Skip to main content

Green Roofs: Ecological Functions of the Fifth Facade

  • Living reference work entry
  • First Online:

Glossary

FLL :

The Landscape Research and Development Society (FLL) is a nonprofit organization that was founded in 1975. Its mission is to research, produce, and disseminate all the various landscape development principles, guidelines, and specifications for the assurance of environmental quality [1].

BUGG :

The Greening Building Association (BUGG) is a specialized group that was founded by some members of FLL to focus more specifically on green building. The FBB is the German counterpart to the American industry association Green Roofs for Healthy Cities (GRHC) and one of the founding members of the World Green Infrastructure Network (WGIN). The German word “Bauwerksbegrünung” has no translation in English – green infrastructure in the sense of BUGG is focused on all forms of urban green.

Extensive green roofs (EGR):

also called natural green roofs, or eco-roofs, are vegetated roof constructions that require low maintenance. Drought-adapted plant species are used to create a...

This is a preview of subscription content, log in via an institution.

Bibliography

  1. Alexandri E, Jones P (2006) Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Build Environ 48(4):480–493

    Article  Google Scholar 

  2. Niachou A, Papakonstantinou K, Santamaouris M, Tsangrassoulis A, Mihalakou G (2001) Analysis of the green roof thermal properties and investigation of its energy performance. Energ Buildings 33:719–729

    Article  Google Scholar 

  3. Theodosiou TG (2003) Summer period analysis of the performance of a planted roof as a passive cooling technique. Energ Buildings 35:909–917

    Article  Google Scholar 

  4. Oberndorfer E, Lundholm J, Brass B, Coffmann R, Doshi H, Dunnett N, Gaffin S, Köhler M, Liu K, Rowe B (2007) Green roofs as urban ecosystems: ecological structures, functions, and services. Bioscience 57(10):823–833, www.biosciencemag.org

    Article  Google Scholar 

  5. Köhler M (2005) The green roof movement - from a botanical idea to a new sustainable style in modern architecture. In: Proceedings of 1th international landscape education symposium, Shanghai, pp 168–176. (ISBN 7–112–08650-7) www.china-building.com.cn

  6. Kellert SR, Wilson EO (1993) The biophilia hypothesis. Island Press, Washington

    Google Scholar 

  7. Odum HT (1994) Ecological and general systems. An introduction to systems ecology. University Press of Colorado, Niwot

    Google Scholar 

  8. Larson D, Matthes U, Kelly PE, Lundholm J, Gerrath J (2004) The urban cliff revolution. Fitzhenry and Whiteside, Markham

    Google Scholar 

  9. Köhler M, Barth G, Brandwein T, Gast D, Joger HG, Seitz U, Vowinkel K (1993) Fassaden- und Dachbegrünung. Ulmer, Stuttgart

    Google Scholar 

  10. Getter K, Rowe B (2009) Carbon sequestration potential of extensive Green roofs. In: Proceedings of greening rooftops for sustainable communities. Atlanta

    Google Scholar 

  11. Köhler M (2009) Der Gründachmarkt weltweit. Tagungsband 7. In: Internationales FBB Gründach symposium 2009, Ditzingen, pp 37–40

    Google Scholar 

  12. Yeang K (2008) Ecodesign - a manual for ecological design. Wiley-Academy, Hoboken

    Google Scholar 

  13. Kellert SR (2005) Building for life. Island Press, Washington

    Google Scholar 

  14. Todd NJ, Todd J (1993) From eco-cities to living machines. North Atlantic books, Berkely

    Google Scholar 

  15. Peck S (2008) Green roof designs. A. Schiffer book, Atglen, p 176

    Google Scholar 

  16. Weiler SK, Scholz-Barth K (2009) Green roof systems. Wiley, Hoboken

    Google Scholar 

  17. Jim CY, Chen WY (2009) External effects of neighbourhood parks and landscape elements on high-rise residential value. Land Use Policy (Elsevier Science, Amsterdam) 27:662–670

    Article  Google Scholar 

  18. Jodidio P (2009) Green architecture now. Taschen, Hongkong, p 416

    Google Scholar 

  19. Koehler M, Schmidt M, Grimme FW, Laar M, De Assuncao Paiva VL, Tavares S (2002) Green roofs in temperate climates and in the hot-humid tropics. Environ Health 13(4):382–391

    Google Scholar 

  20. Göbel P, Dierkes C, Kories H, Messner J, Meissner E, Coldewey WG (2007) Einfluss von Gründächern und Regenwassernutzung auf Wasserhaushalt und Grundwasserstand in Siedlungen. Grundwasser - Z der Fachsektion Hydrogeologie 12:189–200

    Article  Google Scholar 

  21. Reichmann B, Nolde E, Leithaus J, Vansbotter B (2002) Maßnahmenkatalog Reduzierung der Wasserkosten im öffentlichen Bereich. Senatsverwaltung für Stadtenwicklung Berlin, Berlin. http://www.stadtentwicklung.berlin.de/bauen/oekologisches_bauen/de/downloads/massnahmenkatalog_wasserkosten.pdf. Accessed 26 May 2008

    Google Scholar 

  22. Reichmann B, Nolde E, Rüden H, Vansbotter E (2007) Innovative water concepts. Service water utilisation in buildings 28 S. http://www.stadtentwicklung.berlin.de/bauen/oekologisches_bauen/de/downloads/betriebswasser_englisch2007.pdf. Accessed 26 May 2008

  23. Köhler M (2008) Green facades – a view back and some visions. Urban ecosystems. www.springerlink

  24. Centgraf S, Schmidt M (2005) Water management to save energy, a decentralized approach to an integrated sustainable urban development. In: Proceedings of Rio05, Brasil. Accessed 26 May 2008

    Google Scholar 

  25. Kravčík M, Pokorný J, Kohutiar J, Kováč M, Tóth E (2007) "Water for the recovery of the climate – a new water paradigm. Publisher Municipalia. http://www.waterparadigm.org/

  26. Sukopp H, Wittig R (1997) Stadtökologie. Gustav Fischer Stuttgart, New York

    Google Scholar 

  27. Varis O, Biswass AK, Tortajada C, Lundquist J (2006) Mega cities and water management. Water Resour Dev 22(2):377–394

    Article  Google Scholar 

  28. Köhler M, Schmidt M (2008) London benefits for sustainable water management. World green roof technology. In: Proceedings of world green roof congress, London, 16–19 Sept

    Google Scholar 

  29. Schmidt M, Koehler M (2008) Energetic aspects of green roofs. World green roof technology. In: Proceedings of world green roof congress, London, 16–19 Sept

    Google Scholar 

  30. Köhler M, Malorny W (2009) Wärmeschutz durch extensive Gründächer. In: Venzmer H (Europäischer Sanierungskalender 2009). Beuth, Berlin, pp 195–212

    Google Scholar 

  31. Santamourism M, Pavlou C, Douka P, Mihalakakou G, Synnefa A, Hatzibirosa A, Patargias P (2007) Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece. Energy 32(9):1781–1788. https://doi.org/10.1016/j.energy.2006.11.011

  32. Beninde J, Veith M, Hochkirch A (2015) Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. Ecol Lett 18:581–592. https://doi.org/10.1111/ele.12427

    Article  Google Scholar 

  33. Zenker T (2003) Verdunstungswiderstände und Gras-Referenzverdunstung Lysimeteruntersuchungen zum Penman-Monteith-Ansatz im Berliner Raum. Diss.TU Berlin

    Google Scholar 

  34. Connelly M, Liu K (2005) Green roof research in British Columbia – an overview. In: Proceedings of greening rooftops for sustainable communities, Washington

    Google Scholar 

  35. FLL (ed) (2018) Richtlinie für die Planung, Ausführung und Pflege von Dachbegrünungen. Bonn, English version: Guidelines for the planning, construction and maintenance of green roofing – green roofing guideline, 2018 latest edition

    Google Scholar 

  36. Liesecke HJ (1998) Das Retentionsverhalten von Dachbegrünungen. Stadt + Grün 47:46–53

    Google Scholar 

  37. Palla A, Gnecco I, Lanza LG (2010) Hydrologic restoration in the urban environment using green roofs. Water 2, 1.www. mdpi.com/journal/water …

  38. Köhler M, Keeley M (2005) The green roof tradition in Germany: the example of Berlin. In: Hoffmann L, Mc Donough W (eds) Ecological design and construction. Earthpledge, New York, pp 108–112

    Google Scholar 

  39. Keeley M (2007) Transatlantic exchange and sustainable Urban development: transfering stormwater policies and technologies from Europe to the United States. Ph.D., Technical University, Berlin, 259 p

    Google Scholar 

  40. Köhler M (2004) Energetic Effects of Green roofs on the urban climate near to the ground and to the building surfaces. In: Proceedings of international green roof conference, Nuertingen, IGRA, S.72–79

    Google Scholar 

  41. Köhler M, Schmidt M, Grimme FW, Laar M, De Assuncao Paiva VL, Tavares S (2002) Green roofs in temperate climates and in the hot-humid tropics. Environ Health 13(4):382–391. (UK) ISSN 0956-6163

    Google Scholar 

  42. Bustorf J (1999) Simulation of the precipitation/runoff – ratio of greened roofs. Master thesis, Technical University, Berlin, 108 p

    Google Scholar 

  43. Kaiser D, Köhler M, Schmidt M, Wolf F (2019) Increasing evapotranspiration on extensive green roofs by changing substrate depths, construction, and additional irrigation. Buildings 9:173. https://doi.org/10.3390/buildings9070173. https://www.mdpi.com/2075-5309/9/7/173

    Article  Google Scholar 

  44. Köhler M, Schmidt M (2002) Das Mikroklima extensiver Gründächer. In: Jb. Dachbegrünung 2002. Thalacker, Braunschweig, pp 28–33

    Google Scholar 

  45. Knoll S (2000) Das Abflußverhalten von extensiven Dachbegrünungen. Mitt. Nr. 136 TU-Berlin, Inst. für Wasserbau und Wasserwirtschaft, 115 S

    Google Scholar 

  46. Liu K (2008) Sustainability matters. U.S. General services administration. See www.Gsa.gov/P100

  47. EECCAC (2003) Energy efficiency and certification of central air conditioners. REPORT for the DGTREN of the commission of the E.U, 2001, volume 1, 52 p

    Google Scholar 

  48. Fang CF (2008) Evaluating the thermal reduction effect of plant layers on rooftops. Energ Buildings 40:1048–1052

    Article  Google Scholar 

  49. Gerlich G, Tscheuschner RD (2007) Falsification of the atmospheric CO2 greenhouse effects within the frame of physics. 114 p. http://arxiv.org/abs/0707.1161; http://arxiv.org/pdf/0707.1161v3; http://www.tsch.de

  50. Currie BA, Bass B (2008) Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosyst 11(4):335–337, Springer

    Article  Google Scholar 

  51. Mankiewicz PS, Spartos P, Dalski E (2009) Green roofs and local temperature: how green roofs partition water, energy, and costs in urban energy – air conditioning budgets. In: Proceedings of greening rooftops for sustainable communities, Atlanta

    Google Scholar 

  52. Betzler F (2016) GDF – Green Density Factor and GCF – Green Cooling Factor A specific calculation method to integrate green roofs, green facades and their evapotranspiration cooling rate into the general planning procedure of architects and planners. ISBN 978–3–8288-3750-8 ed. Tectum

    Google Scholar 

  53. Köhler M (2006) Long term vegetation research on two extensive green roofs in Berlin. Urbanhabitats, Brooklyn Bot. Garden (USA) 4(1):3–26. ISSN 1541–7115. http://www.urbanhabitats.org/v04n01/berlin_full.html

  54. Darlington A (1981) Ecology of walls. Heinemann, London

    Google Scholar 

  55. Stephenson R (1994) Sedum cultivated stonecrops. Timber, Portland

    Google Scholar 

  56. Snodgrass EC, Snodgrass LL (2006) Green roof plants. Timber, Portland

    Google Scholar 

  57. Kreh W (1945) Die Pflanzenwelt unserer Kiesdächer. Jahresheft des Vereins für Vaterländische Naturkunde in Württemberg 97-101:199–207

    Google Scholar 

  58. Bornkamm R (1961) Vegetation und Vegetationsentwicklung auf Kiesdächern. Vegetatio 10:1–24

    Article  Google Scholar 

  59. Darius F, Drepper J (1984) Rasendächer in West-Berlin. Das Gartenamt 33:309–315

    Google Scholar 

  60. Tan PY, Sia A (2005) A selection of plants for green roofs in Singapore. CUGE Singapore, 117 p

    Google Scholar 

  61. Tan PY (2009) Understanding the performance of plants on non-irrigated Green Roofs in the Tropics using a Biomass yield approach. Nature in Singapore. http://rmbr.nus.edu.sg/nis

  62. Köhler M, Poll P (2010) Life time performance of selected old green roofs in comparison to extensive green roofs in Berlin. Ecol Eng 36:722–729

    Article  Google Scholar 

  63. Nagase A, Dunnet N (2010) Drought tolerance of different vegetation types in extensive green roofs: effects of watering and diversity. Landsc Urban Plan 97:318–327

    Article  Google Scholar 

  64. Köhler M (2006) Extensive Gründächer - Rechenbare Vorteile in der Eingriffsregelung. Stadt und Grün 9:40–44

    Google Scholar 

  65. Spala A, Bagiorgas HS, Assimakopoulos MN, Kalavrouziotis N, Matthopoulos D, Mihalakakou G (2008) On the green roof system. Selection, state of the art and energy potential investigation of a system installed in an office building in Athens, Greece. Renew Energy 33:173–177

    Article  Google Scholar 

  66. Alcazar S, Bass B (2005) Energy performance of green roofs in a multi Storey residential Building in Madrid. In: Proceedings of 3rd conference on greening roof tops, Washington

    Google Scholar 

  67. Banting D, Doshi H, Li J, Missios P (2005) Report on the environmental benefits and costs of green roof technology for the city of Toronto. (kann auf der Seite der Stadt Toronto als pdf geladen werden. www.toronto.on.ca/greenroofs

  68. Connelly M, Hodgson M (2008) Sound transmission loss of green roofs. In: Sixth annual greening rooftops for sustainable communities conference, Baltimore

    Google Scholar 

  69. Köhler M (2008) Extensive green roof biodiversity: the influence of growing media, exposition and the methods of establishing. In: Proceedings of Baltimore green roof for healthy city conference. ISSN 1916–4734, 16 p

    Google Scholar 

  70. Yang J, Yu Q, Gong P (2008) Quantifying air pollution removal by green roofs in Chicago. Atmos Environ 42:7266–7273

    Article  CAS  Google Scholar 

  71. Köhler M, Kaiser D (2019) Evidence of the climate mitigation effect of green roofs – a 20-year weather study on an Extensive Green Roof (EGR) in Northeast Germany. Buildings 2019(9):157. https://doi.org/10.3390/buildings9070157. https://www.mdpi.com/2075-5309/9/7/157

    Article  Google Scholar 

  72. Berndtsson JC, Bengtsson L, Jinno K (2009) Runoff water quality from intensive and extensive vegetated roofs. Ecol Eng 35:369–380

    Article  Google Scholar 

  73. Franken M (2007) Gestion de aguas. Plural editores, La Paz 74. Ksiazek-Mikenas K, Köhler, M (2018) Traits for stress-tolerance are associated with long-term plant survival on green roofs. Journal of Urban Ecology. Journal of Urban Ecology, 1–10. Wiley, online library.com https://doi.org/10.1093/jue/juy016https://academic.oup.com/jue/article/4/1/juy016/5068895

  74. Bartoli B (2008) Sostainable dalla A alla Z. Sistemi editoriali. AS 25 Napoli760. Ansel W (2008) A tale of 3 cities - comparative analysis of green roof policies and success factors, Cuge regional seminar. Oct 23th, Singapore

    Google Scholar 

  75. Appl R, Meier R, Ansel W (2009) Dachbegrünung in der modernen Architektur. In: Proceedings of IGRA, Berlin

    Google Scholar 

Additional Books and Reviews

  • Dunnet N, Kingsbury N (2008) Planting green roofs and living walls, 2nd edn. Timber, Portland

    Google Scholar 

  • Ernst W (2005) Dachabdichtung Dachbegrünung. IRB-Fraunhofer Gesellschaft Stuttgart

    Google Scholar 

  • Köhler M, Ansel W, Appl R, Betzler F, Mann G, Ottelé M, Wünschmann S (2012) Handbuch Bauwerksbegrünung. R. Müller Verlag, Köln, 250p

    Google Scholar 

  • Briz J, Koehler M, de Felipe, I, (2018) Green Cities in the World. Ed. Agricola Espaniola, Madrid. 2nd. Ed. Publication of the World Green infrastructure network

    Google Scholar 

Recommended Additional Internet Links

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Köhler .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Köhler, M., Clements, A.M. (2020). Green Roofs: Ecological Functions of the Fifth Facade. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_207-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_207-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics