake and elevation phenomena. Bull Imperial Earthquake Investigation Committee 5:38 ppGoogle Scholar
  18. 18.
    Lahr JC, Chouet BA, Stephens CD, Power JA, Page RA (1994) Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989–1990 eruptions at Redoubt volcano, Alaska. J Volcanol Geotherm Res 62:137–151CrossRefGoogle Scholar
  19. 19.
    Hill DP, Dawson P, Johnston MJS, Pitt AM, Biasi G, Smith K (2002) Very-long-period volcanic earthquakes beneath Mammoth Mountain, California. Geophys Res Lett 29:1370.  https://doi.org/10.1029/2002GL014833CrossRefGoogle Scholar
  20. 20.
    Hotovec AJ, Prejean SG, Vidale JE, Gomberg J (2013) Strongly gliding harmonic tremor during the 2009 eruption of Redoubt volcano. J Volcanol Geotherm Res 259:89–99CrossRefGoogle Scholar
  21. 21.
    Chouet B (1985) Excitation of a buried magmatic pipe: a seismic source model for volcanic tremor. J Geophys Res 90:1881–1893CrossRefGoogle Scholar
  22. 22.
    Julian B (1994) Volcanic tremor: nonlinear excitation by fluid flow. J Geophys Res 99:11859–11877CrossRefGoogle Scholar
  23. 23.
    White RA (1996) Precursory deep long-period earthquakes at Mount Pinatubo: spatial-temporal link to a basaltic trigger. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, SeattleGoogle Scholar
  24. 24.
    Power JA, Stihler SD, White RA, Moran SC (2004) Observations of deep long-period (DLP) seismic events beneath Aleutian arc volcanoes; 1989–2002. J Volcanol Geotherm Res 138:243–226CrossRefGoogle Scholar
  25. 25.
    Mavonga T, Zana N, Durrheim RJ (2010) Studies of crustal structure, seismic precursors to volcanic eruptions and earthquake hazard in the eastern provinces of the Democratic Republic of Congo. J Afr Earth Sci 58:623–633.  https://doi.org/10.1016/j.jafrearsci.2010.08.008, ISSN 1464–343X
  26. 26.
    Harrington RM, Brodsky EE (2007) Volcanic hybrid earthquakes that are brittle-failure events. Geophys Res Lett 34:L06308.  https://doi.org/10.1029/2006GL028714CrossRefGoogle Scholar
  27. 27.
    Kawakatsu H, Ohminato T, Ito H, Kuwahara Y (1992) Broadband seismic observation at the Sakurajima volcano, Japan. Geophys Res Lett 19:1959–1962CrossRefGoogle Scholar
  28. 28.
    Kawakatsu H, Ohminato T, Ito H (1994) 10s-period volcanic tremors observed over a wide area in southwestern Japan. Geophys Res Lett 21:1963–1966.  https://doi.org/10.1029/94GL01683CrossRefGoogle Scholar
  29. 29.
    Neuberg J, Luckett R, Ripepe M, Braun T (1994) Highlights from a seismic broadband array on Stromboli volcano. Geophys Res Lett 21:749–752.  https://doi.org/10.1029/94GL00377CrossRefGoogle Scholar
  30. 30.
    Kaneshima S, Kawakatsu H, Matsubayashi H, Sudo Y, Tsutsui T, Ohminato T, Ito H, Uhira K, Yamasato H, Oikawa J, Takeo M, Iidaka T (1996) Mechanism of phreatic eruptions at Aso volcano inferred from near-field broadband seismic observations. Science 273:642–645CrossRefGoogle Scholar
  31. 31.
    Ohminato T, Chouet BA, Dawson P, Kedar S (1998) Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea volcano. J Geophys Res 103:23839–23862.  https://doi.org/10.1029/98JB01122CrossRefGoogle Scholar
  32. 32.
    Arciniega-Ceballos A, Chouet BA, Dawson P (1999) Very long period signals associated with vulcanian explosions at Popocate’petl volcano, Mexico. Geophys Res Lett 26:3013–3016.  https://doi.org/10.1029/1999GL005390CrossRefGoogle Scholar
  33. 33.
    Legrand D, Kaneshima S, Kawakatsu H (2000) Moment tensor analysis of near-field broadband waveforms observed at Aso volcano, Japan. J Volcanol Geotherm Res 101:155–169.  https://doi.org/10.1016/S0377-0273(00)00167-0CrossRefGoogle Scholar
  34. 34.
    Nishimura T, Kobayashi T, Ohtake M, Sato H, Nakamichi H, Tanaka S, Sato M, Ueki S, Hamaguchi H (2000) Source process of very long period seismic events associated with the 1998 activity of Iwate volcano, northeastern Japan. J Geophys Res 105:19135–19147.  https://doi.org/10.1029/2000JB900155CrossRefGoogle Scholar
  35. 35.
    Rowe CA, Aster RC, Kyle PR, Dibble RR, Schlue JW (2000) Seismic and acoustic observations at Mount Erebus volcano, Ross Island, Antarctica, 1994–1998. J Volcanol Geotherm Res 101:105–128.  https://doi.org/10.1016/S0377-0273(00)00170-0CrossRefGoogle Scholar
  36. 36.
    Kumagai H, Ohminato T, Nakano M, Ooi M, Kubo A, Inoue H, Oikawa J (2001) Very-long-period seismic signals and caldera formation at Miyake Island, Japan. Science 293:687–690.  https://doi.org/10.1126/science.1062136CrossRefGoogle Scholar
  37. 37.
    Almendros J, Chouet B, Dawson PB, Bond T (2002) Identifying elements of the plumbing system beneath Kilauea volcano, Hawaii, from the source locations of very-long-period signals. Geophys J Int 148:303–312Google Scholar
  38. 38.
    Hidayat D, Voight B, Chouet B, Dawson P, Ratdomopurbo A (2002) Source mechanism of very-long-period signals accompanying dome growth activity at Merapi volcano, Indonesia. Geophys Res Lett 29.  https://doi.org/10.1029/2002GL015013
  39. 39.
    Aster R, Mah S, Kyle P, McIntosh W, Dunbar N, Johnson J, Ruiz M, McNamara S (2003) Very long period oscillations of Mount Erebus volcano. J Geophys Res 108:2522.  https://doi.org/10.1029/2002JB002101CrossRefGoogle Scholar
  40. 40.
    Chouet B, Dawson P, Ohminato T, Martini M, Saccorotti G, Giudicepietro F, Luca GD, Milana G, Scarpa R (2003) Source mechanisms of explosions at Stromboli volcano, Italy, determined from moment-tensor inversions of very-long-period data. J Geophys Res 108:2019.  https://doi.org/10.1029/2002JB001919CrossRefGoogle Scholar
  41. 41.
    Chouet B, Dawson P, Arciniega-Ceballos A (2005) Source mechanism of Vulcanian degassing at Popocate’petl volcano, Mexico, determined from waveform inversions of very long period signals. J Geophys Res 110:B07301.  https://doi.org/10.1029/2004JB003524CrossRefGoogle Scholar
  42. 42.
    Waite GP, Chouet BA, Dawson PB (2008) Eruption dynamics at Mount St. Helens imaged from broadband seismic waveforms: interaction of the shallow magmatic and hydrothermal systems. J Geophys Res 113:B02305.  https://doi.org/10.1029/2007JB005259Google Scholar
  43. 43.
    Hill DP (1977) A model for earthquake swarms. J Geophys Res 82:1347–1352.  https://doi.org/10.1029/JB082i008p01347CrossRefGoogle Scholar
  44. 44.
    Foulger GR, Julian BR, Pitt AM, Hill DP, Malin P, Shalev E (2003) Three-dimensional crustal structure of Long Valley Caldera, California, and evidence for the migration of CO2 under Mammoth Mountain. J Geophys Res 108:B3.  https://doi.org/10.1029/2000JB000041CrossRefGoogle Scholar
  45. 45.
    Patanè D, Barberi G, Cocina O, De Gori P, Chiarabba C (2006) Time resolved seismic tomography detects magma intrusions at Mount Etna. Science 313:821–823CrossRefGoogle Scholar
  46. 46.
    Titzschkau T, Savage M, Hurst T (2010) Changes in attenuation related to eruptions of Mt. Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 190:168–178CrossRefGoogle Scholar
  47. 47.
    De Gori P, Chiarabba C, Giampiccolo E, Martinez-Arevalo C, Patane D (2011) Body wave attenuation heralds incoming eruptions at Mount Etna. Geology 39:503–506CrossRefGoogle Scholar
  48. 48.
    Miller V, Savage M (2001) Changes in seismic anisotropy after volcanic eruptions: evidence from Mount Ruapehu. Science 293:2231–2233CrossRefGoogle Scholar
  49. 49.
    Patanè D, De Gori P, Chiarabba C, Bonaccorso A (2003) Magma ascent and the pressurization of Mount Etna’s volcanic system. Science 299:2061–2063CrossRefGoogle Scholar
  50. 50.
    Volti T, Crampin S (2003) A four-year study of shear-wave splitting in Iceland: 2. Temporal changes before earthquakes and volcanic eruptions. In: Nieuwland DA (ed) New insights into structural interpretation and modeling. Geological society of London, special publication 212. Geological Society, London, pp 135–149Google Scholar
  51. 51.
    Musumeci C, Cocina O, De Gori P, Patanè D (2004) Seismological evidence of stress induced by dike injection during the 2001 Mt Etna eruption. Geophys Res Lett 31:L07617.  https://doi.org/10.1029/2003GL019367CrossRefGoogle Scholar
  52. 52.
    Bianco F, Scarfı L, Del Pezzo E, Patanè D (2006) Shear wave splitting changes associated with the 2001 volcanic eruption on Mt. Etna. Geophys J Int 167:959–967CrossRefGoogle Scholar
  53. 53.
    Roman DC, Savage MK, Arnold R, Latchman JL, De Angelis S (2011) Analysis and forward modeling of seismic anisotropy during the ongoing eruption of the Soufrière Hills volcano, Montserrat, 1996–2007. J Geophys Res 116:B03201.  https://doi.org/10.1029/2010JB007667CrossRefGoogle Scholar
  54. 54.
    Brenguier F, Shapiro N, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1:126–130CrossRefGoogle Scholar
  55. 55.
    Brenguier F, Rivet D, Obermann A, Nakata N, Boué P, Lecocq T, Campillo M, Shapiro N (2016) 4-D noise-based seismology at volcanoes: ongoing efforts and perspectives. J Volcanol Geotherm Res 321:182–195CrossRefGoogle Scholar
  56. 56.
    Rivett D, Brenguier F, Cappa F (2015) Improved detection of preeruptive seismic velocity drops at the Piton de la Fournaise volcano. Geophys Res Lett 42:6332–6339.  https://doi.org/10.1002/2015GL064835CrossRefGoogle Scholar
  57. 57.
    Poland M, Hamburger M, Newman A (2006) The changing shapes of active volcanoes: history, evolution, and future challenges for volcano geodesy. J Volcanol Geotherm Res 150:1–13CrossRefGoogle Scholar
  58. 58.
    Dzurisin D (2007) Volcano deformation: geodetic monitoring techniques. Springer, BerlinGoogle Scholar
  59. 59.
    Cervelli PF, Fournier TJ, Freymueller JT, Power JA, Lisowski M, Pauk BA (2010) Geodetic constraints on magma movement and withdrawal during the 2006 eruption of Augustine volcano. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 eruption of Augustine volcano, Alaska. US geological survey professional paper 1769. US Geological Survey, Reston, pp 427–452Google Scholar
  60. 60.
    Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geod 83:191–198.  https://doi.org/10.1007/s00190-008-0300-3CrossRefGoogle Scholar
  61. 61.
    Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142CrossRefGoogle Scholar
  62. 62.
    Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375:567–570CrossRefGoogle Scholar
  63. 63.
    Thatcher W, Massonnet D (1997) Crustal deformation at Long Valley Caldera, eastern California, 1992–1996 inferred from satellite radarinterferometry. Geophys Res Lett 24:2519–2522CrossRefGoogle Scholar
  64. 64.
    Jr WC, Thatcher W, Dzurisin D (1998) Migration of fluids beneath Yellowstone Caldera inferred from satellite radar interferometry. Science 282:458–462CrossRefGoogle Scholar
  65. 65.
    Sigmundsson F, Durand P, Massonnet D (1999) Opening of an eruptive fissure and seaward displacement at Piton de la Fournaise volcano measured by RADARSAT satellite radar interferometry. Geophys Res Lett 26:533–536CrossRefGoogle Scholar
  66. 66.
    Lu Z, Fatland R, Wyss M, Li S, Eichelberer J, Dean K, Freymueller J (1997) Deformation of New Trident volcano measured by ERS-1 SAR interferometry, Katmai National Park, Alaska. Geophys Res Lett 24:695–698CrossRefGoogle Scholar
  67. 67.
    Lu Z, Mann D, Freymueller JT, Meyer DJ (2000) Synthetic aperture radar interferometry of Okmok volcano, Alaska: radar observations. J Geophys Res Solid Earth 105:10791–10806CrossRefGoogle Scholar
  68. 68.
    Lu Z, Wicks C, Dzurisin D, Thatcher W, Freymueller JT, McNutt SR, Mann D (2000) Aseismic inflation of Westdahl volcano Alaska, revealed by satellite radar interferometry. Geophys Res Lett 27:1567–1570CrossRefGoogle Scholar
  69. 69.
    Lu Z, Wicks C, Power JA, Dzurisin D (2000) Ground deformation associated with the March 1996 earthquake swarm at Akutan volcano Alaska, revealed by satellite radar interferometry. J Geophys Res 105:21483–21495CrossRefGoogle Scholar
  70. 70.
    Lu Z, Power JA, McConnell VS, Wicks C, Dzurisin D (2002) Preeruptive inflation and surface interferometric coherence characteristics revealed by satellite radar interferometry at Makushin volcano, Alaska: 1993–2000. J Geophys Res 107:B11CrossRefGoogle Scholar
  71. 71.
    Lu Z, Masterlark T, Power J, Dzurisin D, Wicks C (2002) Subsidence at Kiska volcano, Western Aleutians, detected by satellite radar interferometry. Geophys Res Lett 29:18Google Scholar
  72. 72.
    Jonsson S, Zebker K, Cervelli P, Segall P, Garbeil H, Mouginis-Mark P, Rowland S (1999) A shallow-dipping dike fed the 1995 flank eruption at Fernandina volcano, Galapagos, observed by satellite radar interferometry. Geophys Res Lett 26:1077–1080CrossRefGoogle Scholar
  73. 73.
    Amelung F, Oppenheimer C, Segall P, Zebker H (2000) Ground deformation near Gada ‘Ale volcano, Afar, observed by radar interferometry. Geophys Res Lett 27:3093–3096CrossRefGoogle Scholar
  74. 74.
    Pritchard ME, Simons M (2002) A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature 418:167–171CrossRefGoogle Scholar
  75. 75.
    Fournier TJ, Pritchard ME, Riddick SN (2010) Duration, magnitude, and frequency of subaerial volcano deformation events: new results from Latin America using InSAR and a global synthesis. Geochem Geophys Geosys 11:Q01003.  https://doi.org/10.1029/2009GC002558CrossRefGoogle Scholar
  76. 76.
    Goldstein RM, Zebker HA, Werner CL (1988) Satellite radar interferometry – two-dimensional phase unwrapping. Radio Sci 23:713–720CrossRefGoogle Scholar
  77. 77.
    Gens R (2003) Two-dimensional phase unwrapping for radar interferometry: developments and new challenges. Int J Remote Sens 24:703–710CrossRefGoogle Scholar
  78. 78.
    Rosen P, Hensley S, Shaffer S, Veilleux L, Chakraborty M, Misra T, Putrevu D, Bhan R, Sagi VR, Satish R (2015) The NASA-ISRO SAR mission – an international space partnership for science and societal benefit. In: Proceedings of IEEE international radar conferenceGoogle Scholar
  79. 79.
    Sturkell E, Einarsson P, Sigmundsson F, Geirsson H, Olafsson H, Pedersen R, de Zeeuw-van Dalfsen E, Linde AT, Sacks SI, Stefansson R (2006) Volcano geodesy and magma dynamics in Iceland. J Volcanol Geotherm Res 150:14–34CrossRefGoogle Scholar
  80. 80.
    Roeloffs EA, Linde AT (2007) Borehole observations and continuous strain and fluid pressure. In: Dzurisin D (ed) Volcano deformation – geodetic monitoring techniques. Springer, Berlin/Heidelberg/New York, pp 305–322CrossRefGoogle Scholar
  81. 81.
    Rymer H (1996) Microgravity monitoring. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, BerlinGoogle Scholar
  82. 82.
    Battaglia M, Hill D (2009) Analytical modeling of gravity changes and crustal deformation at volcanoes: the Long Valley Caldera (CA) case study. Tectonophysics 471:45–57CrossRefGoogle Scholar
  83. 83.
    Williams-Jones G, Rymer H, Mauri G, Gottsmann J, Poland M, Carbone D (2008) Toward continuous 4D microgravity monitoring of volcanoes. Geophysics 73:WA19–WA28CrossRefGoogle Scholar
  84. 84.
    Carbone D, Budettaa G, Greco F, Rymer H (2003) Combined discrete and continuous gravity observations at Mount Etna. J Volcanol Geotherm Res 123:123–135CrossRefGoogle Scholar
  85. 85.
    Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108:303–341CrossRefGoogle Scholar
  86. 86.
    Doukas MP, Gerlach TM (1995) Sulfur dioxide scrubbing during the 1992 eruption of Crater Peak, Mount Spurr, Alaska. In: Keith T (ed) The 1992 eruptions of Crater Peak Vent, Mount Spurr Volcano, Alaska. US geological survey bulletin B-2139. US G.P.O.: US Department of the Interior, US Geological Survey, Washington, DC, pp 47–57Google Scholar
  87. 87.
    Aiuppa A, Moretti R, Federico C, Giudice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118CrossRefGoogle Scholar
  88. 88.
    Werner C, Kelly PJ, Doukas M, Lopez T, Pfeffer M, McGimsey RG, Neal CA (2013) Degassing associated with the 2009 eruption of Redoubt volcano, Alaska. J Volcanol Geotherm Res 259:270–284CrossRefGoogle Scholar
  89. 89.
    Francis P, Horrocks L, Oppenheimer C (2000) Monitoring gases from andesite volcanoes. Philos Trans Math Phys Eng Sci 358:1567–1584CrossRefGoogle Scholar
  90. 90.
    Edmonds M (2008) New geochemical insights into volcanic degassing. Philos Trans Math Phys Eng Sci 366:4559–4579CrossRefGoogle Scholar
  91. 91.
    Moran SC, Freymueller JT, LaHusen RG, McGee KA, Poland MP, Power JA, Schmidt DA, Schneider DJ, Stephens G, Werner CA, White RA (2008) Instrumentation recommendations for volcano monitoring at US volcanoes under the national volcano early warning system. USGS scientific investigations report 20085114Google Scholar
  92. 92.
    Dean KG, Dehn J, Engle K, Izbekov P, Papp K (2002) Operational satellite monitoring of volcanoes at the Alaska Volcano Observatory. In: Harris AJH, Wooster M, Rothery DA (eds) Monitoring volcanic hotspots using thermal remote sensing. Advances in environmental monitoring and modeling, vol 1. King’s College, London, pp 70–97Google Scholar
  93. 93.
    Mouginis-Mark PJ, Crisp JA, Fink JH (eds) (2000) Remote sensing of active volcanism. AGU geophysical monograph, vol 116. American Geophysical Union, Washington, DCGoogle Scholar
  94. 94.
    Walter TR, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Dahm T (2015) Volcano-tectonic control of Merapi’s lava dome splitting: the November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639:23–33CrossRefGoogle Scholar
  95. 95.
    Wadge G, Scheuchl B, Stevens NF (2002) Spaceborne radar measurements of the eruption of Soufriere Hills Volcano, Montserrat. In Druitt TH, Kokelaar BP (eds) The eruption of the Soufriere Hills Volcano, Montserrat, from 1995–1999. Memoirs, 21. Geological Society, London, pp 583–594Google Scholar
  96. 96.
    Prejean SG, Brodsky EE (2011) Volcanic plume height measured by seismic waves based on a mechanical model. J Geophys Res 116:B1CrossRefGoogle Scholar
  97. 97.
    Fee D, Matoza RS (2013) An overview of volcano infrasound: from Hawaiian to Plinian, local to global. J Volcanol Geotherm Res 249:123–139CrossRefGoogle Scholar
  98. 98.
    Matoza RS, Le Pichon A, Vergoz J, Herry P, Lalande JM, Lee HI et al (2011) Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: implications for infrasonic monitoring of remote explosive volcanism. J Volcanol Geotherm Res 200(1):35–48CrossRefGoogle Scholar
  99. 99.
    Fee D, Haney MM, Matoza RS, Eaton AR, Cervelli P, Schneider DJ, Iezzi AM (2017) Volcanic tremor and plume height hysteresis from Pavlof Volcano, Alaska. Science 355(6320):45–48CrossRefGoogle Scholar
  100. 100.
    Corradini S, Montopoli M, Guerrieri L, Ricci M, Scollo S, Merucci L et al (2016) A multi-sensor approach for volcanic ash cloud retrieval and eruption characterization: the 23 November 2013 Etna lava fountain. Remote Sens 8(1):58CrossRefGoogle Scholar
  101. 101.
    Vulpiani G, Ripepe M, Valade S (2016) Mass discharge rate retrieval combining weather radar and thermal camera observations. J Geophys Res Solid Earth 121(8):5679–5695CrossRefGoogle Scholar
  102. 102.
    Hoblitt RP (1994) An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano. J Volcanol Geotherm Res 62(1–4):499–517CrossRefGoogle Scholar
  103. 103.
    Thomas RJ, McNutt SR, Krehbiel PR, Rison W, Aulich G, Edens HE, Clark E (2010) Lightning and electrical activity during the 2006 eruption of Augustine Volcano. In: Powers J, Coombs M, Freymueller J (eds) The 2006 eruption of Augustine Volcano, Alaska. US geological survey professional paper 1769. US Geological Survey, Reston, VA, pp 579–608Google Scholar
  104. 104.
    Behnke SA, Thomas RJ, McNutt SR, Schneider DJ, Krehbiel PR, Rison W, Edens HE (2013) Observations of volcanic lightning during the 2009 eruption of Redoubt Volcano. J Volcanol Geotherm Res 259:214–234CrossRefGoogle Scholar
  105. 105.
    Schneider DJ, Hoblitt RP (2013) Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geotherm Res 259:133–144CrossRefGoogle Scholar
  106. 106.
    Marzano FS, Barbieri S, Vulpiani G, Rose WI (2006) Volcanic ash cloud retrieval by ground-based microwave weather radar. IEEE Trans Geosci Remote Sens 44(11):3235–3246CrossRefGoogle Scholar
  107. 107.
    Arason P, Petersen GN, Bjornsson H (2011) Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April–May 2010. Earth System Science Data 3(1):9–17CrossRefGoogle Scholar
  108. 108.
    Marzano FS, Picciotti E, Montopoli M, Vulpiani G (2013) Inside volcanic clouds: remote sensing of ash plumes using microwave weather radars. Bull Am Meteorol Soc 94(10):1567–1586CrossRefGoogle Scholar
  109. 109.
    Bonadonna C, Folch A, Loughlin S, Puempel H (2012) Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on ash dispersal forecast and civil aviation. Bull Volcanol 74(1):1–10CrossRefGoogle Scholar
  110. 110.
    Pavolonis MJ, Feltz WF, Heidinger AK, Gallina GM (2006) A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash. J Atmos Ocean Technol 23:1422–1444CrossRefGoogle Scholar
  111. 111.
    Pavolonis MJ (2010) Advances in extracting cloud composition information from Spaceborne infrared radiances-a robust alternative to brightness temperatures. Part I: theory. J Appl Meteorol Climatol 49.  https://doi.org/10.1175/2010JAMC2433.1
  112. 112.
    Pavolonis M, Heidinger AK, Sieglaff J (2013) Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements. J Geophys Res Atmos 118.  https://doi.org/10.1002/jgrd.50173
  113. 113.
    Pavolonis M, Sieglaff J, Cintineo J (2015) Spectrally enhanced cloud objects (SECO): a generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements, part I: multispectral analysis. J Geophys Res Atmos 120(15):7813–7841CrossRefGoogle Scholar
  114. 114.
    Pavolonis M, Sieglaff J, Cintineo J (2015) Spectrally enhanced cloud objects (SECO): a generalized framework for automated detection of volcanic ash and dust clouds using passive satellite measurements, part II: cloud object analysis and global application. J Geophys Res Atmos 120(15):7842–7870CrossRefGoogle Scholar
  115. 115.
    Van Eaton A, Amigo A, Bertin D, Mastin L, Giacosa R, González J, Valderrama O, Fontijn K, Behnke S (2016) Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 erup- tion of Calbuco volcano, Chile. Geophys Res Lett 43.  https://doi.org/10.1002/2016GL068076
  116. 116.
    Schwaiger HF, Denlinger RP, Mastin LG (2012) Ash3d: a finite volume, conservative numerical model for ash transport and tephra deposition. J Geophys Res 117:B04204.  https://doi.org/10.1029/2011JB008968CrossRefGoogle Scholar
  117. 117.
    WMO SCOPE-Nowcasting (2015) Meeting on the intercomparison of satellite-based volcanic ash retrieval algorithms final report. [Online] 2015. http://www.wmo.int/pages/prog/sat/documents/SCOPE-NWC-PP2_VAIntercompWSReport2015.pdf [21] Chouet BA, Matoza RS (2013) A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J Volcanol Geotherm Res 252:108–175
  118. 118.
    Garces MA, Iguchi M, Ishihara K, Morrissey M, Sudo Y, Tsutsui T (1999) Infrasonic precursors to a Vulcanian eruption at Sakurajima volcano, Japan. Geophys Res Lett 26:2537–2540CrossRefGoogle Scholar
  119. 119.
    Johnson JB (2003) Generation and propagation of infrasonic airwaves from volcanic explosions. J Volcanol Geotherm Res 121:1–14CrossRefGoogle Scholar
  120. 120.
    Johnson JB, Aster RC, Ruiz MC, Malone SD, McChesney PJ, Lees JM, Kyle PR (2003) Interpretation and utility of infrasonic records from erupting volcanoes. J Volcanol Geotherm Res 121:15–63CrossRefGoogle Scholar
  121. 121.
    Matoza RS, Fee D, Garces MA, Seiner JM, Ramon PA, Hedlin MAH (2009) Infrasonic jet noise from volcanic eruptions. Geophys Res Lett 36. https://doi.org/1029/2008GL036486
  122. 122.
    Caplan-Auerbach J, Bellesiles A, Fernandes JK (2010) Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine volcano, Alaska. J Volcanol Geotherm Res 189:12–18CrossRefGoogle Scholar
  123. 123.
    Blong R (1996) Volcanic hazards risk assessment. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, BerlinGoogle Scholar
  124. 124.
    Annen C, Wagner J-J (2003) The impact of volcanic eruptions during the 1990s. Nat Hazard Rev 4:169–175CrossRefGoogle Scholar
  125. 125.
    Hoblitt RP, Miller CD, Scott WE (1987) Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. US geological survey open-file report 87297Google Scholar
  126. 126.
    Baxter PJ, Gresham A (1997) Deaths and injuries in the eruption of Galeras Volcano. Colombia, 14 January 1993. J Volcanol Geotherm Res 77:325–338CrossRefGoogle Scholar
  127. 127.
    Fitzgerald RH, Kennedy BM, Wilson TM, Leonard GS, Tsunematsu K, Keys H (2017) The communication and risk management of volcanic ballistic hazards. Adv Volcanol 1–27.  https://doi.org/10.1007/11157_2016_35
  128. 128.
    Siebert L (1996) Hazards of large debris avalanches. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, BerlinGoogle Scholar
  129. 129.
    Ewert JW, Murray T, Lockhart A, Miller C (1993) Preventing volcanic catastrophe: the US international volcano disaster assistance program. Earthquakes and Volcanoes 24:270–291Google Scholar
  130. 130.
    Wright TL, Pierson TC (1992) Living with volcanoes: the US geological survey’s volcano hazards program, USGS circular 1973. United States Government Printing Office, Washington, DCGoogle Scholar
  131. 131.
    Alvarado GE, Soto GJ, Schmincke H-U, Blge LL, Sumita M (2006) The 1968 andesitic lateral blast eruption at Arenal volcano, Costa Rica. J Volcanol Geotherm Res 157:9–33CrossRefGoogle Scholar
  132. 132.
    Fisher RV, Heiken G, Hulen J (1998) Volcanoes: crucibles of change. Princeton University Press, PrincetonGoogle Scholar
  133. 133.
    Holloway M (2000) The killing lakes. Sci Am 283:92–99CrossRefGoogle Scholar
  134. 134.
    Sutton AJ, Elias T (1993) Volcanic gases create air pollution on the Island of Hawai’i: US geological survey. Earthquakes Volcanoes 24:178–196Google Scholar
  135. 135.
    Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15CrossRefGoogle Scholar
  136. 136.
    Gardner CA, Guffanti MC (2006) US geological survey’s alert notification system for volcanic activity. US geological survey fact sheet 2006–3139pGoogle Scholar
  137. 137.
    Swanson DA, Casadevall TJ, Dzurisin D, Holcomb RT, Newhall CG, Malone SD, Weaver CS (1985) Forecasts and predictions of eruptive activity at Mount St. Helens, USA: 1974–1984. Science 3:397–423Google Scholar
  138. 138.
    Power JA, Jolly A, Nye C, Harbin M (2002) A conceptual model of the Mount Spurr magmatic system from seismic and geochemical observations of the 1992 Crater Peak eruption sequence. Bull Volcanol 64:206–218CrossRefGoogle Scholar
  139. 139.
    White R, McCausland W (2016) Volcano-tectonic earthquakes: a new tool for estimating intrusive volumes and forecasting eruptions. J Volcanol Geotherm Res 309:139–155CrossRefGoogle Scholar
  140. 140.
    Ruppert NA, Prejean S, Hansen RA (2011) Seismic swarm associated with the 2008 eruption of Kasatochi volcano, Alaska: earthquake locations and source parameters. J Geophys Res 116:B00B07.  https://doi.org/10.1029/2010JB007435CrossRefGoogle Scholar
  141. 141.
    Abe K (1992) Seismicity of the caldera-making eruption of Mount Katmai, Alaska in 1912. Bull Seismol Soc Am 82:175–191Google Scholar
  142. 142.
    Japan Meteorological Agency (JMA) (2000) Recent seismic activity in the Miyakejima and Niijima-Kozushima region, Japan – the largest earthquake swarm ever recorded. Earth Planets Space 52:i–ivCrossRefGoogle Scholar
  143. 143.
    Hill D (2006) Unrest in Long Valley Caldera, California, 1978–2004. Geol Soc Lond Spec Publ 269:1–24CrossRefGoogle Scholar
  144. 144.
    McCausland WA, Gunawan H, White RA, Indrastuti N, Patria C, Suparman Y, Putra A, Triastuty H, Hendrasto M (2018) Using a process-based model of pre-eruptive seismic patterns to forecast evolving eruptive styles at Sinabung volcano, Indonesia. J Volcanol Geotherm Res.  https://doi.org/10.1016/j.jvolgeores.2017.04.004
  145. 145.
    Guffanti M, Diefenbach AK, Ewert JW, Ramsey DW, Cervelli PF, Schilling SP (2008) Volcano-monitoring instrumentation in the United States, 2008. USGS open-file report 2009-1165Google Scholar
  146. 146.
    Dzurisin D (2003) A comprehensive approach to monitoring volcano deformation as a window on the eruption cycle. Rev Geophys 41:1–29Google Scholar
  147. 147.
    Lu Z, Dzurisin D (2014) InSAR imaging of Aleutian volcanoes : monitoring a volcanic arc from space. Springer praxis books, geophysical sciences. Springer, New York, 388 ppGoogle Scholar
  148. 148.
    Benoit JP, McNutt SR (1996) Global volcanic earthquake swarm database and preliminary analysis of volcanic earthquake swarm duration. Ann Geofis 39:221–229Google Scholar
  149. 149.
    Moran SC, Newhall C, Roman DC (2011) Failed magmatic eruptions: late-stage cessation of magma ascent. Bull Volcanol 73:115–122CrossRefGoogle Scholar
  150. 150.
    Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20CrossRefGoogle Scholar
  151. 151.
    Power JA, Coombs ML, Freymueller JT (eds) (2010) The 2006 eruption of Augustine volcano, Alaska. US geological survey professional paper 1769. US Geological Survey, RestonGoogle Scholar
  152. 152.
    Power JA, Lalla DJ (2010) Seismic observations of Augustine volcano, 1970–2007. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 eruption of Augustine volcano, Alaska. US geological survey professional paper 1769. US Geological Survey, Reston, pp 527–552Google Scholar
  153. 153.
    McGee KA, Doukas MP, McGimsey RG, Neal CA, Wessels RL (2010) Emission of SO2, CO2, and H2S from Augustine volcano, 2002–2008. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 eruption of Augustine volcano, Alaska. US geological survey professional paper 1769. US Geological Survey, Reston, pp 609–630Google Scholar
  154. 154.
    Neal CA, Murray TL, Power JA, Adleman JN, Whitmore PM, Osiensky JM (2010) Hazard information management, interagency coordination, and impacts of the 2005–2006 eruption of Augustine volcano. In: Power JA, Coombs ML, Freymueller JT (eds) The 2006 eruption of Augustine volcano, Alaska. US geological survey professional paper 1. US Geological Survey, Reston, pp 645–667Google Scholar
  155. 155.
    Freymueller JT, Kaufman AM (2010) Changes in the magma system during the 2008 eruption of Okmok volcano, Alaska, based on GPS measurements. J Geophys Res 115:B12415, 14 pp.  https://doi.org/10.1029/2010JB007716CrossRefGoogle Scholar
  156. 156.
    Lu Z, Dzurisin D, Biggs Wicks JC Jr, McNutt S (2010) Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008. J Geophys Res 115:B00B02.  https://doi.org/10.1029/2009JB006969Google Scholar
  157. 157.
    Larsen J, Neal C, Webley P, Freymueller J, Haney M, McNutt S, Schneider D, Prejean S, Schaefer J, Wessels R (2009) Eruption of Alaska volcano breaks historic pattern. EOS Trans Am Geophys Union 90:173–174CrossRefGoogle Scholar
  158. 158.
    Johnson JH, Prejean S, Savage MK, Townend J (2010) Anisotropy, repeating earthquakes, and seismicity associated with the 2008 eruption of Omok volcano, Alaska. J Geophs Res 115.  https://doi.org/10.1029/2009JB006991
  159. 159.
    Linde AT, Sacks IS (1998) Triggering of volcanic eruptions. Nature 395:888–890CrossRefGoogle Scholar
  160. 160.
    Manga M, Brodsky EE (2006) Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu Rev Earth Planet Sci 34:263–291CrossRefGoogle Scholar
  161. 161.
    Walter TR, Amelung F (2007) Volcanic eruptions following M > = 9 megathrust earthquakes: implications of the Sumatra-Andaman volcanoes. Geology 35:539–542CrossRefGoogle Scholar
  162. 162.
    Hill DP, Pollitz F, Newhall C (2002) Earthquake-volcano interactions. Phys Today 55:41–47CrossRefGoogle Scholar
  163. 163.
    Hill DP, Reasenberg PA, Michael AJ, Arabasz WJ, Beroza GC (1993) Seismicity remotely triggered by the magnitude 7.3 Landers, California earthquake. Science 260:1617–1623CrossRefGoogle Scholar
  164. 164.
    Prejean SG, Hill DP (2009) Earthquakes, dynamic triggering of. In: Lee WHK (ed) Encyclopedia of complexity and system science, editor in-cheif Meyers RA. Complexity in earthquakes, tsunamis, and volcanoes, and forecast. Springer, BerlinGoogle Scholar
  165. 165.
    Spudich P, Steck LK, Hellweg M, Fletcher JB, Baker LM (1992) Transient stresses at Parkfield, California, produced by the M 7.4 Landers earthquake of June 28, 1992: observations from the UPSAR dense seismograph array. J Geophys Res 100:675–690.  https://doi.org/10.1029/94JB02477CrossRefGoogle Scholar
  166. 166.
    McGee KA, Doukas MP, Kessler R, Gerlach TM (1997) Impacts of volcanic gases on climate, the environment, and people. US geological survey open-file 97262Google Scholar
  167. 167.
    Robb LJ (2005) Introduction to ore-forming processes. Blackwell Science, CarltonGoogle Scholar
  168. 168.
    Peterson DW (1996) Mitigation measures and preparedness plans for volcanic emergencies. In: Scarpa R, Tilling R (eds) Monitoring and mitigation of volcano hazards. Springer, BerlinGoogle Scholar
  169. 169.
    Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Philos Trans R Soc A 364:2073–2097CrossRefGoogle Scholar
  170. 170.
    Simkin T, Siebert L, Blong R (2001) Volcano fatalities: lessons from the historical record. Science 291:255CrossRefGoogle Scholar
  171. 171.
    Ewert JW, Harpel CJ (2004) In harm’s way: population and volcanic risk. Geotimes 49:14–17Google Scholar
  172. 172.
    International Air Travel Association (2010) Volcano crisis cost airlines $1.7 billion in revenue – IATA urges measures to mitigate impact, IATA press releaseGoogle Scholar
  173. 173.
    USGS (1997) Volcanic ash – danger to aircraft in the North Pacific. US geological survey fact sheet 03097Google Scholar
  174. 174.
    Holm A, Blodgett L, Jennejohn D, Gawell K (2010) Geothermal energy: International market update, Geothermal Energy Association, Baltimore, MDGoogle Scholar
  175. 175.
    US Energy Information Administration (2009) Department of Energy, Washington DC, Annual energy reviewGoogle Scholar
  176. 176.
    Ewert JW, Guffanti M, Murray TL (2005) An assessment of volcanic threat and monitoring capabilities in the United States: framework for a national volcano early warning system. USGS open-file report 2005-1164Google Scholar
  177. 177.
    Song W-Z, Shirazi B, Huang BR, Xu M, Peterson N, LaHusen R, Pallister J, Dzurisin D, Moran S, Lisowski M, Kedar S, Chien S, Webb F, Kiely A, Doubleday J, Davies A, Pieri D (2010) Optimized autonomous space in-situ sensor web for volcano monitoring. IEEE J Sel Topics Appl Earth Observ Remote Sens 3:541–546CrossRefGoogle Scholar
  178. 178.
    Fleming K, Picozzi M, Milkereit C, Kuehnlenz F, Lichtblau B, Fischer J, Zulfikar C, Oezel O, Zschau J, Veit I, Jaeckel KH, Hoenig M, Nachtigall J, Woith H, Redlich JP, Ahrens K, Eveslage I, Heglmeier S, Erdik M, Kafadar N (2009) The self-organizing seismic early warning information network (SOSEWIN). Seismol Res Lett 80:755–771CrossRefGoogle Scholar
  179. 179.
    Roberts TJ, Lurton T, Giudice G, Liuzzo M, Aiuppa A, Coltelli M, Vignelles D, Salerno G, Couté B, Chartier M, Baron R, Saffell JR, Scaillet B (2017) Validation of a novel multi-gas sensor for volcanic HCl alongside H2S and SO2 at Mt. Etna. Bull Volcanol 79:36.  https://doi.org/10.1007/s00445-017-1114-zCrossRefGoogle Scholar
  180. 180.
    Segall P (2013) Volcano deformation and eruption forecasting. In: Pyle DM, Mather TA, Biggs J (eds) Remote sensing of volcanoes and volcanic processes: integrating observation and modelling. Special publications, 380. Geological Society, London.  https://doi.org/10.1144/SP380
  181. 181.
    Huang R, Song W-Z, Xu M, Picone N, Shirazi B, LaHusen R (2011) Real-world sensor network for long-term volcano monitoring: design and findings. IEEE Trans Parallel Distrib Syst 99.  https://doi.org/10.1109/TPDS.2011.170

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Volcano Disaster Assistance Program, Volcano Science CenterUS Geological SurveyAnchorageUSA

Section editors and affiliations

  • Mervin Fingas
    • 1
  1. 1.Spill ScienceEdmontonCanada