Skip to main content

Geothermal Resources, Drilling for

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. The International Geothermal Market, Geothermal Energy Association, May 2015. http://geo-energy.org/reports/2015/Int'lMarketataGlanceMay2015Final5_14_15.pdf

  2. Lund JW, Boyd TL (2015) Direct Utilization of Geothermal Energy, Worldwide Review, Proceedings World Geothermal Congress 2015

    Google Scholar 

  3. http://tonto.eia.doe.gov/dnav/pet/pet_crd_wellend_s1_a.htm

  4. Burgoyne AT Jr et al (1986) Applied drilling engineering. Society of Petroleum Engineers. www.spe.org

  5. Mitchell RF (ed) (2007) Petroleum engineering handbook, volume II: drilling engineering, society of petroleum engineers. ISBN:978-1-55563-114-7

    Google Scholar 

  6. Cacini P, Mesini E (1994) Rock-bit wear in ultra-hot holes. SPE 28055, SPE/ISRM rock mechanics in petroleum engineering conference

    Google Scholar 

  7. Holligan D et al (1989) Performance of beta titanium in a Salton Sea geothermal production well. SPE 18696, SPE/IADC drilling conference

    Google Scholar 

  8. Mansure AJ (2002) Polyurethane grouting geothermal lost circulation zones. SPE 74556 IADC/SPE drilling conference

    Google Scholar 

  9. Renner JL et al (2007) Geothermal engineering, in petroleum engineering handbook, vol. VI: emerging and peripheral technologies. ISBN:978-1-55563-122-2

    Google Scholar 

  10. Saito S, Sakuma S (2000) Frontier geothermal drilling operations successful at 500°C BHST. SPE 65104, SPE drilling and completion, Sept 2000

    Google Scholar 

  11. Pierce KG, Livesay BJ (1994) A study of geothermal drilling and the production of electricity from geothermal energy, SAND92-1728, Sandia National Laboratories

    Google Scholar 

  12. Pierce KG, Bomber TM, Livesay BJ (1997) Well cost estimates in various geothermal regions. Geotherm Resour Counc Trans 21:119

    Google Scholar 

  13. Mansure AJ et al (2001) Polyurethane grouting of Rye Patch lost circulation zone. Geotherm Resour Counc Trans 25:109–114

    CAS  Google Scholar 

  14. Holligan D, Cron CJ, Love WW, Buster JL (1989) Performance of beta titanium in a Salton Sea field geothermal production well source. SPE18696, SPE/IADC drilling conference, New Orleans

    Google Scholar 

  15. Finger JT, Jacobson RD, Hickox CE (1997) Newberry exploratory slimhole: drilling and testing SAND97-2790, Sandia National Laboratories

    Google Scholar 

  16. Finger JT, Jacobson RD, Hickox CE (1996) Vale exploratory slimhole: drilling and testing SAND96-1396, Sandia National Laboratories

    Google Scholar 

  17. Finger JT, et al (1999) Slimhole handbook: procedures and recommendations for slimhole drilling and testing in geothermal exploration SAND99-1976, Sandia National Laboratories

    Google Scholar 

  18. http://office.microsoft.com/en-us/project/default.aspx

  19. Combs J, Garg SK, Livesay BJ (2000) Maximum discharge of geothermal fluids from slim holes by optimizing casing designs. Geotherm Resour Counc Trans 24

    Google Scholar 

  20. Cavanaugh JM, Adams DM (1988) Top-drive drilling system evaluation. SPE Drill Eng 3(1):43–49

    Article  Google Scholar 

  21. Saito S et al (2003) Advantages of using top-drive system for high temperature geothermal well drilling. Geotherm Resourc Counc Trans 27:183–187

    Google Scholar 

  22. U.S. Patent 930,758 “Drill” issued 10 Aug 1909

    Google Scholar 

  23. Finger JT, Glowka DA (1989) PDC bit research at Sandia National Laboratories Sandia Report SAND89-0079, Sandia National Laboratories

    Google Scholar 

  24. Wise JL et al (2003) Hard-rock drilling performance of a conventional PDC drag bit operated with, and without, benefit of real-time downhole diagnostics. Geotherm Resour Counc Trans 27:197–206

    Google Scholar 

  25. Hareland G et al (2009) Cutting efficiency of a single PDC cutter on hard rock. J Can Pet Technol 48(6):60–65

    Article  Google Scholar 

  26. Chatterjee K, Macpherson J, Dick A, Grimmer H, Klotzer S, Schroder J, Epplin D, Hohl C, Gacek S (2016) Development of a directional drilling system for operation at 300 °C for geothermal applications, Geotherm Resourc Counc Trans 40. https://assets.www.bakerhughes.com/system/4e6a243f4f59d8721520783615428f5d_33655_-Kymera-IcelandCH.1128_HiRes.pdf

  27. Graham P, Krough B, Nelson T, White A, Self J (2016) Innovative conical diamond element bit in conjunction with novel drilling practices increases performance in hard-rock geothermal applications, California. Geotherm Resourc Counc Trans 40

    Google Scholar 

  28. Rickard WM, Johnson B, Mansure AJ, Jacobson RD (2001) Application of dual tube flooded reverse circulation drilling to Rye Patch lost circulation zone. Geotherm Resour Counc Trans 24

    Google Scholar 

  29. Zilch HE, Otto MJ, Pye DS (1991) The evolution of geothermal drilling fluid in the imperial valley SPE21786, presentation at the SPE Western Regional Meeting, Long Beach

    Google Scholar 

  30. Carter TS (ed) (1997) Drilling fluids. Society of Petroleum Engineers. ISBN:978-1-55563-069-0

    Google Scholar 

  31. Bourgoyne Jr AT, Millheim KK, Chenevert ME, Young Jr FS (1991) Applied drilling engineering. Society of Petroleum Engineers. ISBN:978-1-55563-001-0

    Google Scholar 

  32. American Petroleum Institute (2003) RP 13B-1/ISO 10414-1, recommended practice for field testing water-based drilling fluids (includes Errata, July 2004). Product Number: GX13B13

    Google Scholar 

  33. Tuttle JD (2005) Drilling fluids for the geothermal industry – recent innovations. Geotherm Resour Counc Trans 29

    Google Scholar 

  34. Jaimes-Maldonado J, Cornejo-Castro S (2006) Case study: underbalanced or mud drilling fluids at Tres Virgenes geothermal field. Geotherm Resour Counc Trans 30

    Google Scholar 

  35. Finger JT, Jacobson RD, Hickox CE, Combs J, Polk G, Goranson C (1999) Slimhole handbook: procedures and recommendations for slimhole drilling and testing in geothermal exploration Sandia Report SAND99-1976, Sandia National Laboratories

    Google Scholar 

  36. Carson CC, Lin YT (1982) The impact of common problems in geothermal drilling and completion. Geotherm Resour Counc Trans 6:195–198

    Google Scholar 

  37. Rickard WM et al (2001) Application of dual tube flooded reverse circulation drilling to Rye Patch lost circulation zone. Geotherm Resour Counc Trans 25:133–138

    Google Scholar 

  38. Mansure AJ, Bauer SJ (2005) Advances in geothermal drilling technology: reducing cost while improving longevity of the well. Geotherm Resour Counc Trans 29

    Google Scholar 

  39. Petty S et al (2005) Lessons learned in drilling DB-1 and DB-2, Blue Mountain NV, proceedings, thirtieth workshop on geothermal reservoir engineering. Stanford University. http://pangea.stanford.edu

  40. Drotning WD, Ortega A, Harvey PE (1982) Thermal conductivity of aqueous foam, Sandia report SAND82-0742, Sandia National Laboratories

    Google Scholar 

  41. Rand PB, Montoya O (1983) Evaluation of aqueous foam surfactants for geothermal drilling fluids Sandia report SAND83-0584, Sandia National Laboratories

    Google Scholar 

  42. Gislason T, Richter B (2008) The aerated drilling experience of Icelandic geothermal wells. Geotherm Resour Counc Trans 32:32–33

    Google Scholar 

  43. Toni A, Pratama RA, Prasetyo IM, Saputra MB (2016) The deepest geothermal well in Indonesia: a success story of aerated drilling utilization. Geotherm Resourc Counc Trans 40

    Google Scholar 

  44. Loeppke G (1986) Evaluating candidate lost circulation materials for geothermal drilling. Geotherm Resour Counc Trans 10

    Google Scholar 

  45. Sugama T et al (1986) Bentonite-based ammonium polyphosphate cementitious lost-circulation control materials. J Mater Sci 21:2159–2168

    Article  CAS  Google Scholar 

  46. Staller GE (1999) Design, development and testing of a drillable straddle packer for lost circulation control in geothermal drilling, Sandia report SAND99-0819, Sandia National Laboratories

    Google Scholar 

  47. Glowka DA et al (1989) Laboratory and field evaluation of polyurethane foam for lost circulation control. Geotherm Resour Counc Trans 13

    Google Scholar 

  48. Mansure AJ, Westmoreland JJ (1999) Chemical grouting lost-circulation zones with polyurethane foam. Geotherm Resour Counc Trans 23:165–168

    CAS  Google Scholar 

  49. Mansure AJ et al (2004) Polymer grouts for plugging lost circulation in geothermal wells, Sandia report SAND2004-5853, Sandia National Laboratories

    Google Scholar 

  50. Schafer DM et al (1992) Development and use of a return line flowmeter for lost circulation diagnosis in geothermal drilling. Geotherm Resour Counc Trans 16

    Google Scholar 

  51. Whitlow GL et al (1996) Development and use of rolling float meters and doppler flow meters to monitor inflow and outflow while drilling geothermal wells. Geotherm Resour Counc Trans 20:515

    CAS  Google Scholar 

  52. Manual M07, California Department of Conservation (2006) Blowout prevention in California, available at http://www.conservation.ca.gov/dog/geothermal/pubs_stats/Pages/instruction_manuals.aspx

  53. Karner SL (2005) Creating permeable fracture networks for EGS: engineered systems versus nature. Geotherm Resour Counc Trans 29

    Google Scholar 

  54. New Scientist (1991) Blowout blights future of Hawaii’s geothermal power, 20 July 1991, issue 1778

    Google Scholar 

  55. Herras EB et al (2004) A geoscientific approach in the design and success of the first relief well at the Leyte geothermal production field. Geotherm Resour Counc Trans 28:159–162

    Google Scholar 

  56. Pye DS, Hamblin GM (1991) Drilling geothermal wells at the Geysers field. Geothermal Resources Council, monograph on the Geysers geothermal field, special report no. 17

    Google Scholar 

  57. Nelson EB et al (1981) Evaluation and development of cement systems for geothermal wells SPE10217. Society of Petroleum Engineers

    Google Scholar 

  58. Bour DL, Hernandez R (2003) CO2 resistance, improved mechanical durability, and successful placement in a problematic lost circulation interval achieved: reverse circulation of foamed calcium aluminate cement in a geothermal well. Geotherm Resour Counc Trans 27:163–168

    Google Scholar 

  59. Spielman P et al (2006) Reverse circulation of foamed cement in geothermal wells. Geotherm Resour Counc Trans 30

    Google Scholar 

  60. Saito S (1994) A new advanced method for top-job casing cementing. Geotherm Resour Counc Trans 18:99

    Google Scholar 

  61. Koons BE et al (1993) New design guidelines for geothermal cement slurries. Geotherm Resour Counc Trans 17

    Google Scholar 

  62. Nelson EB Development of geothermal well completion systems, final report, Dowell Division, Dow Chemical, U.S.A., DOE contract DE-ACO2-77ET28324

    Google Scholar 

  63. Kalyoncu RS, Snyder MJ (1981) High-temperature cementing materials for completion of geothermal wells, BNL-33127, Brookhaven National Laboratory

    Google Scholar 

  64. Curtice DK, Mallow WA (1979) Hydrothermal cements for use in the completion of geothermal wells. Southwest Research Institute, BNL 51183

    Google Scholar 

  65. Rockett TJ (1979) Phosphate-bonded glass cements for geothermal wells. University of Rhode Island, BNL 51153

    Google Scholar 

  66. Zeldin AN, Kukacka LE (1980) Polymer cement geothermal well-completion materials, final report, Brookhaven National Laboratory, BNL 51287

    Google Scholar 

  67. Roy DM et al (1980) New high temperature cementing-materials for geothermal wells: stability and properties. The Pennsylvania State University, BNL 51249

    Google Scholar 

  68. Kukacka L (1997) Geothermal materials development at Brookhaven National Laboratory, BNL-64482, Brookhaven National Laboratory

    Google Scholar 

  69. Sugama T (2006) Advanced cements for geothermal wells, BNL 77901-2007-IR, Brookhaven National Laboratory

    Google Scholar 

  70. Ocampo-Díaz J, Rojas-Bribiesca M (2004) Production problems review of Las Tres Virgenes geothermal field, Mexico. Geotherm Resour Counc Trans 28:499–502

    Google Scholar 

  71. Hurtado R, Mercado S (1990) Scale control studies at the Cerro Prieto geothermal plant. Geotherm Resour Counc Trans 14

    Google Scholar 

  72. Southon JNA (2005) Geothermal well design, construction and failures. In: Proceedings world geothermal congress, Antalya

    Google Scholar 

  73. Harmse JE et al (1997) Automatic detection and diagnosis of problems in drilling geothermal wells. Geotherm Resour Counc Trans 21:107

    Google Scholar 

  74. Drumheller DS, Kuszmaul SS (2003) Acoustic telemetry, Sandia report SAND2003-2614, Sandia National Laboratories

    Google Scholar 

  75. Normann RA, Henfling JA (2004) Aerospace R & D benefits future geothermal reservoir monitoring. Geotherm Resour Counc Trans 28

    Google Scholar 

  76. Henfling JA, Normann RA (2002) Advancement in HT electronics for geothermal drilling and logging tools. Geotherm Resour Counc Trans 26:627–632

    Google Scholar 

  77. Mansure AJ et al (2005) Geothermal well cost analyses 2005. Geotherm Resour Counc Trans 29

    Google Scholar 

  78. Warren TM (2009) Casing while drilling, in advanced drilling and well technology. Society of Petroleum Engineers. ISBN:978-1-55563-145-1

    Google Scholar 

  79. Polsky Y (2008) Enhanced Geothermal Systems (EGS) well construction technology evaluation report, SAND2008-7866, Sandia National Laboratories

    Google Scholar 

  80. Tessari RM, Warren TM (2003) Casing drilling reduces lost circulation problems. Geotherm Resour Counc Trans 27:189–196

    Google Scholar 

  81. Tubbs D, Wallace J (2006) Slimming the wellbore design enhances drilling economics in field development. SPE 102929, SPE annual conference and exhibition

    Google Scholar 

  82. Nylund J et al (2009) Integrating solid expandables, swellables, and hydra jet perforating for optimized multi-zone fractured wellbores. SPE 125345, tight gas completions conference

    Google Scholar 

  83. Chatterjee K, Dick A, Macpherson J (2015) High temperature 300 °C directional drilling system, including drill bit, steerable motor and drilling fluid, for enhanced geothermal systems, July 2015, https://www.osti.gov/scitech/servlets/purl/1208637

  84. https://en.wikipedia.org/wiki/Mud_motor

  85. Shuttleworth NE et al (1998) Revised drilling practices, VSS-MWD tool successfully addresses catastrophic bit/drillstring vibrations. SPE 39314, SPE/IADC drilling conference

    Google Scholar 

  86. Drilling Engineering Association and Energy Research Clearing House (1999) Flat time reduction opportunities: an industry forum, Houston Advanced Research Center, 21 Sept 1999

    Google Scholar 

  87. Jellison MJ et al (2003) Telemetry drill pipe: enabling technology for the downhole internet. SPE 79885, IADC/SPE drilling conference

    Google Scholar 

  88. Allen S et al (2009) Step-change improvements with wired-pipe telemetry. SPE 119570, SPE/IADC drilling conference

    Google Scholar 

  89. Finger JT et al (2003) Development of a system for diagnostic-while-drilling (DWD). SPE 79884, IADC/SPE drilling conference

    Google Scholar 

  90. Blankenship DA et al (2005) High-temperature diagnostics-while-drilling system. Geotherm Resour Counc Trans 28

    Google Scholar 

  91. CFR Part 3200 (1998) Geothermal resources leasing and operations; Final Rule, Federal Register, vol 63, no 189, 30 Sept 1998

    Google Scholar 

  92. Standards Association of New Zealand (1991) New Zealand standards NZS 2403:1991 code of practice for deep geothermal wells, 93 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Finger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC (outside the USA)

About this entry

Cite this entry

Finger, J.T. (2017). Geothermal Resources, Drilling for. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_310-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_310-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics