Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

WTE: Thermal Plasma Processes

  • Nickolas J. Themelis
  • Armelle M. Vardelle
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_407-3

Glossary

Arc plasma

a gas that is heated electrically to temperatures up to 20,000 K by means of an arc struck between two electrodes

Arc plasma torch

device used to generate a thermal plasma

Efficiency of energy generation

ratio of net electrical energy generated to chemical heat input, per ton of MSW processed

MSW

municipal solid waste, mixed waste that is collected by a given collection system

Non-transferred arc plasma torch

the two electrodes are located within a water-cooled plasma torch

Torch thermal efficiency

ratio of enthalpy input to the plasma-forming gas to electrical energy input to the plasma torch

Transferred arc

the material to be processed serves as an electrode

Vitrification

also called glassification, converting WTE ash to a glassy substance by melting at high temperatures

WTE

acronym for waste to energy, i.e., thermal treatment of solid wastes to recover their chemical energy content

Definition of the Subject and Its Importance

The thermal plasma technology [1, 2]...

This is a preview of subscription content, log in to check access.

Bibliography

Primary Literature

  1. 1.
    Fauchais P, Vardelle A (1997) Thermal plasmas. IEEE Trans Plasma Sci 5(6):1258–1280CrossRefGoogle Scholar
  2. 2.
    Kogelschatz U (2004) Atmospheric-pressure plasma technology. Plasma Phys Control Fusion 46:B63–B75CrossRefGoogle Scholar
  3. 3.
    Heberlein J, Murphy AB (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41(5):053001CrossRefGoogle Scholar
  4. 4.
    Ducharme C (2010) M.S. thesis, “Technical and economic analysis of plasma-assisted waste-to-energy processes”. Earth and Environmental Engineering, Columbia University. www.seas.columbia.edu/earth/wtert/sofos/ducharme_thesis.pdf
  5. 5.
    Themelis NJ, Kim YH (2002) Energy recovery from New York city waste. Waste Manag Res 20(3):223–223CrossRefGoogle Scholar
  6. 6.
    HSC. Chemistry, 2010. http://www.hsc-chemistry.com
  7. 7.
    Reimann DO (2008) CEWEP energy report (Status 2001–2004). www.cewep.org
  8. 8.
    NOVELECT (2003) Innovative applications of thermal plasmas (in French). EDF Publication, Paris, France, s.l.Google Scholar
  9. 9.
  10. 10.
    Corp, ALter NRG/ Westinghouse Plasma (2010) www.alternrg.ca
  11. 11.
    Belgiorno V, De Feo G, Della Rocca C (2003) Energy from gasification of solid wastes. Waste Manag 23:1–15, Napoli R.M.A.CrossRefGoogle Scholar
  12. 12.
  13. 13.

Books and Reviews

  1. Adamovich I et al (2017) The 2017 Plasma Roadmap: Low temperature plasma science and technology. J Phys D Appl Phys 50:323001Google Scholar
  2. Bridgwater AV (1995) The technical and economic feasibility of biomass gasification for power generation. Fuel 74(5):631–653CrossRefGoogle Scholar
  3. Bridgwater AV, Toft AJ, Brammer JG (2002) A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sust Energy Rev 6:181–248CrossRefGoogle Scholar
  4. Boulos MI, Fauchais P (1994) Thermal plasmas, fundamentals and applications, vol 1. Plenum Publishing Corporation, New York, USA, p 468CrossRefGoogle Scholar
  5. Clark BJ, Rogoff MJ (2010) Economic feasibility of a plasma gasification plant, NAWTEC 18–35, 11–13 May 2010Google Scholar
  6. Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge, United KingdomGoogle Scholar
  7. Gomez E, Amutha Rani D, Cheeseman CR, Deegan D, Wisc M, Boccaccini AR (2009) Thermal plasma technology for the treatment of wastes: a critical review. J Hazard Mater 161:614–626CrossRefGoogle Scholar
  8. Heberlein J (2002) New approaches in thermal plasma technology. Pure Appl Chem 74(3):327–335CrossRefGoogle Scholar
  9. Juniper Consulting (2008) Independent waste technology report, the Alter NRG/Westinghouse plasma gasification processGoogle Scholar
  10. Klein TNJ (2003) Energy recovery from municipal solid wastes by gasification, North American waste to energy conference (NAWTEC 11) 11 proceedings, ASME international, TampaGoogle Scholar
  11. Kogelschatz U (2004) Atmospheric-pressure plasma technology. Plasma Phys Control Fusion 46:B63–B75. s.lCrossRefGoogle Scholar
  12. Niessen WR, Markes CH, Sommerlad RE (1996) Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste, NREL/TP-430-21612Google Scholar
  13. Murphy AB, McAllister T (2001) Modeling of the physics and chemistry of thermal plasma waste destruction. Phys Plasmas 8:2565–2572CrossRefGoogle Scholar
  14. Plasco Energy Group. http://www.plascoenergygroup.com/
  15. Solonenko OP Thermal plasma torches and technologies. Cambridge Science International Publishing, Cambridge, United KingdomGoogle Scholar
  16. Titus CH, Surma JE (1998) Integrated environmental technologies, LLC, enhanced tunable plasma-melter vitrification systems. Patent number 5,811,752, Date of Patent: 22 Sept 1998Google Scholar
  17. University of California (2004) Evaluation of conversion technology processes and productsGoogle Scholar
  18. Vardelle A et al (2016) The 2016 thermal spray roadmap. J Therm Spray Techn 25(8):1376–1440Google Scholar
  19. Willis KP, Osada S, Willerton KL (2010) Plasma gasification: lessons from Ecovalley WTE facility, NAWTEC 18–3515, 11–13 May 2010Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Columbia UniversityEarth and Environmental EngineeringNew YorkUSA
  2. 2.Laboratoire Sciences des Procédés Céramiques et de Traitements de SurfaceUniversity of LimogesLimogesFrance