Skip to main content

Internal Combustion Engines, Developments in

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 259 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BDC:

Bottom dead center

EGR:

Exhaust gas recirculation

HCCI:

Homogeneous charge compression ignition

IC:

Internal combustion

LTC:

Low-temperature combustion

TDC:

Top dead center

Abbreviations

η c :

Combustion efficiency

η f :

Fuel conversion efficiency

η f,b :

Brake fuel conversion efficiency

η f,i,:

Indicated fuel conversion efficiency

η m :

Mechanical efficiency

η th :

Thermal efficiency

η th,Carnot :

Thermal efficiency of the ideal Carnot cycle

η th,Otto :

Thermal efficiency of the ideal heat engine Otto cycle

η v :

Volumetric efficiency

γ :

Ratio of specific heats

γ b :

Ratio of specific heats of the burned mixture

φ :

Fuel-air equivalence ratio. For φ <1 mixture is lean. For φ = 1, mixture is stoichiometric. For φ >1, mixture is rich. Note that φ is the inverse of the often-used air-fuel equivalence ratio or λ.

ρ a,i :

Inlet air density

τ :

Engine torque

BMEP:

Brake mean effective pressure

C p,b :

Constant pressure specific heat of the burned mixture

C v,b :

Constant volume specific heat of the burned mixture

f :

Residual fraction

f final :

Final calculated residual fraction

f final – 1 :

Previous iteration residual fraction to final calculated residual fraction

(F/A):

Fuel-air ratio

FMEP:

Friction mean effective pressure

h 1 :

Specific enthalpy at state 1

h 2 :

Specific enthalpy at state 2

h 3 :

Specific enthalpy at state 3

h 3a :

Specific enthalpy at state 3a

h 5 :

Specific enthalpy at state 5

h 6 :

Specific enthalpy at state 6

h e :

Specific enthalpy of exhaust mixture

h i :

Specific enthalpy of inlet mixture

IMEPg :

Gross indicated mean effective pressure

IMEPn :

Net indicated mean effective pressure

m :

Mass

m 1 :

Mass at state 1

m 2 :

Mass at state 2

m 3 :

Mass at state 3

m 4 :

Mass at state 4

m 6 :

Mass at state 6

m a :

Mass of air

m f :

Mass of fuel

m r :

Residual mass

m total :

Total mass

\( {\dot{\mathbf{m}}}_{\mathrm{a}} \) :

Mass flow rate of air

\( {\dot{\mathbf{m}}}_{\mathbf{f}} \) :

Mass flow rate of fuel

MEP:

Mean effective pressure

M b :

Molecular weight of the burned mixture

n R :

Number of revolutions per engine cycle

N :

Engine speed

\( \overline{\mathbf{R}} \) :

Universal gas constant

R :

Gas constant

R 5 :

Gas constant of mixture at state 5

R 6 :

Gas constant of mixture at state 6

R e :

Gas constant of exhaust mixture

P :

Cylinder pressure or power

P 1 :

Pressure at state 1

P 2 :

Pressure at state 2

P 3 :

Pressure at state 3

P 3a :

Pressure at state 3a

P 4 :

Pressure at state 4

P 5 :

Pressure at state 5

P 6 :

Pressure at state 6

P 7 :

Pressure at state 7

P b :

Brake power

P e :

Exhaust pressure

P i :

Inlet (initial) pressure

P in :

Net indicated power

P limit :

Limit pressure

PMEP:

Pumping mean effective pressure

1 Q 2 :

Heat transfer of process 1-2

6 Q 1 :

Heat transfer for process 6-1

Q HV :

Heating value of fuel

Q HV,f :

Heating value of fuel

Q HV,i :

Heating value of specie i

r c :

Compression ratio

s 1 :

Entropy at state 1

s 2 :

Entropy at state 2

s 3 :

Entropy at state 3

s 4 :

Entropy at state 4

s 5 :

Entropy at state 5

T 1 :

Temperature at state 1

T 4 :

Temperature at state 4

T 5 :

Temperature at state 5

T 6 :

Temperature at state 6

T cv,adiabatic :

Constant volume adiabatic flame temperature

T e :

Exhaust temperature

T H :

Temperature of a source reservoir

T i :

Inlet temperature

T L :

Temperature of a sink reservoir

T r :

Residual fraction temperature

u 1 :

Specific internal energy at state 1

u 2 :

Specific internal energy at state 2

u 3 :

Specific internal energy at state 3

u 3a :

Specific internal energy at state 3a

u 4 :

Specific internal energy at state 4

U 1 :

Internal energy at state 1

U 2 :

Internal energy at state 2

U 3 :

Internal energy at state 3

U 4 :

Internal energy at state 4

v 1 :

Specific volume at state 1

v 2 :

Specific volume at state 2

v 3 :

Specific volume at state 3

v 3a :

Specific volume at state 3a

v 4 :

Specific volume at state 4

V :

Cylinder volume

V 1 :

Volume at state 1

V 2 :

Volume at state 2

V 3 :

Volume at state 3

V 5 :

Volume at state 5

V 6 :

Volume at state 6

V d :

Displaced volume

V max :

Maximum cylinder volume

V min :

Minimum cylinder volume

W :

Thermodynamic work

1 W 2 :

Work for process 1-2

2 W 3 :

Work for process 2-3

3 W 4 :

Work for process 3-4

4 W 5 :

Work for process 4-5

5 W 6 :

Work for process 5-6

6 W 1 :

Work for process 6-1

W b :

Brake work

W f :

Friction work

W gross :

Gross work

W ig :

Gross indicated work

W in :

Net indicated work

W ip :

Pump work

W net :

Net work

x i :

Mole fraction of specie i

y i :

Mass fraction of specie i

Bibliography

Primary Literature

  1. Cummins C Jr (1976) Early IC and automotive engines. SAE Trans 85(SAE Paper No. 760604):1960–1971

    Google Scholar 

  2. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, p 9

    Google Scholar 

  3. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, p 10

    Google Scholar 

  4. Automot Eng Int (2010) 118(1):47. http://www.sae.org/automag/

  5. Brown W (1967) Methods for evaluating requirements and errors in cylinder pressure measurement. SAE Trans 76(SAE Paper No. 670008):50–71

    Google Scholar 

  6. Lancaster D, Krieger R, Lienesch J (1975) Measurement and analysis of engine pressure data. SAE Trans 84(SAE Paper No. 750026):155–172

    Google Scholar 

  7. Randolph A (1990) Methods of processing cylinder-pressure transducer signals to maximize data accuracy. SAE Trans J Passeng Cars 99(SAE Paper No. 900170):191–200

    Google Scholar 

  8. Kuratle R, Marki B (1992) Influencing parameters and error sources during indication on internal combustion engines. SAE Trans J Engines 101(SAE Paper No. 920233):295–303

    Google Scholar 

  9. Davis R, Patterson G (2006) Cylinder pressure data quality checks and procedures to maximize data accuracy. SAE Paper No. 2006-01-1346

    Google Scholar 

  10. Amann C (1983) A perspective of reciprocating-engine diagnostics without lasers. Prog Energy Combust Sci 9:239–267

    Article  Google Scholar 

  11. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, pp 56–57

    Google Scholar 

  12. Tompkins B, Esquivel J, Jacobs T (2009) Performance parameter analysis of a biodiesel-fuelled medium duty diesel engine. SAE Paper No. 2009-01-0481

    Google Scholar 

  13. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, p 217

    Google Scholar 

  14. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, p 154

    Google Scholar 

  15. Lauck F, Uyehara O, Myers P (1963) An engineering evaluation of energy conversion devices. SAE Trans 71(SAE Paper No. 630446):41–50

    Google Scholar 

  16. Foster D, Myers P (1984) Can paper engines stand the heat? SAE Trans 93(SAE Paper No. 840911):4.491–4.502

    Google Scholar 

  17. The K, Miller S, Edwards C (2008) Thermodynamic requirements for maximum internal combustion engine cycle efficiency, Part 1: optimal combustion strategy. Int J Engine Res 9:449–465

    Article  Google Scholar 

  18. Carnot NLS (1824) Reflections on the motive power of heat (trans and ed: Thurston RH), 2nd edn (1897). Wiley, New York

    Google Scholar 

  19. Borgnakke C, Sonntag R (2009) Fundamentals of thermodynamics. Wiley, New York, p 497

    Google Scholar 

  20. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, p 177

    Google Scholar 

  21. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, p 163

    Google Scholar 

  22. Edson M (1964) The influence of compression ratio and dissociation on ideal Otto cycle engine thermal efficiency. Digital calculations of engine cycles. SAE, Warrendale, pp 49–64

    Google Scholar 

  23. Westbrook C, Dryer F (1984) Chemical kinetic modeling of hydrocarbon combustion. Prog Energy Combust Sci 10:1–57

    Article  CAS  Google Scholar 

  24. Olikara C, Borman G (1975) A computer program for calculating properties of equilibrium combustion products with some applications IC engines. SAE Paper No. 750468

    Google Scholar 

  25. Lavoie G, Heywood J, Keck J (1970) Experimental and theoretical study of nitric oxide formation in internal combustion engines. Combust Sci Technol 1:313–326

    Article  CAS  Google Scholar 

  26. Bowman C (1975) Kinetics of pollutant formation and destruction in combustion. Prog Energy Combust Sci 1:33–45

    Article  CAS  Google Scholar 

  27. Miller J, Bowman C (1989) Mechanism and modeling of nitrogen chemistry in combustion. Prog Energy Combust Sci 15:287–338

    Article  CAS  Google Scholar 

  28. Turns S (1995) Understanding NOx formation in nonpremixed flames: experiments and modeling. Prog Energy Combust Sci 21:361–385

    Article  CAS  Google Scholar 

  29. Dean A, Bozzelli J (2000) In: Gardiner WC Jr (ed) Combustion chemistry of nitrogen in gas-phase combustion chemistry. Springer, New York, pp 125–341

    Chapter  Google Scholar 

  30. McBride B, Gordon S (1992) Computer program for calculating and fitting thermodynamic functions. NASA Report No. RP-1271

    Google Scholar 

  31. Svehla R (1995) Transport coefficients for the NASA Lewis chemical equilibrium program. NASA Report No. TM-4647

    Google Scholar 

  32. Gordon S, McBride B (1999) Thermodynamic data to 20000K for monatomic gases. NASA Report No. TP-1999-208523

    Google Scholar 

  33. McBride B, Gordon S, Reno M (2001) Thermodynamic data for fifty reference elements. NASA Report No. TP-3287/Rev 1

    Google Scholar 

  34. McBride B, Zehe M, Gordon S (2002) CAP: a computer code for generating tabular thermodynamic functions from NASA Lewis Coefficients. NASA Report No. TP-2001-210959-Rev1

    Google Scholar 

  35. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, pp 136–137

    Google Scholar 

  36. Stull D, Prophet H (1971) JANAF thermochemical tables, NSRDS-NBS 37. http://www.nist.gov/data/nsrds/NSRDS-NBS37.pdf. Accessed 5 July 2010

  37. Keenan J (1951) Availability and irreversibility in thermodynamics. Br J Appl Phys 2:183–192

    Article  CAS  Google Scholar 

  38. Edson M, Taylor C (1964) The limits of engine performance – comparison of actual and theoretical cycles. In: SAE digital calculations of engine cycles. Society of Automotive Engineers, New York, pp 65–81

    Chapter  Google Scholar 

  39. Strange F (1964) An analysis of the ideal Otto cycle, including the effects of heat transfer, finite combustion rates, chemical dissociation, and mechanical losses. In: SAE digital calculations of engine cycles. Society of Automotive Engineers, New York, pp 92–105

    Chapter  Google Scholar 

  40. Patterson D, Van Wylen G (1964) A digital computer simulation for spark-ignited engine cycles. In: SAE digital calculations of engine cycles. Society of Automotive Engineers, New York, pp 82–91

    Chapter  Google Scholar 

  41. Woschni G (1967) Universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Trans 76(SAE Paper No. 670931):3065–3083

    Google Scholar 

  42. Hohenberg G (1979) Advanced approaches for heat transfer calculations. SAE Trans 88(SAE Paper No. 790825):2788–2806

    Google Scholar 

  43. Borman G, Nishiwaki K (1987) Internal-combustion engine heat transfer. Prog Energy Combust Sci 13:1–46

    Article  Google Scholar 

  44. Heywood J, Higgins J, Watts P, Tabaczynski R (1979) Development and use of a cycle simulation to predict SI engine efficiency and NOx emissions. SAE Paper No. 790291

    Google Scholar 

  45. Sandoval D, Heywood J (2003) An improved friction model for spark-ignition engines. SAE Trans J Engines 112(SAE Paper No. 2003-01-0725):1041–1052

    Google Scholar 

  46. Blumberg P, Lavoie G, Tabaczynski R (1979) Phenomenological models for reciprocating internal combustion engines. Prog Energy Combust Sci 5:123–167

    Article  CAS  Google Scholar 

  47. Assanis D, Heywood J (1986) Development and use of a computer simulation of the turbocompounded diesel system for engine performance and component heat transfer studies. SAE Trans 95(SAE Paper No. 860329):2.451–2.476

    Google Scholar 

  48. Filipi Z, Assanis D (1991) Quasi-dimensional computer simulation of the turbocharged spark ignition engine and its use for 2 and 4-valve engine matching studies. SAE Trans J Engines 100(SAE Paper No. 910075):52–68

    Google Scholar 

  49. Kamimoto T, Kobayashi H (1991) Combustion processes in diesel engines. Prog Energy Combust Sci 17:163–189

    Article  CAS  Google Scholar 

  50. Reitz R, Rutland C (1995) Development and testing of diesel engine CFD models. Prog Energy Combust Sci 21:173–196

    Article  CAS  Google Scholar 

  51. Caton J (2003) Effects of burn rate parameters on nitric oxide emissions for a spark ignition engine: results from a three-zone, thermodynamic simulation. SAE Paper No. 2003-01-0720

    Google Scholar 

  52. Caton J (2000) A review of investigations using the second law of thermodynamics to study internal-combustion engines. SAE Trans J Engines 109(SAE Paper No. 2000-01-1081):1252–1266

    Google Scholar 

  53. Rakopoulos C, Giakoumis E (2006) Second-law analyses applied to internal combustion engines operation. Prog Energy Combust Sci 32:2–47

    Article  CAS  Google Scholar 

  54. Shyani R, Caton J (2009) A thermodynamic analysis of the use of exhaust gas recirculation in spark ignition engines including the second law of thermodynamics. Proc Inst Mech Eng Part D J Automob Eng 223:131–149

    Article  Google Scholar 

  55. Dunbar W, Lior N (1994) Sources of combustion irreversibility. Combust Sci Technol 103:41–61

    Article  CAS  Google Scholar 

  56. Som S, Datta A (2008) Thermodynamic irreversibilities and exergy balance in combustion processes. Prog Energy Combust Sci 34:351–376

    Article  CAS  Google Scholar 

  57. Caton J (2000) On the destruction of availability (exergy) due to combustion processes – with specific application to internal-combustion engines. Energy 25:1097–1117

    Article  CAS  Google Scholar 

  58. Keenan J (1941) Thermodynamics. Wiley, New York, p 269

    Google Scholar 

  59. Obert E (1970) Internal combustion engines, 3rd edn. International Textbook Company, Scranton, p 459

    Google Scholar 

  60. Patrawala K, Caton J (2008) Potential processes for “reversible” combustion with application to reciprocating internal combustion engines. In: Proceedings of the 2008 technical meeting of the central states section of the combustion institute, Tuscaloosa

    Google Scholar 

  61. Diesel R (1897) Diesel’s rational heat motor. A lecture delivered at the general meeting of the society at Cassell, June 16, 1897. Original published in Zeitschrift des Vereines Deutscher Ingenieure (trans: Leupold R). Progressive Age, New York (Reprinted)

    Google Scholar 

  62. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, p 391

    Google Scholar 

  63. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, p 390

    Google Scholar 

  64. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, p 374

    Google Scholar 

  65. Lyn W (1963) Study of burning rate and nature of combustion in diesel engines. Proc Combust Inst 9:1069–1082

    Article  Google Scholar 

  66. Plee S, Ahmad T (1983) Relative roles of premixed and diffusion burning in diesel combustion. SAE Trans 92(SAE Paper No. 831733):4.892–4.909

    Google Scholar 

  67. Ricardo H (1941) The high-speed internal combustion engine (Rev: Glyde HS), 3rd edn. Interscience Publishers, New York

    Google Scholar 

  68. Ladommatos N, Abdelhalim S, Zhao H, Hu Z (1998) Effects of EGR on heat release in diesel combustion. SAE Paper No. 980184

    Google Scholar 

  69. Meguerdichian M, Watson N (1978) Prediction of mixture formation and heat release in diesel engines. SAE Paper No. 780225

    Google Scholar 

  70. Lyn W, Valdmanis E (1968) Effects of physical factors on ignition delay. SAE Paper No. 680102

    Google Scholar 

  71. Kamimoto T, Aoyagi Y, Matsui Y, Matsuoka S (1981) The effects of some engine variables on measured rates of air entrainment and heat release in a DI diesel engine. SAE Trans 89(SAE Paper No. 800253):1163–1174

    Google Scholar 

  72. Dent J, Mehta P, Swan J (1982) A predictive model for automotive DI diesel engine performance and smoke emissions. Paper presented at the international conference on diesel engines for passenger cars and light duty vehicles. Institution of Mechanical Engineers, London. IMECE Paper No. C126/82

    Google Scholar 

  73. Binder K, Hilburger W (1981) Influence of the relative motions of air and fuel vapor on the mixture formation processes of the direct injection diesel engine. SAE Trans 90(SAE Paper No. 810831):2540–2555

    Google Scholar 

  74. Dec J (1997) A conceptual model of DI diesel combustion based on laser-sheet imaging. SAE Trans J Engines 106(SAE Paper No. 970873):1319–1348

    Google Scholar 

  75. Flynn P, Durrett R, Hunter G, zur Loye A, Akinyemi O, Dec J, Westbrook C (1999) Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation. SAE Trans J Engines 108(SAE Paper No. 1999-01-0509):587–600

    Google Scholar 

  76. Chigier N (1975) Pollution formation and destruction in flames – introduction. Prog Energy Combust Sci 1:3–15

    Article  CAS  Google Scholar 

  77. Beltzer M (1976) Non-sulfate particulate emissions from catalyst cars. SAE Trans 85(SAE Paper No. 760038):198–208

    Google Scholar 

  78. Khatri N, Johnson J, Leddy D (1978) The characterization of the hydrocarbon and sulfate fractions of diesel particulate matter. SAE Trans 87(SAE Paper No. 780111):469–492

    Google Scholar 

  79. Hoffert M, Caldeira K, Benford G, Criswell D, Green C, Herzog H, Jain A, Kheshgi H, Lackner K, Lewis J, Lightfoot H, Manheimer W, Mankins J, Mauel M, Perkins L, Schlesinger M, Volk T, Wigley T (2002) Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298:981–987

    Article  CAS  Google Scholar 

  80. Ghoniem A (2011) Needs, resources and climate change: clean and efficient conversion technologies. Prog Energy Combust Sci 37:15–51

    Article  CAS  Google Scholar 

  81. Henein N (1976) Analysis of pollutant formation and control and fuel economy in diesel engines. Prog Energy Combust Sci 1:165–207

    Article  CAS  Google Scholar 

  82. Haagen-Smit A, Fox M (1955) Automobile exhaust and ozone formation. SAE Trans 63(SAE Paper No. 550277):575–580

    Google Scholar 

  83. Huls T, Nickol H (1967) Influence of engine variables on exhaust oxides of nitrogen concentrations from a multicylinder engine. SAE Paper No. 670482

    Google Scholar 

  84. Starkman E, Stewart H, Zvonow V (1969) Investigation into formation and modification of exhaust emission precursors. SAE Paper No. 690020

    Google Scholar 

  85. Hames R, Merrion D, Ford H (1971) Some effects of fuel injection system parameters on diesel exhaust emissions. SAE Paper No. 710671

    Google Scholar 

  86. Khan I, Greeves G, Wang C (1973) Factors affecting smoke and gaseous emissions from direct injection engines and a method of calculation. SAE Trans 82(SAE Paper No. 730169):687–709

    Google Scholar 

  87. Yu R, Shahed S (1981) Effects of injection timing and exhaust gas recirculation on emissions from a D.I. diesel engine. SAE Trans 90(SAE Paper No. 811234):3873–3883

    Google Scholar 

  88. Newhall H (1967) Control of nitrogen oxides by exhaust recirculation, a preliminary theoretical study. SAE Trans 76(SAE Paper No. 670495):1820–1836

    Google Scholar 

  89. Benson J, Stebar R (1971) Effects of charge dilution on nitric oxide emission from a single-cylinder engine. SAE Trans 80(SAE Paper No. 710008):7–19

    Google Scholar 

  90. Komiyama K, Heywood J (1973) Predicting NOx emissions and effects of exhaust gas recirculation in spark-ignition engines. SAE Trans 82(SAE Paper No. 730475):1458–1476

    Google Scholar 

  91. McEnally C, Pfefferle L, Atakan B, Kohse-Hoinghaus K (2006) Studies of aromatic hydrocarbon formation mechanisms in flames: progress toward closing the fuel gap. Prog Energy Combust Sci 32:247–294

    Article  CAS  Google Scholar 

  92. Cheng W, Hamrin D, Heywood J, Hochgreb S, Min K, Norris M (1993) An overview of hydrocarbon emissions mechanisms in spark-ignition engines. SAE Trans J Fuels Lubr 102(SAE Paper No. 932708):1207–1220

    Google Scholar 

  93. Henein N, Tagomori M (1999) Cold-start hydrocarbon emissions in port-injected gasoline engines. Prog Energy Combust Sci 25:563–593

    Article  CAS  Google Scholar 

  94. Alkidas A (1999) Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Prog Energy Combust Sci 25:253–273

    Article  CAS  Google Scholar 

  95. Haynes B, Wagner H (1981) Soot formation. Prog Energy Combust Sci 7:229–273

    Article  CAS  Google Scholar 

  96. Smith O (1981) Fundamentals of soot formation in flames with application to diesel engine particulate emissions. Prog Energy Combust Sci 7:275–291

    Article  CAS  Google Scholar 

  97. Kennedy I (1997) Models of soot formation and oxidation. Prog Energy Combust Sci 23:95–132

    Article  CAS  Google Scholar 

  98. Richter H, Howard J (2000) Formation of polycyclic aromatic hydrocarbons and their growth to soot – a review of chemical reaction pathways. Prog Energy Combust Sci 26:565–608

    Article  CAS  Google Scholar 

  99. Tree D, Svensson K (2007) Soot processes in compression ignition engines. Prog Energy Combust Sci 33:272–309

    Article  CAS  Google Scholar 

  100. Hassaneen A, Samuel S, Morrey D, Gonzalez-Oropeza R (2009) Influence of physical and chemical parameters on characteristics of nanoscale particulate in spark ignition engine. SAE Paper No. 2009-01-2651

    Google Scholar 

  101. Ericsson P, Samson A (2009) Characterization of particulate emissions propagating in the exhaust line for spark-ignited engines. SAE Paper No. 2009-01-2654

    Google Scholar 

  102. Khan I (1969–1970) Formation and combustion of carbon in a diesel engine. Proc Inst Mech Eng 184(3J):36–43

    Google Scholar 

  103. Ahmad T, Plee S, Myers J (1982) Diffusion flame temperature – its influence on diesel particulate and hydrocarbon emissions. Paper presented at the international conference on diesel engines for passenger cars and light duty vehicles. Institution of Mechanical Engineers, London. IMECE Paper No. C101/82

    Google Scholar 

  104. Kummer J (1980) Catalysts for automobile emission control. Prog Energy Combust Sci 6:177–199

    Article  CAS  Google Scholar 

  105. Koltsakis G, Stamatelos A (1997) Catalytic automotive exhaust aftertreatment. Prog Energy Combust Sci 23:1–39

    Article  CAS  Google Scholar 

  106. Johnson T (2010) Diesel emission control in review. SAE Int J Fuels Lubr 2(SAE Paper No. 2009-01-0121):1–12

    Google Scholar 

  107. Taylor C (1985) The internal combustion engine in theory and practice, vol 2: Combustion, fuels, materials, design (rev. edition). The MIT Press, Cambridge, MA, pp 21–23

    Google Scholar 

  108. Taylor C (1985) The internal combustion engine in theory and practice, vol 2: Combustion, fuels, materials, design (rev. edition). The MIT Press, Cambridge, MA, p 50

    Google Scholar 

  109. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, pp 4–5

    Google Scholar 

  110. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, p 475

    Google Scholar 

  111. Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York, pp 217–220

    Google Scholar 

  112. Clenci A, Descombes G, Podevin P, Hara V (2007) Some aspects concerning the combination of downsizing with turbocharging, variable compression ratio, and variable intake valve lift. Proc Inst Mech Eng D J Automob Eng 221:1287–1294

    Article  Google Scholar 

  113. Van Nieuwstadt M, Kolmanovsky I, Morael P (2000) Coordinated EGR-VGT control for diesel engines: an experimental comparison. SAE Trans J Engines 109(SAE Paper No. 2000-01-0266):238–249

    Google Scholar 

  114. Arnold S, Slupski K, Groskreutz M, Vrbas G, Cadle R, Shahed S (2011) Advanced turbocharging technologies for heavy-duty diesel engines. SAE Trans J Engines 110(SAE Paper No. 2001-01-3260):2048–2055

    Google Scholar 

  115. Kessel J, Schaffnit J, Schmidt M (1998) Modeling an real-time simulation of a turbocharger with variable turbine geometry (VGT). SAE Paper No. 980770

    Google Scholar 

  116. Hawley J, Wallace F, Pease A, Cox A, Horrocks R, Bird G (1997) Comparison of variable geometry turbocharging (VGT) over conventional wastegated machines to achieve lower emissions. In: IMechE autotech conference, Birmingham, pp 245–259 (IMechE Seminar Publication: Automotive Engines and Powertrains, Paper No. C524/070/97)

    Google Scholar 

  117. Hawley J, Wallace F, Cox A, Horrocks R, Bird G (1999) Reduction of steady state NOx levels from an automotive diesel engine using optimized VGT/EGR schedules. SAE Trans J Engines 108(SAE Paper No. 1999-01-0835):1172–1184

    Google Scholar 

  118. Tanin K, Wickman D, Montgomery D, Das S, Reitz R (1999) The influence of boost pressure on emissions and fuel consumption of a heavy-duty single-cylinder DI diesel engine. SAE Trans J Engines 108(SAE Paper No. 1999-01-0840):1198–1219

    Google Scholar 

  119. Cook J, Sun J, Buckland J, Kolmanovsky I, Peng H, Grizzle J (2006) Automotive powertrain control – a survey. Asian J Control 8(3):237–260

    Article  Google Scholar 

  120. Leithgoeb R, Henzinger F, Fuerhapter A, Gschweitl K, Zrim A (2003) Optimization of new advanced combustion systems using real-time combustion control. SAE Paper No. 2003-01-1053

    Google Scholar 

  121. Corti E, Moro D, Solieri L (2007) Real-time evaluation of IMEP and ROHR-related parameters. SAE Paper No. 2007-24-0068

    Google Scholar 

  122. Leonhardt S, Muller N, Isermann R (1999) Methods for engine supervision and control based on cylinder pressure information. IEEE/ASME Trans Mechatron 4(3):235–245

    Article  Google Scholar 

  123. Yoon M, Chung N, Lee M, Sunwoo M (2009) An engine-control-unit-in-the-loop simulator of a common-rail diesel engine for cylinder-pressure-based control. Proc Inst Mech Eng D J Automob Eng 223:355–373

    Article  Google Scholar 

  124. Turin R, Zhang R, Chang M (2008) Systematic model-based engine control design. SAE Int J Passeng Cars Electron Electr Syst 1(SAE Paper No. 2008-01-0994):413–424

    Google Scholar 

  125. Caton J (2008) Results from an engine cycle simulation of compression ratio and expansion ratio effects on engine performance. J Eng Gas Turbines Power 130(5):052809-7–052809-1

    Article  Google Scholar 

  126. Wirbeleit F, Binder K, Gwinner D (1990) Development of pistons with variable compression height for increasing efficiency and specific power output of combustion engines. SAE Trans J Engines 99(SAE Paper No. 900229):543–557

    Google Scholar 

  127. Sugiyama T, Hiyoshi R, Takemura S, Aoyama S (2007) Technology for improving engine performance using variable mechanisms. SAE Trans J Engines 116(SAE Paper No. 2007-01-1290):803–812

    Google Scholar 

  128. Boggs D, Hilbert H, Schechter M (1995) The Otto-Atkinson cycle engine: fuel economy and emissions results and hardware design. SAE Trans J Engines 104(SAE Paper No. 950089):220–232

    Google Scholar 

  129. Leone T, Pozar M (2001) Fuel economy benefit of cylinder deactivation – sensitivity to vehicle application and operating constraints. SAE Trans J Fuels Lubr 110(SAE Paper No. 2001-01-3591):2039–2044

    Google Scholar 

  130. Gray C (1988) A review of variable engine valve timing. SAE Trans J Engines 97(SAE Paper No. 880386):6.631–6.641

    Google Scholar 

  131. Payri F, Desantes J, Corberaan J (1988) A study of the performance of an SI engine incorporating a hydraulically controlled variable valve timing system. SAE Trans J Engines 97(SAE Paper No. 880604):6.1133–6.1145

    Google Scholar 

  132. Ma T (1988) Effect of variable engine valve timing on fuel economy. SAE Trans J Engines 97(SAE Paper No. 880390):6.665–6.672

    Google Scholar 

  133. Meacham G (1970) Variable cam timing as an emission control tool. SAE Trans 79(SAE Paper No. 700673):2127–2144

    Google Scholar 

  134. Tuttle J (1980) Controlling engine load by means of late intake-valve closing. SAE Trans 89(SAE Paper No. 800794):2429–2441

    Google Scholar 

  135. Stobart R, Wijewardane A, Allen C (2010) The potential for thermo-electric devices in passenger vehicle applications. SAE Paper No. 2010-01-0833

    Google Scholar 

  136. Patterson A, Tett R, McGuire J (2009) Exhaust heat recovery using electro-turbogenerators. SAE Paper No. 2009-01-1604

    Google Scholar 

  137. Srinivasan K, Mago P, Zdaniuk G, Chamra L, Midkiff K (2008) Improving the efficiency of the advanced injection low pilot ignited natural gas engine using organic Rankine cycles. ASME J Energy Resour Technol 130:022201-7–022201-1

    Article  Google Scholar 

  138. Goldsmid H (1960) Principles of thermoelectric devices. Br J Appl Phys 11:209–217

    Article  Google Scholar 

  139. Hussain Q, Brigham D, Maranville C (2010) Thermoelectric exhaust heat recovery for hybrid vehicles. SAE Int J Engines 2:1(SAE Paper No. 2009-01-1327):1132–1142

    Google Scholar 

  140. Barber E, Reynolds B, Tierney W (1951) Elimination of combustion knock ~ Texaco combustion process. SAE Trans 59(SAE Paper No. 510173):26–38

    Google Scholar 

  141. Davis C, Barber E, Mitchell E (1961) Fuel injection and positive ignition ~ a basis for improved efficiency and economy. SAE Trans 69(SAE Paper No. 610012):120–131

    Google Scholar 

  142. Mitchell E, Cobb J, Frost R (1968) Design and evaluation of a stratified charge multifuel military engine. SAE Trans 77(SAE Paper No. 680042):118–131

    Google Scholar 

  143. Alperstein M, Schafer G, Villforth F III (1974) Texaco’s stratified charge engine – multifuel, efficient, clean, and practical. SAE Paper No. 740563

    Google Scholar 

  144. Pischinger F, Schmidt G (1978) Experimental and theoretical investigations of a stratified-charge engine with direct fuel injection. SAE Paper No. 785038

    Google Scholar 

  145. Hiraki H, Rife J (1980) Performance and NOx model of a direct injection stratified charge engine. SAE Trans 89(SAE Paper No. 800050):336–356

    Google Scholar 

  146. Ullman T, Hare C, Baines T (1982) Emissions from direct-injected heavy-duty methanol-fueled engines (one dual injection and one spark-ignited) and a comparable diesel engine. SAE Trans 91(SAE Paper No. 820966):3154–3170

    Google Scholar 

  147. Giovanetti A, Ekchian J, Heywood J, Fort E (1983) Analysis of hydrocarbon emissions mechanisms in a direct injection spark-ignition engine. SAE Trans 92(SAE Paper No. 830587):2.925–2.947

    Google Scholar 

  148. Kato S, Onishi S (1988) New mixture formation technology of direct fuel injection stratified charge SI engine (OSKA) ~ test result with gasoline fuel. SAE Trans J Engines 97(SAE Paper No. 881241):6.1497–6.1504

    Google Scholar 

  149. Onishi S, Jo S, Shoda K, Jo P, Kato S (1979) Active thermo-atmosphere combustion (ATAC) ~ a new combustion process for internal combustion engines. SAE Trans 88(SAE Paper No. 790501):1851–1860

    Google Scholar 

  150. Najt P, Foster D (1983) Compression-ignited homogeneous charge combustion. SAE Trans 92(SAE Paper No. 830264):1.964–1.979

    Google Scholar 

  151. Martinez-Frias J, Aceves S, Flowers D, Smith J, Dibble R (2000) HCCI engine control by thermal management. SAE Trans J Fuels Lubr 109(SAE Paper No. 2000-01-2869):2646–2655

    Google Scholar 

  152. Law D, Kemp D, Allen J, Kirkpatrick G, Copland T (2001) Controlled combustion in an IC engine with a fully variable valve train. SAE Trans J Engines 110(SAE Paper No. 2001-01-0251):192–198

    Google Scholar 

  153. Rausen D, Stefanopoulou A, Kang J, Eng J, Kuo T (2005) A mean-value model for control of homogeneous charge compression ignition (HCCI) engines. J Dyn Syst Meas Control 127:355–362

    Article  Google Scholar 

  154. Shaver G, Gerdes J, Roelle M, Caton P, Edwards C (2005) Dynamic modeling of residual-affected homogeneous charge compression ignition engines with variable valve actuation. J Dyn Syst Meas Control 127:374–381

    Article  Google Scholar 

  155. Bengtsson J, Strandh P, Johansson R, Tunestal P, Johansson B (2006) Multi-output control of a heavy-duty HCCI engine using variable valve actuation and model predictive control. SAE Paper No. 2006-01-0873

    Google Scholar 

  156. Chiang C, Stefanopoulou A (2009) Sensitivity analysis of combustion timing of homogeneous charge compression ignition gasoline engines. J Dyn Syst Meas Contr 131:014506-1–014506-5

    Article  Google Scholar 

  157. Fish A, Read I, Affleck W, Haskell W (1969) The controlling role of cool flames in two-stage ignition. Combust Flame 13:39–49

    Article  CAS  Google Scholar 

  158. Takeda Y, Keiichi N, Keiichi N (1996) Emission characteristics of premixed lean diesel combustion with extremely early staged fuel injection. SAE Trans J Fuels Lubr 105(SAE Paper No. 961163):938–947

    Google Scholar 

  159. Akagawa H, Miyamoto T, Harada A, Sasaki S, Shimazaki N, Hashizume T, Tsujimura K (1999) Approaches to solve problems of the premixed lean diesel combustion. SAE Trans J Engines 108(SAE Paper No. 1999-01-0183):120–132

    Google Scholar 

  160. Iwabuchi Y, Kawai K, Shoji T, Takeda Y (1999) Trial of new concept diesel combustion system – premixed compression-ignited combustion. SAE Trans J Engines 108(SAE Paper No. 1999-01-0185):142–151

    Google Scholar 

  161. Kimura S, Aoki O, Kitahara Y, Airoshizawa E (2001) Ultra-clean combustion technology combining a low-temperature and premixed combustion concept for meeting future emission standards. SAE Trans J Fuels Lubr 110(SAE Paper No. 2001-01-0200):239–246

    Google Scholar 

  162. Kaneko N, Ando H, Ogawa H, Miyamoto N (2002) Expansion of the operating range with in-cylinder water injection in a premixed charge compression ignition engine. SAE Trans J Engines 111(SAE Paper No. 2002-01-1743):2309–2315

    Google Scholar 

  163. Shimazaki N, Tsurushima T, Nishimura T (2003) Dual mode combustion concept with premixed diesel combustion by direct injection near top dead center. SAE Trans J Engines 112(SAE Paper No. 2003-01-0742):1060–1069

    Google Scholar 

  164. Hasegawa R, Yanagihara H (2003) HCCI combustion in DI diesel engine. SAE Trans J Engines 112(SAE Paper 2003-01-0745):1070–1077

    Google Scholar 

  165. Okude K, Mori K, Shiino S, Moriya T (2004) Premixed compression ignition (PCI) combustion for simultaneous reduction of NOx and soot in diesel engines. SAE Trans J Fuels Lubr 113(SAE Paper No. 2004-01-1907):1002–1013

    Google Scholar 

  166. Jacobs T, Bohac S, Assanis D, Szymkowicz P (2005) Lean and rich premixed compression ignition combustion in a light-duty diesel engine. SAE Trans J Engines 114(SAE Paper No. 2005-01-0166):382–393

    Google Scholar 

  167. Lechner G, Jacobs T, Chryssakis C, Assanis D, Siewert R (2005) Evaluation of a narrow spray cone angle, advanced injection timing strategy to achieve partially premixed compression ignition combustion in a diesel engine. SAE Trans J Engines 114(SAE Paper No. 2005-01-0167):394–404

    Google Scholar 

  168. Jacobs T, Assanis D (2007) The attainment of premixed compression ignition low-temperature combustion in a compression ignition direct injection engine. Proc Combust Inst 31:2913–2920

    Article  Google Scholar 

Books and Reviews

  • Ferguson CR, Kirkpatrick AT (2001) Internal combustion engines: applied thermosciences, 2nd edn. Wiley, New York

    Google Scholar 

  • Heywood J (1988) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

  • Jennings BH, Obert EF (1944) Internal combustion engines: analysis and practice. International Textbook Company, Scranton

    Google Scholar 

  • Pulkrabek WW (2004) Engineering fundamentals of the internal combustion engine, 2nd edn. Pearson Prentice-Hall, Upper Saddle River

    Google Scholar 

  • Taylor CF (1985) The internal combustion engine in theory and practice – vol 1: Thermodynamics, fluid flow, performance (rev), 2nd edn. The MIT Press, Cambridge, MA

    Google Scholar 

  • Taylor CF (1985) The internal combustion engine in theory and practice – vol 2: Combustion, fuels, materials, design (rev). The MIT Press, Cambridge, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Jacobs .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Cite this entry

Jacobs, T.J. (2018). Internal Combustion Engines, Developments in. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_430-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_430-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics