Skip to main content

Lignocellulosic Energy Grasses for Combustion, Production, and Provision

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 78 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. van der Weijde R (2016) Targets and tools for optimizing lignocellulosic biomass quality of miscanthus. Wageningen University, Wageningen

    Google Scholar 

  2. Lewandowski I, Scurlock JM, Lindvall E et al (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25(4):335–361

    Article  Google Scholar 

  3. Don A, Osborne B, Hastings A et al (2012) Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon. GCB Bioenergy 4(4):372–391

    Article  CAS  Google Scholar 

  4. Elbersen B, Staritsky I, Hengeveld G et al (2012) Atlas of EU biomass potentials: spatially detailed and quantified overview of EU biomass potential taking into account the main criteria determining biomass availability from different sources

    Google Scholar 

  5. Lee Y (1964) Taxanomic studies on the genus Miscanthus (3). Relationships among the section, subsection and species1. J Jap Bot 39:196–204

    Google Scholar 

  6. Clayton WD, Renvoize SA (1986) Genera graminum. Grasses of the world, vol 13. H.M.S.O, London

    Google Scholar 

  7. Deuter M (2000) Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe. EMI Project, Final rep:28–52

    Google Scholar 

  8. Hodkinson TR, Chase MW, Lledó DM et al (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115(5):381–392

    Article  CAS  Google Scholar 

  9. Casler MD, Stendal CA, Kapich L et al (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 47(6):2261–2273

    Article  CAS  Google Scholar 

  10. Hultquist SJ, Vogel K, Lee D et al (1996) Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci 36(4):1049–1052

    Article  Google Scholar 

  11. Sanderson M, Reed R, McLaughlin S et al (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56(1):83–93

    Article  CAS  Google Scholar 

  12. Casler M, Vogel K, Taliaferro C et al (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44(1):293–303

    Article  Google Scholar 

  13. Burton GW (1942) A cytological study of some species in the tribe Paniceae. Am J Bot 29:355–360

    Article  Google Scholar 

  14. Andersson B, Lindvall E (1999) Canarygrass breeding in Sweden. Alternative crops for sustainable agriculture. In: COST 814. p 53–57

    Google Scholar 

  15. Sahramaa M (2004) Evaluating germplasm of reed canary grass, Phalaris arundinacea L. University of Helsinki, Helsinki

    Google Scholar 

  16. Clifton-Brown J, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148(2):287–294

    Article  Google Scholar 

  17. Alexopoulou E, Sharma N, Papatheohari Y et al (2008) Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass Bioenergy 32(10):926–933

    Article  Google Scholar 

  18. Wolf DD, Fiske DA (2009) Planting and managing switchgrass for forage, wildlife, and conservation. Virginia Polytechnic Institute and State University, Blacksburg, pp 418–013

    Google Scholar 

  19. Wrobel C, Coulman B, Smith D (2009) The potential use of reed canarygrass (Phalaris arundinacea L.) as a biofuel crop. Acta Agric Scand Sect B–Soil Plant Sci 59(1):1–18

    Google Scholar 

  20. Casler MD (2010) Genetics, breeding, and ecology of reed canarygrass. Int J Plant Bree 4(1):30–36

    Article  Google Scholar 

  21. Van der Weijde T, Alvim Kamei CL, Torres AF et al (2013) The potential of C4 grasses for cellulosic biofuel production. Front Plant Sci 4:107

    Google Scholar 

  22. Cosentino SL, Patanè C, Sanzone E et al (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. In a Mediterranean environment. Ind Crop Prod 25(1):75–88

    Article  Google Scholar 

  23. Beale CV, Morison JI, Long SP (1999) Water use efficiency of C4 perennial grasses in a temperate climate. Agric For Meteorol 96(1):103–115

    Article  Google Scholar 

  24. Dohleman FG, Long SP (2009) More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiol 150(4):2104–2115

    Article  CAS  Google Scholar 

  25. Dohleman F, Heaton E, Leakey A et al (2009) Does greater leaf-level photosynthesis explain the larger solar energy conversion efficiency of Miscanthus relative to switchgrass? Plant Cell Environ 32(11):1525–1537

    Article  CAS  Google Scholar 

  26. Clifton-Brown J, Neilson B, Lewandowski I et al (2000) The modelled productivity of Miscanthus× giganteus (GREEF et DEU) in Ireland. Ind Crop Prod 12(2):97–109

    Article  Google Scholar 

  27. Hastings A, Clifton-Brown J, Wattenbach M et al (2009) The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. GCB Bioenergy 1(2):154–170

    Article  Google Scholar 

  28. Wullschleger S, Sanderson M, McLaughlin S et al (1996) Photosynthetic rates and ploidy levels among populations of switchgrass. Crop Sci 36(2):306–312

    Article  Google Scholar 

  29. Kiniry JR, Anderson L, Johnson M et al (2013) Perennial biomass grasses and the mason–dixon line: comparative productivity across latitudes in the southern great plains. BioEnerg Res 6(1):276–291

    Article  Google Scholar 

  30. Squire GR (1990) The physiology of tropical crop production. CAB International, Wallingford

    Google Scholar 

  31. Mueller L, Behrendt A, Schalitz G et al (2005) Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. Agric Water Manag 75(2):117–136

    Article  Google Scholar 

  32. Lewandowski I, Clifton-Brown J, Trindade LM et al (2016) Progress on optimizing Miscanthus biomass production for the European bioeconomy: results of the EU FP7 project OPTIMISC. Front Plant Sci 7:1620

    Article  Google Scholar 

  33. Chen C, van der Schoot H, Dehghan S et al (2017) Genetic diversity of salt tolerance in Miscanthus. Front Plant Sci 8:187

    Google Scholar 

  34. Barney JN, Mann JJ, Kyser GB et al (2009) Tolerance of switchgrass to extreme soil moisture stress: ecological implications. Plant Sci 177(6):724–732

    Article  CAS  Google Scholar 

  35. Kim S, Rayburn AL, Voigt T et al (2012) Salinity effects on germination and plant growth of prairie cordgrass and switchgrass. Bioenergy Res 5(1):225–235

    Article  Google Scholar 

  36. Entry JA, Watrud LS, Reeves M (1999) Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi1. Environ Pollut 104(3):449–457

    Article  CAS  Google Scholar 

  37. Kercher SM, Zedler JB (2004) Flood tolerance in wetland angiosperms: a comparison of invasive and noninvasive species. Aquat Bot 80(2):89–102

    Article  Google Scholar 

  38. Dzantor EK, Chekol T, Vough L (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. JEnviron Sci Health Part A 35(9):1645–1661

    Article  Google Scholar 

  39. Himken M, Lammel J, Neukirchen D et al (1997) Cultivation of Miscanthus under west European conditions: seasonal changes in dry matter production, nutrient uptake and remobilization. Plant Soil 189(1):117–126

    Article  CAS  Google Scholar 

  40. Iqbal Y, Gauder M, Claupein W et al (2015) Yield and quality development comparison between Miscanthus and switchgrass over a period of 10 years. Energy 89:268–276

    Article  CAS  Google Scholar 

  41. Wright LL (1994) Production technology status of woody and herbaceous crops. Biomass Bioenergy 6(3):191–209

    Article  Google Scholar 

  42. McLaughlin S, Bouton J, Bransby D et al (1999) Developing switchgrass as a bioenergy crop. Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 282–289

    Google Scholar 

  43. Iqbal Y, Lewandowski I (2014) Inter-annual variation in biomass combustion quality traits over five years in fifteen Miscanthus genotypes in south Germany. Fuel Process Technol 121(0):47–55

    Article  CAS  Google Scholar 

  44. Xiong S, Zhang Q, Zhang D et al (2008) Influence of harvest time on fuel characteristics of five potential energy crops in northern China. Bioresour Technol 99(3):479–485

    Article  CAS  Google Scholar 

  45. Adler PR, Sanderson MA, Boateng AA et al (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J 98(6):1518–1525

    Article  CAS  Google Scholar 

  46. Christian DG, Yates NE, Riche AB (2006) The effect of harvest date on the yield and mineral content of Phalaris arundinacea L.(reed canary grass) genotypes screened for their potential as energy crops in southern England. J Sci Food Agric 86(8):1181–1188

    Article  CAS  Google Scholar 

  47. Rinehart L (2006) Switchgrass as a bioenergy crop. National Center for Appropriate Technology, Butte

    Google Scholar 

  48. Heaton EA, Dohleman FG, Long SP (2008) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14(9):2000–2014

    Article  Google Scholar 

  49. Iqbal Y, Lewandowski I (2016) Biomass composition and ash melting behaviour of selected Miscanthus genotypes in southern Germany. Fuel 180:606–612

    Article  CAS  Google Scholar 

  50. Burvall J (1997) Influence of harvest time and soil type on fuel quality in reed canary grass (Phalaris arundinacea L.) Biomass Bioenergy 12(3):149–154

    Article  CAS  Google Scholar 

  51. Kaack K, Schwarz K, Brander PE (2003) Variation in morphology, anatomy and chemistry of stems of Miscanthus genotypes differing in mechanical properties. Ind Crop Prod 17(2):131–142

    Article  CAS  Google Scholar 

  52. McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83(1):37–46

    Article  CAS  Google Scholar 

  53. Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32(3):216–223

    Article  CAS  Google Scholar 

  54. Ogden C, Ileleji K, Johnson K et al (2010) In-field direct combustion fuel property changes of switchgrass harvested from summer to fall. Fuel Process Technol 91(3):266–271

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Iqbal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Iqbal, Y., Lewandowski, I. (2017). Lignocellulosic Energy Grasses for Combustion, Production, and Provision. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_319-5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_319-5

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Lignocellulosic Energy Grasses for Combustion, Production, and Provision
    Published:
    30 August 2017

    DOI: https://doi.org/10.1007/978-1-4939-2493-6_319-5

  2. Lignocellulosic Energy Crops, Production, and Provision
    Published:
    05 July 2017

    DOI: https://doi.org/10.1007/978-1-4939-2493-6_319-4

  3. Original

    Lignocellulosic Energy Crops, Production, and Provision
    Published:
    16 March 2015

    DOI: https://doi.org/10.1007/978-1-4939-2493-6_319-3