Skip to main content

Crop Development Related to Temperature and Photoperiod

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Base temperature:

Lower temperature threshold below which development ceases.

Epigenetics:

Genetic information other than DNA sequence information.

Phenology:

Study of the sequence of developmental stages of a plant and how it relates to climate.

Photoperiod sensitivity:

Requirement for a minimum (or maximum) day length for reproductive phase induction.

Phyllochron:

Rate of appearance of leaves on a shoot.

Phytomer:

Fundamental building block of plant canopies. A vegetative phytomer is comprised of leaf, node, internode, and axillary bud.

Prophyll:

A plant structure resembling a leaf (as a bracteole) or consisting of a modified or rudimentary leaf (as a foliar primordium).

Shoot apex:

The tip of the shoot where usually there is meristematic tissue producing new organs.

Thermal time:

Temperature response curve used to estimate development rate.

Vernalization sensitivity:

Requirement for a period of low temperatures for reproductive induction.

Definition of the Subject

Plant...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Heun M, Schafer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278(80):1312–1314

    Article  CAS  Google Scholar 

  2. Zohary D, Hopf M (2000) Domestication of plants in the old world. Oxford University Press, Oxford

    Google Scholar 

  3. Goethe JWV (2009) The metamorphosis of plants. MIT Press, Cambridge, p 123. (re-print)

    Google Scholar 

  4. Gray A (1879) Structural botany: or organography on the basis of morphology. Ivison Blakeman Taylor, New York/Chicago

    Google Scholar 

  5. Bateson W (1894) Materials for the study of variation treated with special regard to discontinuity in the origin of species. Macmillan, London

    Google Scholar 

  6. Wilhelm WW, McMaster GS (1995) Importance of the phyllochron in studying development and growth in grasses. Crop Sci 35:1–3

    Article  Google Scholar 

  7. Jewiss O (1972) Tillering in grasses – its significance and control. J Br Grassl Soc 27:65–82

    Article  CAS  Google Scholar 

  8. Klepper B, Rickman R, Belford R (1983) Leaf and tiller identification on wheat plants. Crop Sci 23:1002–1004

    Article  Google Scholar 

  9. Klepper B, Rickman R, Peterson C (1982) Quantitative characterization of vegetative development in small cereal grains. Agron J 74:789–792

    Article  Google Scholar 

  10. Haun JR (1973) Visual quantification of wheat development. Agron J 65:116–119

    Article  Google Scholar 

  11. Klepper B, Tucker T, Dunbar B (1983) A numerical index to assess early inflorescence development in wheat. Crop Sci 23:206–208

    Article  Google Scholar 

  12. Wilhelm W, McMaster G (1996) Spikelet and floret naming scheme for grasses with spike inflorescence. Crop Sci 36:1071–1073

    Article  Google Scholar 

  13. McMaster G (2005) Phytomers, phyllochrons, phenology and temperate cereal development. J Agric Sci 143:137–150

    Article  Google Scholar 

  14. Askenasy E (1888) Über eine neue methode, um die vertheilung der wachstumsintensität in wachsenden theilen zu bestintaien. Verh Naturh Med Verl Heidelberg 2:70–153

    Google Scholar 

  15. Tesarová J, Nátr L (1990) Phyllochron and winter barley leaf growth rate. Biol Plant 32:450–459

    Article  Google Scholar 

  16. Milthorpe F (1956) The relative importance of the different stages of leaf growth in determining the resultant area. In: Milthorpe F (ed) The growth of leaves. Proceedings of the 3rd Easter school in agricultural science, University of Nottingham, Nottingham. Butterworths, London, pp 20–38

    Google Scholar 

  17. Esau K (1965) Plant anatomy. Wiley, New York

    Google Scholar 

  18. Bunting A, Drennan D (1966) Some aspects of the morphology and physiology of careal in the vegetative phase. In: Milthorpe F, Ivins J (eds) The growth of cereal and grasses. Proceedings of 12th Easter school of agricultural science, University of Nottingham, Nottingham. Butterworths, London, pp 20–38

    Google Scholar 

  19. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  Google Scholar 

  20. Large EC (1954) Growth stages in cereals illustration of the Feekes scale. Plant Pathol 3:128–129

    Article  Google Scholar 

  21. Zadoks J, Chang T, Konzak C (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  22. Lancashire P, Bleiholder H, Boom T, Langelüddeke P, Strauss R, Weber E, Witzenberger A (1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601

    Article  Google Scholar 

  23. McMaster G (2009) The development of the wheat plant. In: Carver B (ed) Wheat science and trade. Willey-Blackwell, Ames, pp 31–55

    Chapter  Google Scholar 

  24. Reamur R (1735) Observations du thermomètre, faites è paris l’année 1735, comparées à celles qui ont été faites sous la ligne à l’lsle de france, à alger et en quelques-unes de nos isles de l’amérique. Mem Acad Roy Sci, Paris

    Google Scholar 

  25. Cao W, Moss DN (1989) Temperature effect on leaf emergence and phyllochron in wheat and barley. Crop Sci 29:1018–1021

    Article  Google Scholar 

  26. Friend D, Helson V, Fisher J (1962) Leaf growth in marquis wheat, as regulated by temperature, light intensity, and daylength. Can J Bot 40:1299–1311

    Article  Google Scholar 

  27. Jame YW, Cutforth HW, Ritchie JT (1998) Interaction of temperature and daylength on leaf appearance rate in wheat and barley. Agric For Meteorol 92:241–249

    Article  Google Scholar 

  28. Yan W, Hunt L (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84:607–614

    Article  Google Scholar 

  29. Chouard P (1960) Vernalization and its relations to dormancy. Annu Rev Plant Physiol 11:191–238

    Article  CAS  Google Scholar 

  30. Flood R, Halloran G (1984) The nature and duration of gene action for vernalization response in wheat. Ann Bot 53:363–368

    Article  Google Scholar 

  31. Ahrens J, Loomis W (1963) Floral induction and development in winter wheat. Crop Sci 3:463–466

    Article  Google Scholar 

  32. Miao G, Zhang Y, Hou Y, Yin J, Wang S (1992) Effects of vernalization and photoperiod on leaf number of main stem in wheat. Acta Agron Sin 16:321–330

    Google Scholar 

  33. Wang S, Ward R, Ritchie J, Fischer R, Schulthess U (1995) Vernalization in wheat. I. A model based on the interchangeability of plant age and vernalization duration. Field Crop Res 41:91–100

    Article  Google Scholar 

  34. Yan L, Loukoianov A, Tranquilli G, Helgera M, Fahima T, Dubkovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100:6263–6268

    Article  CAS  Google Scholar 

  35. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303(80):1640–1644

    Article  CAS  Google Scholar 

  36. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of ft. Proc Natl Acad Sci U S A 103:19581–19586

    Article  CAS  Google Scholar 

  37. Kurup S, Jones HD, Holdsworth MJ (2000) Interactions of the developmental regulator abi3 with proteins identified from developing Arabidopsis seeds. Plant J 21:143–155

    Article  CAS  Google Scholar 

  38. Yoshida T, Nishida H, Zhu J, Nitcher R, Distelfeld A, Akashi Y, Kato K, Dubcovsky J (2010) VRN-D4 is a vernalization gene located on the centromeric region of chromosome 5D in hexaploid wheat. Theor Appl Genet 120:543–552

    Article  CAS  Google Scholar 

  39. Kippes N, Zhu J, Chen A, Vanzetti L, Lukaszewski A, Nishida H, Kato K, Dvorak J, Dubcovsky J (2014) Fine mapping and epistatic interactions of the vernalization gene VRN-D4 in hexaploid wheat. Mol Gen Genomics 289(1):47–62

    Article  CAS  Google Scholar 

  40. Kippes N, Debernardi J, Vasquez-Gross H, Akpinar B, Budak H, Dato K, Chao S, Akhunov E, Dubcovsky J (2015) Indentification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. PNAS 112:E5401–E5410

    Article  CAS  Google Scholar 

  41. Garner W, Allard H (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606

    Google Scholar 

  42. Borlaug NE (1983) Contributions of conventional plant breeding to food production. Science 219(80):689–693

    Article  CAS  Google Scholar 

  43. Cao W, Moss DN (1989) Daylength effect on leaf emergence and phyllochron in wheat and barley. Crop Sci 29:1021–1025

    Article  Google Scholar 

  44. Warrington IJ, Kanemasu ET (1983) Corn growth response to temperature and photoperiod. II. Leaf-initiation and leaf-appearance rates. Agron J 75:755–761

    Article  Google Scholar 

  45. Turner A, Beales J, Faure S, Dunford R, Laurie D (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310(80):1031–1034

    Article  CAS  Google Scholar 

  46. Mizuno T, Nakamichi N (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol 46:677–685

    Article  CAS  Google Scholar 

  47. Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of constans-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    Article  CAS  Google Scholar 

  48. Song YH, Ito S, Imaizumi T (2010) Similarities in the circadian clock and photoperiodism in plants. Curr Opin Plant Biol 13(5):594–603

    Article  Google Scholar 

  49. Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (triticum aestivum l.) Theor Appl Genet 115:721–733

    Article  CAS  Google Scholar 

  50. Baker C, Gallagher J, Monteith J (1980) Daylength and leaf appearance in winter wheat. Plant Cell Environ 3:285–287

    Google Scholar 

  51. Cao W, Moss DN (1989) Temperature and daylength interaction on phyllochron in wheat and barley. Crop Sci 29:1046–1048

    Article  Google Scholar 

  52. Ellis R, Roberts E, Summerfield R, Cooper J (1988) Environmental control of flowering in barley (Hordeum vulgare L). II. Rate of development as a function of temperature and photoperiod and its modification by low-temperature vernalization. Ann Bot (Lond) 62:156–158

    Google Scholar 

  53. Slafer GA, Rawson HM (1996) Responses to photoperiod change with phenophase and temperature during wheat development. Field Crop Res 46:1–13

    Article  Google Scholar 

  54. Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    Article  CAS  Google Scholar 

  55. Sung S, Amasino RM (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10

    Article  CAS  Google Scholar 

  56. Appendino ML, Slafer GA (2003) Earliness per se and its dependence upon temperature in diploid wheat lines differing in the major gene Eps-Am1 alleles. J Agric Sci 141:149–154

    Article  CAS  Google Scholar 

  57. Faricelli M, Valárik M, Dubcovsky J (2010) Control of flowering time and spike development in cereals: the earliness per se Eps-1 region in wheat, rice, and brachypodium. Funct Integr Genomics 10:293–306

    Article  CAS  Google Scholar 

  58. Alvarez MA, Tranquilli G, Lewis S, Kippes N, Dukbcovsky J (2016) Genetic and physical mapping of the earliness per se locus Eps-Am1 in Triticum monococcum identifies EARLY FLOWERING 3 (ELF3) as a candidate gene. Func. Integr. Genomics 16:365–382

    CAS  Google Scholar 

  59. McMaster G, Ascough J II (2010) Crop management to cope with global change: a systems perspective aided by information technologies. In: Araus J, Slafer G (eds) Crop stress management & climate change. CAB Int, Wallingford

    Google Scholar 

  60. Norman J (1979) Modeling complete crop canopy. In: Barfield B, Gerber J (eds) Modification of the aerial environment of plants. American Society of Agricultural Engineers, St. Joseph, pp 249–277

    Google Scholar 

  61. Grant R (2001) A review of the Canadian ecosystem model – ecosys. In: Shaffer M, Ma L, Hansen S (eds) Modeling carbon and nitrogen dynamics for soil management. Lewis, Boca Raton, pp 173–263

    Google Scholar 

  62. McMaster G, Wilhelm W, Morgan J (1992) Simulating winter wheat shoot apex phenology. J Agric Sci (Camb) 119:1–12

    Article  Google Scholar 

  63. Weir A, Bragg P, Porter J, Rayner J (1984) A winter wheat crop simulation model without water or nutrient limitations. J Agric Sci (Camb) 102:371–382

    Article  Google Scholar 

  64. Porter J (1984) A model of canopy development in winter wheat. J Agric Sci 102:383–392

    Article  Google Scholar 

  65. Porter J (1993) Afrgwheat2: a model of the growth and development of wheat incorporating responses to water and nitrogen. Eur J Agron 2:69–82

    Article  Google Scholar 

  66. Rickman R, Waldman S, Klepper B (1996) Modwht3: a development-driven wheat growth simulation. Agron J 88:176–185

    Article  Google Scholar 

  67. Zalud Z, McMaster G, Wilhelm W (2003) Evaluating SHOOTGRO 4.0 as a potential winter wheat management tool in the Czech Republic. Eur J Agron 19:495–507

    Article  Google Scholar 

  68. McMaster G, Klepper B, Rickman R, Wilhelm W, Willis W (1991) Simulation of shoot vegetative development and growth of unstressed winter wheat. Ecol Model 53:189–204

    Article  Google Scholar 

  69. Wilhelm W, McMaster G, Rickman R, Klepper B (1993) Above-ground vegetative development and growth as influenced by nitrogen and water availability. Ecol Model 68:183–203

    Article  CAS  Google Scholar 

  70. McMaster GS, Morgan JA, Wilhelm WW (1992) Simulating winter wheat spike development and growth. Agric For Meteor 60:193–220

    Article  Google Scholar 

  71. Jamieson P, Brooking I, Semenov M, McMaster G, White J, Porter J (2007) Reconciling alternative models of phenological development in winter wheat. Field Crop Res 103:36–41

    Article  Google Scholar 

  72. Brooking I, Jamieson P, Porter J (1995) The influence of daylength on the final leaf number in spring wheat. Field Crop Res 41:155–165

    Article  Google Scholar 

  73. Brooking I (1996) The temperature response of vernalization in wheat – a developmental analysis. Ann Bot 78:507–512

    Article  Google Scholar 

  74. McMaster GS, Edmunds DA, Wilhelm WW, Nielsen DC, Prassad PVV, Ascough JC II (2011) PhenologyMMS: a program to simulate crop phenological responses. Comput Electron Agric 77:118–125

    Article  Google Scholar 

  75. McMaster GS, Ascough JC II, Edmunds DA, Wagner LE, Fox FA, DeJonge KC, Hansen NC (2014) Simulating unstressed crop development and growth using the unified plant growth model (UPGM). Environ Model Assess 19(5):407–424

    Article  Google Scholar 

  76. White J, Hoogenboom G (2003) Gene-based approaches to crop simulation: past experiences and future opportunities. Agron J 95:52–64

    Article  Google Scholar 

  77. Edmeades G, McMaster G, White J, Campos H (2004) Genomics and the physiologist: bridging the gap between genes and crop response. Field Crop Res 90:5–18

    Article  Google Scholar 

  78. White J (2006) From genome to wheat: emerging opportunities for modeling wheat growth and development. Eur J Agron 25:79–88

    Article  CAS  Google Scholar 

  79. White J, McMaster G, Edmeades G (2004) Physiology, genomics and crop response to global change. Field Crop Res 90:1–3

    Article  Google Scholar 

  80. Weiss A, Baenziger P, McMaster G, Wilhelm W, Al Ajlouni Z (2009) Quantifying phenotypic plasticity using genetic information for simulating plant height in winter wheat. Wagen J Life Sci 57:59–64

    Article  Google Scholar 

  81. Welch S, Roe J, Dong Z (2003) A genetic neural network model of flowering time control in Arabidopsis thaliana. Agron J 95:71–81

    Article  Google Scholar 

  82. Grogan SM, Anderson J, Baenziger PS, Frels K, Guttieri MJ, Haley SD, Kim K, Liu S, McMaster GS, Newell M, Prasad PVV, Reid SD, Shroyer KJ, Zhang G, Akhunov E, Byrne PF (2016) Phenotypic plasticity of winter wheat heading date and grain yield across the U.S. Great Plains. Crop Sci 56:2223–2236

    Article  Google Scholar 

  83. Grogan SM, Brown-Guedira G, Haley SD, McMaster GS, Reid SD, Smith J, Byrne PF (2016) Allelic variation in developmental genes and effects on winter wheat heading date in the U.S. Great Plains. PLoS One 11(4):e0152852. https://doi.org/10.1371/journal.pone.0152852.23

    Article  Google Scholar 

  84. Dingkuhn M, Luquer D, Quilot B, Reffye P (2005) Environmental and genetic control of morphogenesis in crops: towards models simulating phenotypic plasticity. Aus J Agric Res 56:1289–1302

    Article  Google Scholar 

  85. Vos J, Marcelis L, de Visser P, Struik P, Evers J (2007) Functional-structural plant modelling in crop production. Springer, Dordrecht

    Book  Google Scholar 

  86. McMaster G, Hargreaves J (2009) Canon in design: composing scales of plant canopies from phytomers to whole-plants using the composite design pattern. Wagen J Life Sci 57:39–51

    Article  Google Scholar 

  87. Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One 5:e10065

    Article  Google Scholar 

  88. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC et al (2009) The genetic architecture of maize flowering time. Science 325(80):714–718

    Article  CAS  Google Scholar 

  89. McMaster GS, Wilhelm WW (2003) Simulating wheat and barley phenological responses to water and temperature stress. J Agric Sci (Camb) 141:129–147

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. McMaster .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

McMaster, G.S., Moragues, M. (2018). Crop Development Related to Temperature and Photoperiod. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_384-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_384-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics