Skip to main content

Engineered Geothermal Systems, Development and Sustainability of

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 141 Accesses

Breakthrough time:

The time taken for a tracing element (chemicals) to travel through a specified media (a reservoir) indicating a degree of channeling or dispersion of injected fluid passing through the reservoir.

EGS:

Enhanced or engineered geothermal system; a geothermal system; a geothermal system engineered to mimic a natural system (hydrothermal) so that energy can be extracted from hot rocks at great depth.

Granite:

Granite is a common and widely occurring type of intrusive, felsic, igneous rock. Granites usually have a medium- to coarse-grained texture and can contain radiogenic material which produces heat in the rock.

Igneous rocks:

Igneous rock is formed through the cooling and solidification of magma or lava. Igneous rock may form with or without crystallization, either below the surface as intrusive (plutonic) rocks or on the surface as extrusive (volcanic) rocks.

In situ stress:

Forces that exit in the crustal plate, and the three mutually orthogonal components are...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Baria R, Baumgaertner J, Gérard A, Kappelmeyer O (1992) HDR project at Soultz-sous-Forêts. Geotherm Res Counc Trans 18:387–394

    Google Scholar 

  2. Abe H, Niitsuma H, Baria R (1999) Hot dry rock/hot wet rock academic review, Geothermics special issue, vol 28(4/5). Pergamon Press, New York. ISSN: 0375-6505

    Google Scholar 

  3. Garnish JD (1985) Hot dry rock – a European perspective. In: Proceedings geothermal research council’s international symposium on geothermal energy, international volume, Hawaii, pp 329–337

    Google Scholar 

  4. Baria R, Baumgaertner J, Gerard A, Jung R, Garnish J (1999) European HDR research program at Soultz-sous-Forets (France) 1987–1996. In: Abe H, Niitsuma H, Baria R (eds) Hot dry rock/hot wet rock, academic review, Geothermics special issue, vol 28(4/5). Pergamon Press, New York, pp 665–669. ISSN: 0375-6506

    Google Scholar 

  5. Baria R, Baumgaertner J, Gérard A, Jung R, Garnish J (1998) The European HDR research program at Soultz-Sous-Forets (France). In: Baria R, Baumgaertner J, Gerard A, Jung R (eds) International conference 4th HDR forum, Proceeding, 2002, Strasbourg, France, ISBN: 3-510-95859-4

    Google Scholar 

  6. Hot Dry Rocks (2011) Summary of process and data sources used in the development of the EGS Potential maps and tables of Australia. Unpublished report. Available from www.google.org/egs, 20 p

  7. Smith MC (1975) The potential for the production of power from geothermal resources. Los Alamos scientific laboratory report, LA-UR-73-926

    Google Scholar 

  8. Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23:683–686

    Article  Google Scholar 

  9. Finkbeiner T, Barton CA, Zoback MD (1997) Relationships among in-situ stress, fractures and faults, and fluid flow: Monterey formation, Santa Maria Basin. AAPG Bull 81(12):1975–1999

    CAS  Google Scholar 

  10. Barton CA, Hickman S, Morin R, Zoback MD, Finkbeiner T, Sass J, Benoit D (1997) Fracture permeability and its relationship to in-situ stress in the Dixie Valley, Nevada, geothermal reservoir. In: Proceedings 22nd workshop on geothermal reservoir engineering Stanford University, Stanford, 27–29 Jan 1997

    Google Scholar 

  11. Bruel D (1997) Heat exchange modelling using a discrete fracture network model with thermo-mechanical interactions – evaluation of the thermal performance of the reservoir developed at Soultz-sous-Forêts in 1996, ARMINES

    Google Scholar 

  12. M.I.T. Report (2006) The future of geothermal energy, impact of enhanced geothermal systems (EGS) in the United States in 21st century. Massachusetts institute of technology report. ISBN: 0-615-13438-6. http://geothermal.inel.gov

  13. Beardsmore GR, Rybach L, Blackwell D, Baron C (2010) A protocol for estimating and mapping global EGS potential. GRC Trans 34:301–312

    Google Scholar 

  14. Potter RM, Robinson ES, Smith MC (1974) Methods of extracting heat from dry geothermal reservoirs, US Patent #3,786858

    Google Scholar 

  15. Brown DW, Duchane DV (1999) Scientific progress on the Fenton hill HDR project since 1983. In: Abe H, Niitsuma H, Baria R (eds) Hot dry rock/hot wet rock: academic review, vol 28(4/5). Elsevier, Oxford, pp 591–601. ISSN: 0375-6506

    Google Scholar 

  16. Garnish JD (1976) Geothermal energy: the case for research in the United Kingdom. Energy paper no. 9, London, HMSO, 66 pp

    Google Scholar 

  17. Pine RJ, Batchelor AS (1984) Downward migration of shearing in jointed rock during hydraulic injections. Int J Rock Mech Min Sci 21(5):249–263

    Article  Google Scholar 

  18. Baria R, Hearn KC, Batchelor AS (1985) Induced seismicity during the hydraulic stimulation of the potential hot dry rock geothermal reservoir. Submitted to the fourth conference on acoustic emission/microseismic activity in geology structures and materials, Pennsylvania State University, 22–24 Oct 1985, 26 pp

    Google Scholar 

  19. Baria R, Green ASP (1989) Microseismics: a key to understanding reservoir growth. In: Roy Baria (ed) Hot dry rock geothermal energy. Proceedings Camborne school of mines international hot dry rock conference, Camborne School of Mines Redruth, UK, 27–30 June 1989. Robertson Scientific Publications, London, 1990, pp 363–377, ISBN: 185365217-2

    Google Scholar 

  20. Parker RH (1989) Hot dry rock geothermal energy. Phase 2B final report of the Camborne School of Mines project, vol 1 & 2. Pergamon Press, Oxford. ISBN: 0-08-037929-X

    Google Scholar 

  21. Batchelor AS (1989) Hot dry rocks and its relationship to existing geothermal systems. In: Baria R (ed) Hot dry rock geothermal energy proceedings Camborne school of mines international hot dry rock conference, Camborne School of Mines Redruth, 27–30 June 1989. Robertson Scientific Publications, London, 1990, pp 13–29, ISBN: 185365217-2

    Google Scholar 

  22. Garnish JD (1986) Introduction: background to the workshop. In: Garnish J (ed) Proceedings of the first EEC/US workshop on geothermal hot dry rock technology, geothermics special issue, vol 16(4), 1987. Brussels, pp 323–330

    Google Scholar 

  23. Gérard A, Kappelmeyer O (1987) The Soultz-sous-Forêts Project. In: Garnish J (ed) Proceedings of the first EEC/US workshop on geothermal hot dry rock technology, geothermics special issue, vol 16(4), pp 393–399

    Google Scholar 

  24. Baumgärtner J, Gérard A, Baria R, Jung R, Tran-Viet T, Gandy T, Aquilina L, Garnish J (1998) Circulating the HDR reservoir at Soultz: maintaining production and injection flow in complete balance. In: Proceedings 23rd workshop of geothermal reservoir engineering, Stanford University, Stanford

    Google Scholar 

  25. Baria R, Baumgärtner J, Gérard A (1993) Heat mining in the Rhinegraben. Socomine internal project report

    Google Scholar 

  26. Baria R, Garnish J, Baumgärtner J, Gérard A, Jung R (1995) Recent development in the European HDR research programme at Soultz-sous-Forêts (France). Proceeding of the world geothermal congress, Florence, International Geothermal Association, vol 4, pp 2631–2637, ISBN: 0-473-03123-X

    Google Scholar 

  27. Baumgärtner J, Jung R, Gérard A, Baria R, Garnish J (1996) The European HDR project at Soultz-sous-Forêts: stimulation of the second deep well and first circulation experiments. In: Proceedings 21st workshop of geothermal reservoir engineering, Stanford University, Stanford, California, SGP-TR-151, pp 267–274

    Google Scholar 

  28. Gérard A, Baumgärtner J, Baria R (1997) An attempt towards a conceptual model derived from 1993–1996 hydraulic operations at Soultz. In: Proceedings of NEDO international geothermal symposium, Sendai, vol 2, pp 329–341

    Google Scholar 

  29. Shock RA (1986) An economic assessment of hot dry rocks as an energy source for the UK – Energy Technology Support Unit Report ETSU-R-34. Publ. HMSO, London, 215 p

    Google Scholar 

  30. Geodynamics (2010) Geodynamics company update. In: Proceedings Australian geothermal conference 2010, Adelaide, Australia, 16–19 Nov 2010

    Google Scholar 

  31. Heidinger P, Dornstädter J, Fabritius A (2006) HDR economic modelling: HDRec software. Geothermics 35:683–710

    Article  Google Scholar 

  32. Heidinger P (2010) Integral modeling and financial impact of the geothermal situation and power plant at Soultz-sous-Forets. Comptes Rendus Geosci 342:626–635. Elsevier Masson SAS

    Article  Google Scholar 

  33. Abé H, Mura T, Keer LM (1976) Growth rate of a penny-shaped crack in hydraulic fracturing of rocks. J Geophys Res 81(29):5335–5340

    Article  Google Scholar 

  34. Duffield RB, Nunz GJ, Smith MC, Wilson MG (1981) Hot dry rock – geothermal energy development program, annual report FY80, Los Alamos National Laboratory report, LA-8855-HDR, July 1981, 211 p

    Google Scholar 

  35. Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. Pet Trans AIME 210:153–168

    Google Scholar 

  36. Genter A, Fritsch D, Cuenot N, Baumgärtner J, Graff J-J (2009) Overview of the current activities of the European EGS Soultz project: from exploration to electricity generation. In: Proceedings thirty-fourth workshop on geothermal reservoir engineering, Stanford University, Stanford, 9–11 Feb 2009

    Google Scholar 

  37. Baria R, Michelet S, Baumgaertner J, Dyer B, Gerard A, Nicholls J, Hettkamp T, Teza D, Soma N, Asanuma H, Garnish J, Megel T (2004) Microseismic monitoring of the world’s largest potential HDR reservoir. Twenty-ninth workshop on geothermal reservoir engineering, Stanford University, Stanford, California, 26–28 Jan 2004

    Google Scholar 

  38. Baria R, Michelet S, Baumgärtner J, Dyer B, Nicholls J, Hettkamp T, Teza D, Soma N, Asanuma H, Garnish J (2005) Creation and mapping of 5000m deep HDR/HFR reservoir to produce electricity. In: Proceedings WGC 2005 (CDROM), Antalya

    Google Scholar 

  39. Baria R, Jung R, Tischner T, Nicholls J, Michelet M, Sanjuan B, Soma N, Asanuma H, Dyer B, Garnish J (2006) Creation of an HDR reservoir at 5000m depth at the European HDR project. Thirty-first workshop on geothermal reservoir engineering. Stanford University, Stanford, 30 Jan–1 Feb 2006

    Google Scholar 

  40. Hettkamp T, Baumgaertner J, Baria R, Gerard A, Gandy T, Michelet S, Teza D (2004) Electricity production from hot rocks. In: Proceedings 29th workshop of geothermal reservoir engineering, Stanford University, Stanford, 26–28 Jan 2004, pp 184–193

    Google Scholar 

  41. Brown DW, DuTeaux R, Kruger P, Swenson D, Yamaguchi T (1999) Fluid circulation and heat extraction from engineered geothermal reservoirs. In: Abe H, Niitsuma H, Baria R (eds) Hot dry rock/hot wet rock, academic review, Geothermics special issue, vol 28(4/5). Pergamon Press, New York, pp 553–572. ISSN 0375-6506

    Google Scholar 

  42. Sanjuan B, Pinault RP, Gerard A, Brach M, Braibant G, Crouzet C, Foucher J-C, Gautier A, Touzelet S (2006) Tracer testing of the geothermal heat exchanger at Soultz-sous-Forets (France) between 2000 and 2005. Geothermics 35(5–6):622–653

    Article  Google Scholar 

  43. Majer E, Baria R, Stark M (2008) Protocol for induced seismicity associated with enhanced geothermal systems. Report produced in Task D Annex I (9 April 2008), International Energy Agency-Geothermal Implementing Agreement. http://www.iea-gia.org/publications.asp

  44. Major E, Baria R, Stark M, Oates S, Bommer J, Smith B, Asanuma H (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics 36:185–222

    Article  Google Scholar 

  45. Helm JA, Hoang-Trong P (1993) Assessing the natural and induced seismic risk associated with a hot dry rock (HDR) geothermal energy project with specific reference to Soultz-sous- Forêts, N.E. France. American Geophysical Union, 1993 fall meeting, San Francisco

    Google Scholar 

  46. Mortimer L, Adnan A, Simmons CT (2010) Targeting faults for geothermal fluid production: exploring for zones of enhanced permeability. In: Proceedings Australian geothermal conference 2010, Adelaide, 16–19 Nov 2010

    Google Scholar 

  47. Rybach L, Mongillo M (2006) Geothermal sustainability- a review with identified research needs. GRC Trans 30:1083–1090

    Google Scholar 

  48. Bächler D, Kohl T, Rybach L (2003) Impact of Graben-parallel faults on hydrothermal convection – Rhine Graben case study. Phys Chem Earth 28:431–441

    Article  Google Scholar 

  49. Parker RH (1989) Geothermal energy at the Camborne school of mines. Geotherm Counc Bull 18(9):3–7

    Google Scholar 

  50. Cordon E, Driscoll JP (2008) Full life-cycle water requirements for deep geothermal energy developments in South Australia. Unpublished report to the Department of Primary Industries and Resources, South Australia. 50p. http://www.pir.sa.gov.au/__data/assets/pdf_file/0018/110556/TIG_4_PIRSA_Water_Project_26May09.pdf

  51. André L, Rabemanana V, Vuataz F-D (2006) Influence of water-rock interactions on fracture permeability of the deep reservoir at Soultz-sous-Forêts, France. Geothermics 35(5–6):507–531

    Article  Google Scholar 

  52. Vuataz F-D, Durst P (2001) Fluid-rock interactions and geochemical modelling of the formation brine in the fissured reservoir of the Soultz-sous-Forêts HDR test site. Final report, Federal office for education and science, project OFES N° 98.0008–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Baria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Baria, R., Mortimer, L., Beardsmore, G. (2017). Engineered Geothermal Systems, Development and Sustainability of. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_235-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_235-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics