Skip to main content

Geologic Carbon Sequestration: Sustainability and Environmental Risk

  • Living reference work entry
  • First Online:
  • 108 Accesses

Glossary

Carbon dioxide capture and storage (CCS):

The capture and compression of CO2 from fossil fuel power plants and other industrial point sources followed by its transport to wells for injection into deep geologic formations for permanent storage.

Carbon dioxide capture, utilization, and storage (CCUS):

The capture and compression of CO2 from fossil fuel power plants and other industrial point sources followed by its beneficial utilization, most commonly for injection into mature oil fields for enhanced oil recovery, during which process the CO2 is eventually permanently stored.

Consequence:

An impact arising from the occurrence of an event or process. For example, the consequence of high CO2 concentrations in the atmosphere is global warming.

Geologic carbon sequestration (GCS) = Geologic CO2 storage (GCS):

The last step of CCS in which CO2 is injected through wells into deep subsurface formations for permanent storage.

Hazard:

A potential impact or consequence of an event or...

This is a preview of subscription content, log in via an institution.

Bibliography

Primary Literature

  1. IPCC special report on carbon dioxide capture and storage (2005) Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds). Prepared by Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge

    Google Scholar 

  2. Blunt M, Fayers FJ, Orr FM (1993) Carbon dioxide in enhanced oil recovery. Energy Convers Manag 34(9):1197–1204

    Article  CAS  Google Scholar 

  3. Torp TA, Gale J (2004) Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects. Energy 29(9–10):1361–1369

    Article  CAS  Google Scholar 

  4. Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp TA, Høier L (2011) Lessons learned from 14 years of CCS operations: Sleipner, in Salah and Snøhvit. Energy Procedia 4:5541–5548

    Article  Google Scholar 

  5. Keith DW, Ha-Duong M, Stolaroff JK (2006) Climate strategy with CO2 capture from the air. Clim Chang 74(1–3):17–45

    Article  CAS  Google Scholar 

  6. Lackner K (2010) Washing carbon out of the air. Sci Am 302:66–71. https://doi.org/10.1038/scientificamerican0610-66.

    Article  CAS  Google Scholar 

  7. Finley RJ (2014) An overview of the Illinois Basin–Decatur project. Greenhouse Gases Sci Technol 4(5):571–579

    Article  Google Scholar 

  8. Mooney C (2017) The quest to capture and store carbon – and slow climate change – just reached a new milestone, Washington Post, April 10, 2017. https://www.washingtonpost.com/news/energy-environment/wp/2017/04/10/the-quest-to-capture-and-store-carbon-and-slow-climate-change-just-reached-a-new-milestone/?utm_term=.83ff9466bf29. Accessed 11 Sept 2017

  9. Brewer PG, Friederich G, Peltzer ET, Orr FM Jr (1999) Direct experiments on the ocean disposal of fossil fuel CO2. Science 284(5416):943–945

    Article  CAS  Google Scholar 

  10. Caldeira K, Rau GH (2000) Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: geochemical implications. Geophys Res Lett 27(2):225–228

    Article  CAS  Google Scholar 

  11. Chisholm SW, Falkowski PG, Cullen JJ (2001) Dis-crediting ocean fertilization. Science 294(5541):309–310

    Article  CAS  Google Scholar 

  12. Buesseler KO, Boyd PW (2003) Will ocean fertilization work? Science 300(5616):67–68

    Article  CAS  Google Scholar 

  13. Shaffer G (2010) Long-term effectiveness and consequences of carbon dioxide sequestration. Nat Geosci 3:464–467

    Article  CAS  Google Scholar 

  14. Meckel TA, Trevino R, Carr D, Nicholson A, Wallace K (2013) Offshore CCS in the northern Gulf of Mexico and the significance of regional structural compartmentalization. Energy Procedia 37:4526–4532

    Article  CAS  Google Scholar 

  15. House KZ, Harvey CF, Aziz MJ, Schrag DP (2009) The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base. Energy Environ Sci. https://doi.org/10.1039/b811608c

  16. McKinsey and Co (2008) Carbon capture and storage: assessing the economics. McKinsey & Company, p 49

    Google Scholar 

  17. IEA, Key World Energy Statistics (2009) International Energy Agency (IEA), Paris. http://www.iea.org/textbase/nppdf/free/2009/key_stats_2009.pdf

  18. Keeling RF, Piper SC, Bollenbacher AF, Walker JS (2009) Atmospheric CO2 records from sites in the SIO air sampling network. In trends: a compendium of data on global change. Carbon dioxide information analysis center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge. doi:https://doi.org/10.3334/CDIAC/atg.035

  19. IPCC, Climate Change (2007) Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change (2007) [Core Writing Team, Pachauri RK, Reisinger A (eds)]. IPCC, Geneva, p 104

    Google Scholar 

  20. Pacala S, Socolow R (2004) Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305(5686):968–972

    Article  CAS  Google Scholar 

  21. Smit B, Reimer JA, Oldenburg CM, Bourg IC (2014) Introduction to carbon capture and sequestration, vol 1. World Scientific. Imperial College Press, London

    Google Scholar 

  22. Gale J, Abanades JC, Bachu S, Jenkins C (2015) Special issue commemorating the 10th year anniversary of the publication of the intergovernmental panel on climate change special report on CO2 capture and storage. Int J Greenhouse Gas Control 40:1–458

    Article  Google Scholar 

  23. GCCSI (Global CCS Institute) (2017) http://www.globalccsinstitute.com/sites/www.globalccsinstitute.com/files/content/page/122973/files/status-ccs-project-database-current-08-09-2017.xls. Accessed 11 Sept 2017

  24. White DJ, Burrowes G, Davis T, Hajnal Z, Hirsche K, Hutcheon I, Majer E, Rostron B, Whittaker S (2004) Greenhouse gas sequestration in abandoned oil reservoirs: the International Energy Agency Weyburn pilot project. GSA Today 14(7):4–11

    Article  Google Scholar 

  25. Rubin ES, Chen C, Rao AB (2007) Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy 35(9):4444–4454

    Article  Google Scholar 

  26. Wilson EJ, Gerard D (2007) Risk assessment and management for geologic sequestration of carbon dioxide. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration integrating technology, monitoring, and regulation. Blackwell Publishing, Ames, pp 101–125

    Google Scholar 

  27. Oldenburg CM (2007) Migration mechanisms and potential impacts of CO2 leakage and seepage. In: Wilson EJ, Gerard D (eds) Carbon capture and sequestration integrating technology, monitoring, and regulation. Blackwell Publishing, Ames, pp 127–146. LBNL-58872

    Google Scholar 

  28. White JA, Foxall W (2016) Assessing induced seismicity risk at CO2 storage projects: recent progress and remaining challenges. Int J Greenhouse Gas Control 49:413–424

    Article  CAS  Google Scholar 

  29. IPCC special report on CO2 capture and storage, Chapter 5. Benson SM, Cook PJ (eds) (2005) Cambridge University Press, Cambridge

    Google Scholar 

  30. House KZ, Schrag DP, Harvey CF, Lackner KS (2006) Permanent carbon dioxide storage in deep-sea sediments. Proc Natl Acad Sci 103(33):12291–12295

    Article  CAS  Google Scholar 

  31. Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44(3):277–289

    Article  CAS  Google Scholar 

  32. Spycher N, Ennis-King J, Pruess K (2003) CO2-H2O mixtures in the geological sequestration of CO2. Assessment and calculation of mutual solubilities from 12 to 100 C and up to 600 bar. Geochemica et Cosmochimica Acta 67:3015–3031

    Article  CAS  Google Scholar 

  33. Gunter WD, Bachu S, Benson S (2004) The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geol Soc Lond Spec Publ 233:129–145

    Article  CAS  Google Scholar 

  34. Xu T, Apps JA, Pruess K (2005) Mineral sequestration of CO2 in a sandstone-shale system. Chem Geol 217(1–4):295–318

    Article  CAS  Google Scholar 

  35. Benson SM, Hepple R, Apps J, Tsang CF, Lippmann M (2002) Lessons learned from natural and industrial analogues for storage of carbon dioxide in deep geological formations, E.O. Lawrence Berkeley National Laboratory Report LBNL-51170

    Google Scholar 

  36. Katz DL, Tek MR (1981) Overview on underground storage of natural gas. J Pet Technol 33(6):943–951

    Article  Google Scholar 

  37. USGS (2010) http://energy.er.usgs.gov/health_environment/co2_sequestration/co2_illustrations.html. Accessed 6 Oct 2010

  38. Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325(5948):1647–1652

    Article  CAS  Google Scholar 

  39. Shrag DP (2009) Storage of carbon dioxide in offshore sediments. Science 325:1658–1659

    Article  Google Scholar 

  40. NATCARB (2008) U.S. Department of Energy, Carbon Sequestration Atlas of the United States and Canada, Office of Fossil Energy, National Energy Technology Laboratory. http://geoportal.kgs.ku.edu/natcarb/atlas08/gsinks.cfm. Accessed 6 Oct 2010

  41. McCoy ST, Rubin ES (2008) An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int J Greenhouse Gas Control 2(2):219–229

    Article  CAS  Google Scholar 

  42. Brennan ST, Burruss RC, Merrill MD, Freeman PA, Ruppert LF (2010) A probabilistic assessment methodology for the evaluation of geologic carbon dioxide storage: U.S. Geological Survey Open-File Report 2010–1127, 31 p. http://pubs.usgs.gov/of/2010/1127. Accessed 6 Oct 2010

  43. Bradshaw J, Bachu S, Bonijoly D, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenhouse Gas Control 1:62–68

    Article  CAS  Google Scholar 

  44. Birkholzer JT, Oldenburg CM, Zhou Q (2015) CO2 migration and pressure evolution in deep saline aquifers. Int J Greenhouse Gas Control 40:203–220

    Article  CAS  Google Scholar 

  45. US EPA (United States Environmental Protection Agency), Technical Program Overview, Underground injection control regulations, Office of Water 4606, EPA 816-R-02-025, revised July 2001. http://www.epa.gov/safewater/uic/index.html. Accessed 10 Oct 2010

  46. Qi J, Marshall JD, Matson KG (1994) High soil carbon dioxide concentrations inhibit root respiration of Douglas Fir. New Phytol 128:435–441

    Article  Google Scholar 

  47. Farrar CD, Sorey ML, Evans WC, Howie JF, Kerr BD, Kennedy BM, King C-Y, Southon JR (1995) Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest. Nature 376:675–677

    Article  CAS  Google Scholar 

  48. Oldenburg CM, Unger AJA (2003) On leakage and seepage from geologic carbon sequestration sites: unsaturated zone attenuation. Vadose Zone J 2(3):287–296

    Article  CAS  Google Scholar 

  49. Oldenburg CM, Lewicki JL (2005) Leakage and seepage of CO2 from geologic carbon sequestration sites: CO2 migration into surface water. Lawrence Berkeley National Laboratory Report LBNL-57768

    Google Scholar 

  50. Giggenbach WF, Sano Y, Schmincke HU (1991) CO2-rich gases from Lakes Nyos and Monoun, Cameroon; Laacher See, Germany, Dieng, Indonesia, and Mt. Gambier, Australia- variations on a common theme. J Volcanol Geotherm Res 45:311–323

    Article  CAS  Google Scholar 

  51. Robinson AL, Sextro RG, Riley WJ (1997) Soil-gas entry into houses driven by atmospheric pressure fluctuations–the influence of soil properties. Atmos Environ 31(10):1487–1495

    Article  CAS  Google Scholar 

  52. Hanna SR, Steinberg KW (2001) Overview of Petroleum Environmental Research Forum (PERF) dense gas dispersion modeling project. Atmos Environ 35:2223–2229

    Article  CAS  Google Scholar 

  53. Britter RE (1989) Atmospheric dispersion of dense gases. Ann Rev Fluid Mech 21:317–344

    Article  Google Scholar 

  54. Wang S, Jaffe PR (2005) Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations; effect of dissolution kinetics. Energy Convers Manag 45:2833–2848

    Article  Google Scholar 

  55. Apps JA, Zheng L, Zhang Y, Xu T, Birkholzer JT (2010) Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geological storage. Transp Porous Media 82:215–246

    Article  CAS  Google Scholar 

  56. Birkholzer JT, Zhou Q, Tsang C-F (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on the pressure response in stratified systems. Int J Greenhouse Gas Control 3(2):181–194

    Article  CAS  Google Scholar 

  57. Birkholzer JT, Zhou Q (2009) Basin-scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int J Greenhouse Gas Control 3(6):745–756

    Article  CAS  Google Scholar 

  58. Majer EL, Baria R, Stark M, Oates S, Bommer J, Smith B, Asanuma H (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics 36(3):185–222

    Article  Google Scholar 

  59. Majer E, Baria R, Stark M (2008) Protocol for induced seismicity associated with enhanced geothermal systems. Report produced in Task D Annex I (9 April 2008), International Energy Agency-Geothermal Implementing, Agreement (incorporating comments by: C Bromley, W Cumming, A Jelacic and L Rybach) (http://www.iea-gia.org/publications.asp)

  60. Pruess K (2005) Numerical studies of fluid leakage from a geologic disposal reservoir for CO2 show self-limiting feedback between fluid flow and heat transfer. Geophys Res Lett 32(14):L14404

    Article  Google Scholar 

  61. Skinner L (2003) CO2 blowouts: an emerging problem. World Oil 224(1):38–42

    Google Scholar 

  62. Gouveia FJ, Johnson M, Leif RN, Friedmann SJ (2005) Aerometric measurement and modeling of the mass of CO2 emissions from Crystal Geyser, Utah. NETL 4th annual carbon capture and sequestration conference, Alexandria, 2–5 May

    Google Scholar 

  63. Aines RD, Leach MJ, Weisgraber TH, Simpson MD, Friedman SJ, Bruton CJ (2008) Quantifying the potential exposure hazard due to energetic releases from a failed sequestration well. In: Proceedings of the ninth international conference on greenhouse gas control technologies GHGT-9, Washington DC, 16–20 Nov 2008

    Google Scholar 

  64. Pawar RJ, Bromhal GS, Chu S, Dilmore RM, Oldenburg CM, Stauffer PH, Zhang Y, Guthrie GD (2016) The National Risk Assessment Partnership’s integrated assessment model for carbon storage: a tool to support decision making amidst uncertainty. Int J Greenhouse Gas Control 52:175–189

    Article  CAS  Google Scholar 

  65. Keating E, Bacon D, Carroll S, Mansoor K, Sun Y, Zheng L, Harp D, Dai Z (2016) Applicability of aquifer impact models to support decisions at CO2 sequestration sites. Int J Greenhouse Gas Control 52:319–330

    Article  CAS  Google Scholar 

  66. Gasda SE, Bachu S, Celia MA (2004) Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ Geol 46:707–720

    Article  CAS  Google Scholar 

  67. Scherer GW, Celia MA, Prevost J-H, Bachu S, Bruant R, Duguid A, Fuller R, Gasda SE, Radonjic M, Vichit-Vadakan W (2005) Leakage of CO2 through abandoned wells: role of corrosion of cement. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations, vol 2. Elsevier, Kidlington, Oxford, pp 827–848

    Google Scholar 

  68. Shipton ZK, Evans JP, Kirschner D, Kolesar PT (2004) AP Williams and J Heath. Analysis of CO2 leakage through ‘low-permeability’ faults from natural reservoirs. Geol Soc Lond Spec Publ 233:43–58

    Article  CAS  Google Scholar 

  69. Onstott TC (2005) Impact of CO2 injections on deep subsurface microbial ecosystems and potential ramifications for the surface biosphere. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations, vol 2. Elsevier, Kidlington, Oxford, pp 1217–1249

    Google Scholar 

  70. Schuett H, Wigand M, Spangenberg E (2005) Geophysical and geochemical effects of supercritical CO2 on sandstones. In: Thomas DC, Benson SM (eds) Carbon dioxide capture for storage in deep geologic formations, vol 2. Elsevier, Kidlington, Oxford, pp 767–786

    Google Scholar 

  71. Kharaka Y, Cole DR, Hovorka SS, Gunther WD, Knauss KG, Freifield BM (2006) Gas-water-rock interactions in Frio formation following CO2 injection: implications for the storage of greenhouse gases in sedimentary basins. Geology 34:577–580

    Article  CAS  Google Scholar 

  72. Kharaka YK, Thordsen JJ, Kakouros E, Ambats G, Herkelrath WN, Birkholzer JT, Apps JA, Spycher NF, Zheng L, Trautz RC, Rauch HW, Gullickson K (2010) Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environ Earth Sci 60:273–284

    Article  CAS  Google Scholar 

  73. Carroll S (2009) Trace metal release from Frio sandstone reacted with CO2 and 1.5 N NaCl Brine at 60°C. In: Proceedings of the 8th annual conference on carbon capture and sequestration, Pittsburgh, May 2009

    Google Scholar 

  74. Keating EH, Fessenden J, Kanjorski N, Koning DJ, Pawar R (2010) The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration. Environ Earth Sci 60(3):521–536

    Article  CAS  Google Scholar 

  75. Price PN, Oldenburg CM (2009) The consequences of failure should be considered in siting geologic carbon sequestration projects. Int J Greenhouse Gas Control 3(5):658–663

    Article  CAS  Google Scholar 

  76. Wilson EJ, Johnson TL, Keith DW (2003) Regulating the ultimate sink: managing the risks of geologic CO2 storage. Environ Sci Technol 37(16):3476–3483

    Article  CAS  Google Scholar 

  77. Nicot J-P (2008) Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Int J Greenhouse Gas Control 2(4):582–593

    Article  CAS  Google Scholar 

  78. Zhou Q, Birkholzer JT, Mehnert E, Lin Y-F, Zhang K (2009) Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment. Ground Water 48(4):494–514

    Article  Google Scholar 

  79. Nicot J-P, Oldenburg CM, Bryant SL, Hovorka SD (2009) Pressure perturbations from geologic carbon sequestration: area-of-review boundaries and borehole leakage driving forces. Energy Procedia 1(1):47–54

    Article  CAS  Google Scholar 

  80. Oldenburg CM, Rinaldi AP (2011) Buoyancy effects on upward brine displacement caused by CO2 injection. Transp Porous Media 87(2):525–540

    Article  CAS  Google Scholar 

  81. Hollister JC, Weimer RJ (eds) (1968) Geophysical and geological studies of the relationships between the Denver earthquakes and the Rocky Mountain Arsenal well, Q. Colorado School of Mines 63, Golden, 251 pp

    Google Scholar 

  82. Hoover DB, Dietrich JA (1969) Seismic activity during the 1968 test pumping at the Rocky Mountain Arsenal disposal well, circular 613. U.S. Geological Survey, Washington, DC

    Google Scholar 

  83. Herrmann RB, Park S-K, Wang C-Y (1981) The Denver earthquakes of 1967–1968. Bull Seismol Soc Am 71(3):731–745

    Google Scholar 

  84. Cypser DA, Davis SD (1998) Induced seismicity and the potential for liability under U.S. law. Tectonophysics 289(1–3):239–255

    Article  Google Scholar 

  85. Rutqvist J, Birkholzer J, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manag 48(6):1798–1807

    Article  CAS  Google Scholar 

  86. Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 17:185–188

    Google Scholar 

  87. Sminchak J, Gupta N, Byrer C, Bergman P (2003) Aspects of induced seismic activity and deep-well sequestration of carbon dioxide. Environ Geosci 10(2):81–89

    Article  Google Scholar 

  88. Wiprut D, Zoback M (2000) Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea. Geology 28(7):595–598

    Article  CAS  Google Scholar 

  89. Mazzoldi A, Rinaldi AP, Borgia A, Rutqvist J (2012) Induced seismicity within geological carbon sequestration projects: maximum earthquake magnitude and leakage potential from undetected faults. Int J Greenhouse Gas Control 10:434–442

    Article  CAS  Google Scholar 

  90. Zoback MD, Gorelick SM (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci 109(26):10164–10168

    Article  CAS  Google Scholar 

  91. Hovorka SD, Benson SM, Doughty C, Freifeld BM, Sakurai S, Daley TM, Kharaka YK, Holtz MH, Trautz RC, Nance HS, Myer LR, Knauss KG (2006) Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ Geosci 13(2):105–121

    Article  Google Scholar 

  92. Litynski J, Plasynski S, McIlvried HG, Mahoney C, Srivastava RD (2008) The United States Department of Energy’s regional carbon sequestration partnerships program validation phase. Environ Int 34(1):127–138

    Article  Google Scholar 

  93. Allam RJ, Fetvedt JE, Forrest BA, Freed DA (2014) The oxy-fuel, supercritical CO2 Allam cycle: new cycle developments to produce even lower-cost electricity from fossil fuels without atmospheric emissions. In: ASME Turbo Expo 2014: turbine technical conference and exposition (pp. V03BT36A016-V03BT36A016), American Society of Mechanical Engineers

    Google Scholar 

  94. Friedmann SJ, Dooley JJ, Held H, Edenhof O (2006) The low cost of geological assessment for underground CO2 storage: policy and economic implications. Energy Convers Manag 47(13–14):1894–1901

    Article  Google Scholar 

Books and Reviews

  • Baines SJ, Worden RH (eds) (2004) Geologic storage of carbon dioxide. Geol Soc Lond Spec Publ 233:107–247

    Google Scholar 

  • Eide LI (2009) Carbon dioxide capture for storage in deep geological formations, vol 3. CPL Press/BP, Newbury/Berkshire

    Google Scholar 

  • Thomas DC, Benson SM (eds) (2007) Carbon dioxide capture for storage in deep geologic formations-results from the CO2 capture project, vol 2. Elsevier, Kidlington

    Google Scholar 

  • Wilson EJ, Gerard D (eds) (2007) Carbon capture and sequestration integrating technology, monitoring, and regulation. Blackwell Publishing, Ames

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis M. Oldenburg .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC (outside the USA)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Oldenburg, C.M. (2018). Geologic Carbon Sequestration: Sustainability and Environmental Risk. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_200-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_200-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics