Skip to main content

Biomass Resources, Worldwide

  • Living reference work entry
  • First Online:

Glossary

Biodiversity:

The variability among living organisms from all sources including, inter alia, terrestrial, marine, and other aquatic ecosystems and the ecological complexes of which they are part, which include diversity within species, among species, and of ecosystems.

Bioenergy:

Energy derived from biomass.

Biofuel:

Any liquid, gaseous, or solid fuel produced from plant or animal organic matter (e.g., soybean oil, alcohol from fermented sugar, black liquor from the paper manufacturing process, wood as fuel, etc.).

Biomass:

The total mass of living organisms in a given area or of a given species usually expressed as dry weight. Such organic matter consists of, or recently derived from, living organisms (especially regarded as fuel) excluding peat. Biomass includes products, by-products, and waste derived from such material.

Deforestation:

The natural or anthropogenic process that converts forest land to non-forest.

Economic potential:

The amount of bioenergy output projected...

This is a preview of subscription content, log in via an institution.

Abbreviations

EJ:

Exajoule (10 exp 18 Joule)

IPCC:

Intergovernmental Panel on Climate Change

SRREN:

Special Report on Renewable Energy Sources and Climate Change Mitigation

EEA:

European Environment Agency

USDoE:

United States Department of Energy

IEA:

International Energy Agency

CARB:

California Air Resources Board

FAO:

Food and Agriculture Organisation

OECD:

Organisation for Economic Co-operation and Development

USEPA:

United States Environmental Protection Agency

WEC:

World Energy Council

FAOSTAT:

Food and Agriculture Organisation Statistics

EUROSTAT:

Directorate General of the European Commission on statistics

CORINE:

‘coordination of information on the environment’ (by the European Environment Agency)

MAgPIE:

Model of Agricultural Production and its Impact on the Environment

BECCS:

Biomass Energy with Carbon Capture and Storage

GEA:

Global Energy Assessment

MBTE:

Methyl tert-butyl ether

ppm:

parts per million

IMAGE:

Integrated Model to Assess the Global Environment

TIMER:

Targets IMage Energy Regional simulation model

Bibliography

  1. Amigun B, Musango JK, Stafford W (2011) Biofuels and sustainability in Africa. Renew Sust Energ Rev 15:1360–1372

    Article  Google Scholar 

  2. Arndt C, Benfica R, Thurlow J (2011a) Gender implications of biofuels expansion in Africa: the case of Mozambique. World Dev 39:1649–1662

    Article  Google Scholar 

  3. Arndt C, Msangi S, Thurlow J (2011b) Are biofuels good for African development? An analytical framework with evidence from Mozambique and Tanzania. Biofuels 2:221–234

    Article  CAS  Google Scholar 

  4. Arndt C, Robinson S, Willenbockel D (2011c) Ethiopia’s growth prospects in a changing climate: a stochastic general equilibrium approach. Glob Environ Chang 21:701–710

    Article  Google Scholar 

  5. Arndt C, Pauw K, Thurlow J (2012) Biofuels and economic development: a computable general equilibrium analysis for Tanzania. Energy Econ 34:1922–1930

    Article  Google Scholar 

  6. Awudu I, Zhang J (2012) Uncertainties and sustainability concepts in biofuel supply chain management: a review. Renew Sust Energ Rev 16:1359–1368

    Article  Google Scholar 

  7. Batidzirai B, Smeets E, Faaij A (2012) Harmonising bioenergy resource potentials – methodological lessons from review of state of the art bioenergy potential assessments. Renew Sust Energ Rev 16:6598–6630

    Article  Google Scholar 

  8. Baum S, Bolte A, Weih M (2012) Short rotation coppice (SRC) plantations provide additional habitats for vascular plant species in agricultural mosaic landscapes. Bioenergy Res 5:573–583

    Article  Google Scholar 

  9. Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3:299–312

    Article  CAS  Google Scholar 

  10. Berndes G, Börjesson P (2007) Multifunctional bioenergy systems. The AGS pathways report 2007: EU1. AGS – Alliance for Global Sustainability: Swiss Federal Institute of Technology, Massachusetts Institute of Technology, Chalmers University of Technology, Tokyo University

    Google Scholar 

  11. Berndes G, Fredriksson F, Börjesson P (2004) Cadmium accumulation and Salix based phytoextraction on arable land in Sweden. Agric Ecosyst Environ 103:207–223

    Article  CAS  Google Scholar 

  12. Berndes G, Börjesson P, Ostwald M, Palm M (2008) Multifunctional biomass production systems – an introduction with presentation of specific applications in India and Sweden. Biofuels Bioprod Biorefin 2:16–25

    Article  CAS  Google Scholar 

  13. Berndes G, Bird N, Cowie A (2011) Bioenergy, land use change and climate change mitigation. Technical report. International Energy Agency. http://www.ieabioenergy.com/wp-content/uploads/2013/10/Bioenergy-Land-Use-Change-and-Climate-Change-Mitigation-Background-Technical-Report.pdf. Accessed Apr 2014

  14. Berndes G, Ahlgren S, Börjesson P, Cowie A (2013) Bioenergy and land use change state of the art. Wiley Interdiscip Rev Energ Environ 2:282–303

    Article  Google Scholar 

  15. Blanford G, Merrick J, Richels R, Rose S (2013) Trade-offs between mitigation costs and temperature change. Clim Chang 123:527–541

    Article  Google Scholar 

  16. Börjesson P, Berndes G (2006) The prospects for willow plantations for wastewater treatment in Sweden. Biomass Bioenergy 30:428–438

    Article  CAS  Google Scholar 

  17. Borzoni M (2011) Multi-scale integrated assessment of soybean biodiesel in Brazil. Ecol Econ 70:2028–2038

    Article  Google Scholar 

  18. Bringezu S, O’Brien M, Schütz H (2012) Beyond biofuels: assessing global land use for domestic consumption of biomass: a conceptual and empirical contribution to sustainable management of global resources. Land Use Policy 29:224–232

    Article  Google Scholar 

  19. Busch G (2012) GIS-based tools for regional assessments and planning processes regarding potential environmental effects of poplar SRC. Bioenergy Res 5:584–605

    Article  Google Scholar 

  20. Cacciatore MA, Scheufele DA, Shaw BR (2012) Labeling renewable energies: how the language surrounding biofuels can influence its public acceptance. Energ Policy 51:673–682

    Article  Google Scholar 

  21. Calvin K, Wise M, Luckow P, Kyle P, Clarke L, Edmonds J (2013) Implications of uncertain future fossil energy resources on bioenergy use and terrestrial carbon emissions. Clim Chang:1–12. https://doi.org/10.1007/s10584-013-0923-0

  22. Campbell J, Lobell D, Genova R, Field C (2008) The global potential of bioenergy on abandoned agriculture lands. Environ Sci Technol 42:5791–5794

    Article  CAS  Google Scholar 

  23. Cancado JED, Saldiva PHN, Pereira LAA, Lara LBLS, Artaxo P, Martinelli LA, Braga ALF (2006) The impact of sugar cane-burning emissions on the respiratory system of children and the elderly. Environ Health Perspect 114:725–729

    Article  CAS  Google Scholar 

  24. Chen X, Khanna M (2012) The market-mediated effects of low carbon fuel policies. AgBioforum 15:1–17

    Google Scholar 

  25. Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, Von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, UK/New York, pp 209–332

    Google Scholar 

  26. Chung C, Ramanathan V, Decremer D (2012) Observationally constrained estimates of carbonaceous aerosol radiative forcing. Proc Natl Acad Sci 109:11624–11629

    Article  Google Scholar 

  27. Coelho S, Agbenyega O, Agostini A, Erb K, Haberl H, Hoogwijk M, Moreira J (2012) Chapter 20 – Land and water: linkages to bioenergy. In: Johansson TB, Nakicenovic N, Patwardhan A, Gomez-Echeverri L (eds) Global energy assessment – toward a sustainable future. Cambridge University Press, International Institute for Applied Systems Analysis, Laxenburg/Cambridge, UK/New York, pp 1459–1526. www.globalenergyassessment.org. Accessed Apr 2014

  28. Cotula L (2012) The international political economy of the global land rush: a critical appraisal of trends, scale, geography and drivers. J Peasant Stud 39:649–680

    Article  Google Scholar 

  29. Creutzig F, Kammen DM (2010) Getting the carbon out of transportation fuels. In: Schellnhuber HJ, Molina M, Stern N, Huber V, Kadner S (eds) Global sustainability – a nobel cause. Cambridge University Press, Cambridge, UK, pp 307–318. http://www.mcc-berlin.net/~creutzig/nobel.pdf. Accessed Apr 2014

  30. Creutzig F, Popp A, Plevin R, Luderer G, Minx J, Edenhofer O (2012a) Reconciling top-down and bottom-up modeling on future bioenergy deployment. Nat Clim Chang 2:320–327

    Article  Google Scholar 

  31. Creutzig F, Stechow C, Klein D, Hunsberger C, Bauer N, Popp A, Edenhofer O (2012b) Can bioenergy assessments deliver? Econ Energ Environ Policy 1:65–82

    Article  Google Scholar 

  32. Creutzig F, Corbera E, Bolwig S, Hunsberger C (2013) Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment. Environ Res Lett 8:035047

    Article  Google Scholar 

  33. Dale V, Kline K (2013) Issues in using landscape indicators to assess land changes. Ecol Indic 28:91–99

    Article  Google Scholar 

  34. Danielsen F, Beukema H, Burgess ND, Parish F, BrüHl CA, Donald PF, Fitzherbert EB (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23:348–358

    Article  Google Scholar 

  35. Dauber J, Brown C, Fernando AL, Finnan J, Krasuska E, Ponitka J, Weih M (2012) Bioenergy from‘surplus’ land: environmental and socio-economic implications. BioRisk 7:5–50

    Article  Google Scholar 

  36. Dauvergne P, Neville K (2010) Forests, food, and fuel in the tropics: the uneven social and ecological consequences of the emerging political economy of biofuels. J Peasant Stud 37:631–660

    Article  Google Scholar 

  37. Davis S, Parton W, Grosso S, Keough C, Marx E, Adler P, DeLucia E (2012) Impact of second-generation biofuel agriculture on greenhouse-gas emissions in the corn-growing regions of the US. Front Ecol Environ 10:69–74

    Article  Google Scholar 

  38. Davis S, Boddey R, Alves B, Cowie A, George B, Ogle S, Van Wijk M (2013) Management swing potential for bioenergy crops. GCB Bioenergy 5:623–638

    Article  Google Scholar 

  39. De Moraes M, Da Costa C, Guilhoto J, De Souza L, De Oliveira F (2010) Social externalities of fuels. In: Leão de Sousa EL, Isaias de Carvalho Macedo (eds) Ethanol and bioelectricity: sugarcane in the future of the energy matrix. UNICA – Brazilian Sugarcane Industry Association, São Paulo, pp 44–75

    Google Scholar 

  40. De Wit M, Londo M, Faaij A (2011) Productivity developments in European agriculture: relations to and opportunities for biomass production. Renew Sust Energ Rev 15:2397–2412

    Article  Google Scholar 

  41. De Wit M, Junginger M, Faaij A (2013) Learning in dedicated wood production systems: past trends, future outlook and implications for bioenergy. Renew Sust Energ Rev 19:417–432

    Article  Google Scholar 

  42. DeCicco J (2013) Biofuel’s carbon balance: doubts, certainties and implications. Clim Chang 121:801–814

    Article  CAS  Google Scholar 

  43. Delucchi M (2010) Impacts of biofuels on climate change, water use, and land use. Ann N Y Acad Sci 1195:28–45

    Article  CAS  Google Scholar 

  44. Diaz-Chavez RA (2011) Assessing biofuels: aiming for sustainable development or complying with the market? Energ Policy 39:5763–5769

    Article  Google Scholar 

  45. Diaz-Chavez RA (2012) Land use for integrated systems: a bioenergy perspective. Environ Dev 3:91–99

    Article  Google Scholar 

  46. Dimitriou I, Baum C, Baum S, Busch G, Schulz U, Köhn J, Bolte A (2009) Short rotation coppice (SRC) cultivation and local impact on the environment. Landbauforschung vTI Agric Forest Res 3:159–162

    Google Scholar 

  47. Dimitriou I, Baum C, Baum S, Busch G, Schulz U, Köhn J, Bolte A (2011) Quantifying environmental effects of short rotation coppice (SRC) on biodiversity, soil and water. IEA Bioenergy Task, 43

    Google Scholar 

  48. Dornburg V, Van Vuuren D, Van de Ven G, Langeveld H, Meeusen M, Banse M, Faaij A (2010) Bioenergy revisited: key factors in global potentials of bioenergy. Energy Environ Sci 3:258–267

    Article  Google Scholar 

  49. Drabik D, De Gorter H (2011) Biofuel policies and carbon leakage. AgBioforum 14:104–110

    Google Scholar 

  50. Dumortier J, Hayes D, Carriquiry M, Dong F, Du X, Elobeid A, Tokgoz S (2011) Sensitivity of carbon emission estimates from indirect land-use change. Appl Econ Perspect Policy 33:428–448

    Article  Google Scholar 

  51. Duvenage I, Langston C, Stringer LC, Dunstan K (2013) Grappling with biofuels in Zimbabwe: depriving or sustaining societal and environmental integrity? J Clean Prod 42:132–140

    Article  Google Scholar 

  52. Edenhofer O, Seyboth K, Creutzig F, Schlömer S (2013) On the sustainability of renewable energy sources. Annu Rev Environ Resour 38:169–200

    Article  Google Scholar 

  53. Egeskog A, Berndes G, Freitas F, Gustafsson S, Sparovek G (2011) Integrating bioenergy and food production – a case study of combined ethanol and dairy production in Pontal, Brazil. Energy Sustain Dev 15:8–16

    Article  CAS  Google Scholar 

  54. EMPA (2012) Harmonisation and extension of the bioenergy inventories and assessment: end report

    Google Scholar 

  55. Erb K (2012) How a socio-ecological metabolism approach can help to advance our understanding of changes in land-use intensity. Ecol Econ 76:8–14

    Article  Google Scholar 

  56. Erb K, Gaube V, Krausmann F, Plutzar C, Bondeau A, Haberl H (2007) A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data. J Land Use Sci 2:191–224

    Article  Google Scholar 

  57. Erb K, Haberl H, Plutzar C (2012) Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energ Policy 47:260–269

    Article  Google Scholar 

  58. Ewing M, Msangi S (2009) Biofuels production in developing countries: assessing tradeoffs in welfare and food security. Environ Sci Pol 12:520–528

    Article  Google Scholar 

  59. Faaij A (2006) Modern biomass conversion technologies. Mitig Adapt Strateg Glob Chang 11:335–367

    Article  Google Scholar 

  60. FAO (2010) What wood fuels can do to mitigate climate change (FAO forestry paper No. 162)

    Google Scholar 

  61. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  CAS  Google Scholar 

  62. Field C, Campbell J, Lobell D (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23:65–72

    Article  Google Scholar 

  63. Finco MVA, Doppler W (2010) Bioenergy and sustainable development: the dilemma of food security in the Brazilian savannah. Energy Sustain Dev 14:194–199

    Article  Google Scholar 

  64. Finkbeiner M (2013) Indirect Land Use Change (iLUC) within Life Cycle Assessment (LCA) – scientific robustness and consistency with international standards. Publication of the Association of the German Biofuel Industry, Berlin. http://www.fediol.eu/data/RZ_VDB_0030_Vorstudie_ENG_Komplett.pdf. Accessed Apr 2014

  65. Fischedick M, Schaeffer R, Adedoyin A, Akai M, Bruckner T, Clarke L, Wright R (2011) Mitigation potential and costs. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, Von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, UK/New York, pp 791–864

    Google Scholar 

  66. Fischer G, Prieler S, Van Velthuizen H, Berndes G, Faaij A, Londo M, De Wit M (2010) Biofuel production potentials in Europe: sustainable use of cultivated land and pastures, part II: land use scenarios. Biomass Bioenergy 34:173–187

    Article  Google Scholar 

  67. Garcia-Frapolli E, Schilmann A, Berrueta V, Riojas-Rodriguez H, Edwards R, Johnson M, Masera O (2010) Beyond fuelwood savings: valuing the economic benefits of introducing improved biomass cookstoves in the Purepecha region of Mexico. Ecol Econ 69:2598–2605

    Article  Google Scholar 

  68. Garg KK, Karlberg L, Wani SP, Berndes G (2011a) Jatropha production on wastelands in India: opportunities and trade-offs for soil and water management at the watershed scale. Biofuels Bioprod Biorefin 5:410–430

    Article  CAS  Google Scholar 

  69. Garg K, Karlberg L, Wani S, Berndes G (2011b) Biofuel production on wastelands in India: opportunities and trade-offs for soil and water management at the watershed scale. Biofuels Bioprod Biorefin 5:410–430

    Article  CAS  Google Scholar 

  70. Gasparatos A, Stromberg P, Takeuchi K (2011) Biofuels, ecosystem services and human wellbeing: putting biofuels in the ecosystem services narrative. Agric Ecosyst Environ 142:111–128

    Article  Google Scholar 

  71. Gawel E, Ludwig G (2011) The iLUC dilemma: how to deal with indirect land use changes when governing energy crops? Land Use Policy 28:846–856

    Article  Google Scholar 

  72. GEA (2012) Global energy assessment – toward a sustainable future. Cambridge University Press, International Institute for Applied Systems Analysis, Laxenburg/Cambridge, UK/New York

    Google Scholar 

  73. Gerbens-Leenes W, Hoekstra A, Van der Meer T (2009) The water footprint of bioenergy. Proc Natl Acad Sci 106:10219–10223

    Article  Google Scholar 

  74. German L, Schoneveld G (2012) A review of social sustainability considerations among EU-approved voluntary schemes for biofuels, with implications for rural livelihoods. Energ Policy 51:765–778

    Article  Google Scholar 

  75. German L, Schoneveld G, Gumbo D (2011) The local social and environmental impacts of smallholder-based biofuel investments in Zambia. Ecol Soc 16:12. https://doi.org/10.5751/es-04280-160412

    Article  Google Scholar 

  76. German L, Schoneveld G, Mwangi E (2013) Contemporary processes of large-scale land acquisition in sub-Saharan Africa: legal deficiency or elite capture of the rule of law? World Dev 48:1–18

    Article  Google Scholar 

  77. Gerssen-Gondelach S, Wicke B, Faaij A (2015) Assessment of driving factors for yield and productivity developments in crop and cattle production as key to increasing sustainable biomass potentials. Food Energy Security 4(1):36–75

    Article  Google Scholar 

  78. Gohin A (2008) Impacts of the European biofuel policy on the farm sector: a general equilibrium assessment. Appl Econ Perspect Policy 30:623–641

    Google Scholar 

  79. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  CAS  Google Scholar 

  80. Gopalakrishnan G, Negri M, Wang M, Wu M, Snyder S, Lafreniere L (2009) Biofuels, land and water: a systems approach to sustainability. Environ Sci Technol 43:6094–6100

    Article  CAS  Google Scholar 

  81. Gopalakrishnan G, Negri M, Snyder S (2011a) A novel framework to classify marginal land for sustainable biomass feedstock production. J Environ Qual 40:1593–1600

    Article  CAS  Google Scholar 

  82. Gopalakrishnan G, Negri M, Snyder S (2011b) Redesigning agricultural landscapes for sustainability using bioenergy crops: quantifying the tradeoffs between agriculture, energy and the environment. Asp Appl Biol 112:139–146

    Google Scholar 

  83. Gopalakrishnan G, Negri M, Salas W (2012) Modeling biogeochemical impacts of bioenergy buffers with perennial grasses for a row-crop field in Illinois. GCB Bioenergy 4:739–750

    Article  CAS  Google Scholar 

  84. Gregg J, Smith S (2010) Global and regional potential for bioenergy from agricultural and forestry residue biomass. Mitig Adapt Strateg Glob Chang 15:241–262

    Article  Google Scholar 

  85. Groom M, Gray E, Townsend P (2008) Biofuels and biodiversity: principles for creating better policies for biofuel production. Conserv Biol 22:602–609

    Article  Google Scholar 

  86. Gurung A, Oh SE (2013) Conversion of traditional biomass into modern bioenergy systems: a review in context to improve the energy situation in Nepal. Renew Energy 50:206–213

    Article  Google Scholar 

  87. Haberl H, Beringer T, Bhattacharya S, Erb K, Hoogwijk M (2010) The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr Opin Environ Sust 2:394–403

    Article  Google Scholar 

  88. Haberl H, Erb K, Krausmann F, Bondeau A, Lauk C, Müller C, Steinberger J (2011) Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass Bioenergy 35:4753–4769

    Article  Google Scholar 

  89. Haberl H, Mbow C, Deng X, Irwin EG, Kerr S, Kuemmerle T, Turner BL II (2013a) Finite land resources and competition. In: Seto KC, Reenberg A (eds) Rethinking global land use in an urban era. MIT Press, Cambridge, MA, pp 33–67. http://mitpress.mit.edu/books/rethinking-global-land-use-urban-era. Accessed Apr 2014

  90. Haberl H, Schulze E, Körner C, Law B, Holtsmark B, Luyssaert S (2013b) Response: complexities of sustainable forest use. GCB Bioenergy 5:1–2

    Article  Google Scholar 

  91. Haberl H, Erb KH, Krausmann F, Running S, Searchinger TD, Smith WK (2013c) Bioenergy: how much can we expect for 2050? Environ Res Lett 8:031004

    Article  Google Scholar 

  92. Hakala K, Kontturi M, Pahkala K (2009) Field biomass as global energy source. Agric Food Sci 18:347–365

    Article  Google Scholar 

  93. Hall J, Matos S, Severino L, Beltrão N (2009) Brazilian biofuels and social exclusion: established and concentrated ethanol versus emerging and dispersed biodiesel. J Clean Prod 17(Suppl 1):S77–S85

    Article  Google Scholar 

  94. Hanff E, Dabat M-H, Blin J (2011) Are biofuels an efficient technology for generating sustainable development in oil-dependent African nations? A macroeconomic assessment of the opportunities and impacts in Burkina Faso. Renew Sust Energ Rev 15:2199–2209

    Article  Google Scholar 

  95. Havlık P, Schneider U, Schmid E, Böttcher H, Fritz S, Skalsky R, Obersteiner M (2011) Global land-use implications of first and second generation biofuel targets. Energ Policy 39:5690–5702

    Article  Google Scholar 

  96. Herreras Martínez S, van Eijck J, Pereira da Cunha M, Guilhoto JJ, Walter A, Faaij A (2013) Analysis of socio-economic impacts of sustainable sugarcane–ethanol pro-duction by means of inter-regional input-output analysis: demonstrated for Northeast Brazil. Renew Sust Energ Rev 28:290–316

    Article  Google Scholar 

  97. Hertel T, Golub A, Jones A, O’Hare M, Plevin R, Kammen D (2010) Global land use and greenhouse gas emissions impacts of US Maize ethanol: estimating market-mediated responses. Bioscience 60:223–231

    Article  Google Scholar 

  98. Hochman G, Rajagopal D, Zilberman D (2010) The effect of biofuels on crude oil markets. AgBioforum 13:112–118

    Google Scholar 

  99. Hoefnagels R, Banse M, Dornburg V, Faaij A (2013) Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level – a combined approach for the Netherlands. Energ Policy 59:727–744

    Article  Google Scholar 

  100. Hoogwijk M, Faaij A, Eickhout B, De Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29:225–257

    Article  Google Scholar 

  101. Hoogwijk M, Faaij A, De Vries B, Turkenburg W (2009) Exploration of regional and global cost-supply curves of biomass energy from short-rotation crops at abandoned cropland and rest land under four IPCC SRES land-use scenarios. Biomass Bioenergy 33:26–43

    Article  Google Scholar 

  102. Huang J, Yang J, Msangi S, Rozelle S, Weersink A (2012) Biofuels and the poor: global impact pathways of biofuels on agricultural markets. Food Policy 37:439–451

    Article  Google Scholar 

  103. Hunsberger C, Bolwig S, Corbera E, Creutzig F (2013) Livelihood impacts of biofuel crop production: implications for governance. Geoforum 54:248–260

    Article  Google Scholar 

  104. IEA (2010) Sustainable production of second-generation biofuels: potential and perspectives in major economies and developing countries. International Energy Agency, Paris

    Google Scholar 

  105. IEA (2011) Energy for all: financing access for the poor. Special early excerpt of the World Energy Outlook 2011. OECD/IEA, Paris

    Google Scholar 

  106. Immerzeel D, Verweij P, van der Hilst F, Faaij AP (2014) Biodiversity impacts of bioenergy crop production: a state-of-the-art review. GCB Bioenergy 6(3):183–209

    Article  Google Scholar 

  107. Jerneck A, Olsson L (2013) A smoke-free kitchen: initiating community based co-production for cleaner cooking and cuts in carbon emissions. J Clean Prod 60:208–215

    Article  CAS  Google Scholar 

  108. Johansson T, Nakicenovic N, Patwardhan A, Gomez-Echeverri L, Turkenburg W (2012) Summary for policymakers. In: Johansson TB, Nakicenovic N, Patwardhan A, Gomez-Echeverri L (eds) Global energy assessment – toward a sustainable future. Cambridge University Press, International Institute for Applied Systems Analysis, Laxenburg/Cambridge, UK/New York, pp 3–30

    Google Scholar 

  109. Johnston M, Foley J, Holloway T, Kucharik C, Monfreda C (2009) Resetting global expectations from agricultural biofuels. Environ Res Lett 4:014004

    Article  CAS  Google Scholar 

  110. Johnston M, Licker R, Foley J, Holloway T, Mueller N, Barford C, Kucharik C (2011) Closing the gap: global potential for increasing biofuel production through agricultural intensification. Environ Res Lett 6:034028

    Article  Google Scholar 

  111. Jonker J, Junginger M, Faaij A (2013) Carbon payback period and carbon offset parity point of wood pellet production in the South-eastern United States. GCB Bioenergy 6:371–389. https://doi.org/10.1111/gcbb.12056

    Article  Google Scholar 

  112. Khanna M, Crago C, Black M (2011) Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. InterfFocus 1:233–247

    Google Scholar 

  113. Kochsiek A, Knops J (2012) Maize cellulosic biofuels: soil carbon loss can be a hidden cost of residue removal. GCB Bioenergy 4:229–233

    Article  CAS  Google Scholar 

  114. Koh LP, Wilcove DS (2008) Is oil palm agriculture really destroying tropical biodiversity? Conserv Lett 1:60–64

    Article  Google Scholar 

  115. Koizumi T (2013) Biofuel and food security in China and Japan. Renew Sust Energ Rev 21:102–109

    Article  Google Scholar 

  116. Kriegler E, Edenhofer O, Reuster L, Luderer G, Klein D (2013) Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Clim Chang 118:45–57

    Article  CAS  Google Scholar 

  117. Kyu HH, Georgiades K, Boyle MH (2010) Biofuel smoke and child anemia in 29 developing countries: a multilevel analysis. Ann Epidemiol 20:811–817

    Article  Google Scholar 

  118. Lal R (2010) Managing soils for a warming earth in a food-insecure and energystarved world. J Plant Nutr Soil Sci 173:4–15

    Article  CAS  Google Scholar 

  119. Lamers P, Junginger H, Dymond C, Faaij A (2013) Damaged forests provide an opportunity to mitigate climate change. GCB Bioenergy 6:44–60

    Article  Google Scholar 

  120. Langeveld J, Dixon J, Van Keulen H, Quist-Wessel P (2014) Analyzing the effect of biofuel expansion on land use in major producing countries: evidence of increased multiple cropping. Biofuels Bioprod Biorefin 8:49–58

    Article  CAS  Google Scholar 

  121. Lim S, Vos T, Flaxman A et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2224–2260

    Article  Google Scholar 

  122. Liska A, Perrin R (2009) Indirect land use emissions in the life cycle of biofuels: regulations vs science. Biofuels Bioprod Biorefin 3:318–328

    Article  CAS  Google Scholar 

  123. Lotze-Campen H, Lampe M, Von Kyle P, Fujimori S, Havlık P, Van Meijl H, Wise M (2013) Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric Econ 45:103–116

    Article  Google Scholar 

  124. Lynd L, Aziz R, De Brito Cruz C et al (2011) A global conversation about energy from biomass: the continental conventions of the global sustainable bioenergy project. InterfFocus 1:271–279

    Google Scholar 

  125. Lywood W, Pinkney J, Cockerill S (2009) Impact of protein concentrate coproducts on net land requirement for European biofuel production. GCB Bioenergy 1:346–359

    Article  CAS  Google Scholar 

  126. Madlener R, Robledo C, Muys B, Freja JTB (2006) A sustainability framework for enhancing the long-term success of lulucf projects. Clim Chang 75:241–271

    Article  Google Scholar 

  127. Martin WJ, Glass R, Balbus J, Collins F (2011) A major environmental cause of death. Science 334:180–181

    Article  CAS  Google Scholar 

  128. Martinelli LA, Filoso S (2008) Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecol Appl 18:885–898

    Article  Google Scholar 

  129. Melillo JM, Reilly JM, Kicklighter DW, Gurgel AC, Cronin TW, Paltsev S, Schlosser CA (2009) Indirect emissions from biofuels: how important? Science 326:1397–1399

    Article  CAS  Google Scholar 

  130. Muys B, Norgrove L, Alamirew T, Birech R, Chirinian E, Delelegn Y, Zetina R (2014) Integrating mitigation and adaptation into development: the case of Jatropha curcas in sub-Saharan Africa. GCB Bioenergy 6:169–171

    Article  Google Scholar 

  131. Mwakaje AG (2012) Can Tanzania realise rural development through biofuel plantations? Insights from the study in Rufiji District. Energy Sustain Dev 16:320–327

    Article  Google Scholar 

  132. Myhre G, Shindell D (2013) Anthropogenic and natural radiative forcing. In: IPCC WGI fifth assessment report

    Google Scholar 

  133. Nassar A, Harfuch L, Bachion L, Moreira M (2011) Biofuels and land-use changes: searching for the top model. InterfFocus 1:224–232

    Google Scholar 

  134. Nijsen M, Smeets E, Stehfest E, Van Vuuren D (2012) An evaluation of the global potential of bioenergy production on degraded lands. GCB Bioenergy 4:130–147

    Article  Google Scholar 

  135. O’Hare M, Plevin R, Martin J, Jones A, Kendall A, Hopson E (2009) Proper accounting for time increases crop-based biofuels’ greenhouse gas deficit versus petroleum. Environ Res Lett 4:024001

    Article  CAS  Google Scholar 

  136. O’Shaughnessy SM, Deasy MJ, Kinsella CE, Doyle JV, Robinson AJ (2013) Small scale electricity generation from a portable biomass cookstove: prototype design and preliminary results. Appl Energy 102:374–385

    Article  Google Scholar 

  137. Oberling DF, Obermaier M, Szklo A, La Rovere EL (2012) Investments of oil majors in liquid biofuels: the role of diversification, integration and technological lockins. Biomass Bioenergy 46:270–281

    Article  Google Scholar 

  138. Pacca S, Moreira JR (2011) A biorefinery for mobility? Environ Sci Technol 45:9498–9505

    Article  CAS  Google Scholar 

  139. Parish E, Hilliard M, Baskaran L, Dale V, Griffiths N, Mulholland P, Middleton R (2012) Multimetric spatial optimization of switchgrass plantings across a watershed. Biofuels Bioprod Biorefin 6:58–72

    Article  CAS  Google Scholar 

  140. Plevin R, O’Hare M, Jones A, Torn M, Gibbs H (2010) Greenhouse gas emissions from biofuels: indirect land use change are uncertain but may be much greater than previously estimated. Environ Sci Technol 44:8015–8021

    Article  CAS  Google Scholar 

  141. Plevin R, Delucchi M, Creutzig F (2013) Using attributional life cycle assessment to estimate climate-change mitigation benefits misleads policy makers. J Ind Ecol. https://doi.org/10.1111/jiec.12074

  142. Popp A, Dietrich JP, Lotze-Campen H, Klein D, Bauer N, Krause M, Edenhofer O (2011) The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system. Environ Res Lett 6:34–44

    Article  Google Scholar 

  143. Popp A, Rose S, Calvin K, Van Vuuren D, Dietrich J, Wise M, Kriegler E (2013) Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim Chang 123:495–509

    Article  Google Scholar 

  144. Rajagopal D, Hochman G, Zilberman D (2011) Indirect fuel use change (IFUC) and the lifecycle environmental impact of biofuel policies. Energ Policy 39:228–233

    Article  Google Scholar 

  145. Reilly J, Melillo J, Cai Y, Kicklighter D, Gurgel A, Paltsev S, Schlosser A (2012) Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environ Sci Technol 46:5672–5679

    Article  CAS  Google Scholar 

  146. Repo A, Känkänen R, Tuovinen J, Antikainen R, Tuomi M, Vanhala P, Liski J (2012) Forest bioenergy climate impact can be improved by allocating forest residue removal. GCB Bioenergy 4:202–212

    Article  CAS  Google Scholar 

  147. Rogner H, Aguilera R, Archer C, Bertani R, Bhattacharya S, Dusseault M, Yakushev V (2012) Chapter 7 – Energy resources and potentials. In: Johansson TB, Nakicenovic N, Patwardhan A, Gomez-Echeverri L (eds) Global energy assessment – toward a sustainable future. Cambridge University Press, International Institute for Applied Systems Analysis, Laxenburg/Cambridge, UK/New York, pp 423–512. www.globalenergyassessment.org. Accessed Apr 2014

  148. Rose S, Beach R, Calvin K, McCarl B, Petrusa J, Sohngen B, Wise M (2013) Estimating global greenhouse gas emissions offset supplies: accounting for investment risks and other market realties (No. 1025510). EPRI, Palo Alto

    Google Scholar 

  149. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  Google Scholar 

  150. Scheidel A, Sorman AH (2012) Energy transitions and the global land rush: ultimate drivers and persistent consequences. Glob Environ Chang 22:588–595

    Article  Google Scholar 

  151. Schut M, Slingerland M, Locke A (2010) Biofuel developments in Mozambique. Update and analysis of policy, potential and reality. Energ Policy 38:5151–5165

    Article  Google Scholar 

  152. Scown C, Nazaroff W, Mishra U, Strogen B, Lobscheid A, Masanet E, McKone T (2012) Lifecycle greenhouse gas implications of US national scenarios for cellulosic ethanol production. Environ Res Lett 7:014011

    Article  CAS  Google Scholar 

  153. Searchinger T, Heimlich R, Houghton R, Dong F, Elobeid A, Fabiosa J, Yu T (2008) Use of US Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land Use Change. Science 319:1238–1240

    Article  CAS  Google Scholar 

  154. Searchinger T, Hamburg S, Melillo J, Chameides W, Havlik P, Kammen D, Tilman D (2009) Fixing a critical climate accounting error. Science 326:527–528

    Article  CAS  Google Scholar 

  155. Selfa T, Kulcsar L, Bain C, Goe R, Middendorf G (2011) Biofuels bonanza?: exploring community perceptions of the promises and perils of biofuels production. Biomass Bioenergy 35:1379–1389

    Article  Google Scholar 

  156. Smeets E, Faaij A (2007) Bioenergy potentials from forestry in 2050. Clim Chang 81:353–390

    Article  CAS  Google Scholar 

  157. Smeets E, Faaij A (2010) The impact of sustainability criteria on the costs and potentials of bioenergy production–Applied for case studies in Brazil and Ukraine. Biomass Bioenergy 34:319–333

    Article  Google Scholar 

  158. Smeets E, Faaij A, Lewandowski I, Turkenburg W (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci 33:56–106

    Article  CAS  Google Scholar 

  159. Smeets E, Junginger M, Faaij A, Walter A, Dolzan P, Turkenburg W (2008) The sustainability of Brazilian ethanol – an assessment of the possibilities of certified production. Biomass Bioenergy 32:781–813

    Article  Google Scholar 

  160. Smith KA, Searchinger TD (2012) Crop-based biofuels and associated environmental concerns. GCB Bioenergy 4:479–484

    Article  CAS  Google Scholar 

  161. Smith L, Torn M (2013) Ecological limits to terrestrial biological carbon dioxide removal. Clim Chang 118:89–103

    Article  CAS  Google Scholar 

  162. Smith WK, Zhao M, Running SW (2012a) Global bioenergy capacity as constrained by observed biospheric productivity rates. Bioscience 62:911–922

    Article  Google Scholar 

  163. Sochacki S, Harper R, Smettem K (2012) Bio-mitigation of carbon following afforestation of abandoned salinized farmland. GCB Bioenergy 4:193–201

    Article  CAS  Google Scholar 

  164. Sparovek G, Berndes G, Egeskog A, De Freitas F, Gustafsson S, Hansson J (2007) Sugarcane ethanol production in Brazil: an expansion model sensitive to socioeconomic and environmental concerns. Biofuels Bioprod Biorefin 1:270–282

    Article  CAS  Google Scholar 

  165. SREX, IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaption. Cambridge University Press, New York

    Google Scholar 

  166. Steenblik R (2007) Biofuels – at what cost? Government support for ethanol in selected OECD. International Institute for sustainable Development, Winnipeg, p 82. http://www.iisd.org/publications/pub.aspx?id=895. Accessed Apr 2014

  167. Stromberg P, Gasparatos A (2012) Biofuels at the confluence of energy security, rural development and food security: a developing country perspective. In: Gasparatos A, Stromberg P (eds) Socio-economic and environmental impacts of biofuels. Evidence from developing countries. Cambridge University Press, Cambridge, UK/New York, pp 1–375

    Google Scholar 

  168. Stupak I, Lattimore B, Titus B, Smith C (2011) Criteria and indicators for sustainable forest fuel production and harvesting: a review of current standards for sustainable forest management. Biomass Bioenergy 35:3287–3308

    Article  Google Scholar 

  169. Taheripour F, Hertel T, Tyner W (2011) Implications of biofuels mandates for the global livestock industry: a computable general equilibrium analysis. Agric Econ 42:325–342

    Article  Google Scholar 

  170. Tavoni M, Socolow R (2013) Modeling meets science and technology: an introduction to a special issue on negative emissions. Clim Chang 118:1–14

    Article  Google Scholar 

  171. Thompson MC, Baruah M, Carr ER (2011a) Seeing REDD+ as a project of environmental governance. Environ Sci Pol 14:100–110

    Article  Google Scholar 

  172. Thompson W, Whistance J, Meyer S (2011b) Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions. Energ Policy 39:5509–5518

    Article  Google Scholar 

  173. Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Williams R (2009) Beneficial biofuels-the food, energy, and environment trilemma. Science 325:270–271

    Article  CAS  Google Scholar 

  174. Timilsina G, Beghin J, Van der Mensbrugghe D, Mevel S (2012) The impacts of biofuels targets on land-use change and food supply: a global CGE assessment. Agric Econ 43:315–332

    Article  Google Scholar 

  175. Van Dam J, Faaij A, Hilbert J, Petruzzi H, Turkenburg W (2009a) Large-scale bioenergy production from soybeans and switchgrass in Argentina: part A: potential and economic feasibility for national and international markets. Renew Sust Energ Rev 13:1710–1733

    Article  CAS  Google Scholar 

  176. Van Dam J, Faaij A, Hilbert J, Petruzzi H, Turkenburg W (2009b) Large-scale bioenergy production from soybeans and switchgrass in Argentina: part B. Environmental and socio-economic impacts on a regional level. Renew Sust Energ Rev 13:1679–1709

    Article  CAS  Google Scholar 

  177. Van Dam J, Junginger M, Faaij A (2010) From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renew Sust Energ Rev 14:2445–2472

    Article  Google Scholar 

  178. Van de Velde L, Verbeke W, Popp M, Buysse J, Van Huylenbroeck G (2009) Perceived importance of fuel characteristics and its match with consumer beliefs about biofuels in Belgium. Energ Policy 37:3183–3193

    Article  Google Scholar 

  179. Van der Hilst F, Dornburg V, Sanders J, Elbersen B, Graves A, Turkenburg W, Faaij A (2010) Potential, spatial distribution and economic performance of regional biomass chains: the North of the Netherlands as example. Agric Syst 103:403–417

    Article  Google Scholar 

  180. Van der Hilst F, Lesschen J, Van Dam J, Riksen M, Verweij P, Sanders J, Faaij A (2012a) Spatial variation of environmental impacts of regional biomass chains. Renew Sust Energ Rev 16:2053–2069

    Article  Google Scholar 

  181. Van der Hilst F, Van Dam J, Verweij P, Riksen M, Sanders J, Faaij A (2012b) Spatial variation in environmental impacts of bioenergy supply chains. Renew Sust Energ Rev 16:2053–2069

    Article  Google Scholar 

  182. Van der Hilst F, Verstegen J, Karssenberg D, Faaij A (2012c) Spatiotemporal land use modelling to assess land availability for energy crops–illustrated for Mozambique. GCB Bioenergy 4:859–874

    Article  Google Scholar 

  183. Van der Horst D, Vermeylen S (2011) Spatial scale and social impacts of biofuel production. Biomass Bioenergy 35:2435–2443

    Article  Google Scholar 

  184. Van Eijck J, Smeets E, Faaij A (2012) The economic performance of jatropha, cassava and Eucalyptus production systems for energy in an East African smallholder setting. GCB Bioenergy 4:828–845

    Article  Google Scholar 

  185. van Eijck J, Romijn H, Smeets E et al (2013) Comparative analysis of key socio-economic and environmental impacts of smallholder and plantation based jatropha biofuel production systems in Tanzania. Biomass Bioenergy 61:24–45

    Google Scholar 

  186. van Eijck J, Romijn H, Balkema A, Faaij A (2014) Global experience with jatropha cultivation for bioenergy: an assessment of socio-economic and environmental aspects. Renew Sust Energ Rev 32:869–889

    Article  CAS  Google Scholar 

  187. Van Vuuren D, Van Vliet J, Stehfest E (2009) Future bio-energy potential under various natural constraints. Energ Policy 37:4220–4230

    Article  Google Scholar 

  188. Verdonk M, Dieperink C, Faaij A (2007) Governance of the emerging bio-energy markets. Energ Policy 35:3909–3924

    Article  Google Scholar 

  189. Von Maltitz GP, Setzkorn KA (2013) A typology of Southern African biofuel feedstock production projects. Biomass Bioenergy 59:33–59

    Article  Google Scholar 

  190. Walter A, Dolzan P, Quilodran O, Garcia J, Da Silva C, Piacente F, Segerstedt A (2008) A sustainability analysis of the Brazilian ethanol. Report Submitted to the United Kingdom Embassy, Brazil

    Google Scholar 

  191. Walter A, Dolzan P, Quilodran O, De Oliveira J, Da Silva C, Piacente F, Segerstedt A (2011) Sustainability assessment of bio-ethanol production in Brazil considering land use change, GHG emissions and socio-economic aspects. Energ Policy 39:5703–5716

    Article  Google Scholar 

  192. Wang M, Han J, Haq Z, Tyner W, Wu M, Elgowainy A (2011) Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes. Biomass Bioenergy 35:1885–1896

    Article  CAS  Google Scholar 

  193. Warner E, Zhang Y, Inman D, Heath G (2013) Challenges in the estimation of greenhouse gas emissions from biofuel-induced global land-use change. Biofuels Bioprod Biorefin 8:114–125

    Article  CAS  Google Scholar 

  194. Weightman R, Cottrill B, Wiltshire J, Kindred D, Sylvester-Bradley R (2011) Opportunities for avoidance of land-use change through substitution of soya bean meal and cereals in European livestock diets with bioethanol coproducts. GCB Bioenergy 3:158–170

    Article  Google Scholar 

  195. Wicke B, Smeets E, Tabeau A, Hilbert J, Faaij A (2009) Macroeconomic impacts of bioenergy production on surplus agricultural land – a case study of Argentina. Renew Sust Energ Rev 13:2463–2473

    Article  Google Scholar 

  196. Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, Faaij A (2011a) The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci 4:2669–2681

    Article  Google Scholar 

  197. Wicke B, Smeets E, Watson H, Faaij A (2011b) The current bioenergy production potential of semi-arid and arid regions in sub-Saharan Africa. Biomass Bioenergy 35:2773–2786

    Article  Google Scholar 

  198. Wicke B, Verweij P, Van Meijl H, Van Vuuren D, Faaij A (2012) Indirect land use change: review of existing models and strategies for mitigation. Biofuels 3:87–100

    Article  CAS  Google Scholar 

  199. Wicke B, Smeets E, Akanda R, Stille L, Singh R, Awan A, Faaij A (2013) Biomass production in agroforestry and forestry systems on salt-affected soils in South Asia: exploration of the GHG balance and economic performance of three case studies. J Environ Manag 127:324–334

    Article  Google Scholar 

  200. Wilkinson J, Herrera S (2010) Biofuels in Brazil: debates and impacts. J Peasant Stud 37:749–768

    Article  Google Scholar 

  201. Wirsenius S, Azar C, Berndes G (2010) How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agric Syst 103:621–638

    Article  Google Scholar 

  202. Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186

    Article  CAS  Google Scholar 

  203. Wiskerke W, Dornburg V, Rubanza C, Malimbwi R, Faaij A (2010) Cost/benefit analysis of biomass energy supply options for rural smallholders in the semi-arid eastern part of Shinyanga Region in Tanzania. Renew Sust Energ Rev 14:148–165

    Article  Google Scholar 

  204. Wu C, Lin L (2009) Guest editorial. Biotechnol Adv 27:541

    Article  Google Scholar 

  205. Zhang Y, Yu Y, Li T, Zou B (2011) Analyzing Chinese consumers’ perception for biofuels implementation: the private vehicles owner’s investigating in Nanjing. Renew Sust Energ Rev 15:2299–2309

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Faaij .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Faaij, A. (2018). Biomass Resources, Worldwide. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_259-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_259-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics