Skip to main content

Fission Reactor Physics

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 120 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Fissile :

Fissile isotopes are fissionable by the capture of neutrons of any energy, but are especially easily fissioned by the capture of slow neutrons, for example, U233, U235, Pu239, and Pu241.

Fertile :

Fertile isotopes may be transmuted into fissile isotopes by neutron capture. The naturally occurring fertile isotopes are Th232 and U238.

Critical :

A critical fission reactor is in a steady state, with its neutron population sustained by a chain reaction.

Reactivity :

Reactivity is a dimensionless parameter, which characterizes how far from critical a fission reactor is. If zero, the reactor is critical; if positive, the reactor is supercritical and its neutron population is increasing; if negative, the reactor is subcritical.

Microscopic cross section :

A microscopic cross section is a parameter, with dimensions of area, that is a measure of the probability of a particular reaction resulting from an incident particle on a target nucleus. The macroscopic cross section for this “particular” reaction is the microscopic cross section times the number density of the target nucleus.

Bibliography

Primary Literature

  1. Wheeler JA (1967) Mechanism of fission. Phys Today 20(11):49–52

    Google Scholar 

  2. Bohr N, Wheeler JA (1939) The mechanism of nuclear fission. Phys Rev 56:426

    Article  CAS  Google Scholar 

  3. Ford KW (2009) Wheeler’s work on particles, nuclei, and weapons. Phys Today 62(4):29

    Article  Google Scholar 

  4. Fermi E, Szilard L (1955) Neutronic reactor. US Patent 2,708,656, 17 May 1955

    Google Scholar 

  5. Einstein A (1905) On the electrodynamics of moving bodies. Ann Phys 17:891–921

    Article  Google Scholar 

  6. Frankel S, Metropolis N (1947) Calculations in the liquid-drop model of fission. Phys Rev 72:914

    Article  CAS  Google Scholar 

  7. Kinsey R (1979) Compiler “ENDF/B Summary Doc.” BNL-NCS-17541(ENDF-201), 3rd edn. ENDF/B-V, Brookhaven National Laboratory, Upton

    Google Scholar 

  8. England TR, Wilson WB, Stamatelatos MG (1976) Fission product data for thermal reactors. EPRI-NP-356, Los Alamos Scientific Lab., New Mexico

    Google Scholar 

  9. Parks DE, Nelkin MS, Wikner NF, Beyster JR (1970) Slow neutron scattering and thermalization with reactor applications. Benjamin, New York

    Google Scholar 

  10. MacFarlane RE (1994) The NJOY nuclear data processing system, Version 91, report #LA-12740-M. Los Alamos National Laboratory, New Mexico

    Google Scholar 

  11. Breit G, Wigner E (1936) Capture of slow neutrons. Phys Rev 49:519

    Article  CAS  Google Scholar 

  12. Beckurts KH, Wirtz K (1964) Neutron physics. Springer, Berlin

    Book  Google Scholar 

  13. Larson NM (2006) Updated user’s guide for SAMMY: multilevel R-matrix fits to neutron data using Bayes’s equations, ORNL/TM-9179/R7. Oak Ridge National Lab, OakRidge

    Google Scholar 

  14. Spanier J, Gelbard EM (1969, 2008) Monte carlo principles and neutron transport problems. Dover/Addison-Wesley, New York/Reading

    Google Scholar 

  15. X-5 Monte Carlo Team (2003) MCNP – A general Monte Carlo N-Particle transport code, Version 5, LA-UR-03-1987. Los Alamos National Laboratory, New Mexico

    Google Scholar 

  16. Ondis LA II, Tyburski LJ, Moskowitz BS (2000) RCP01 – a Monte Carlo program for solving neutron and photon transport problems in three dimensional geometry with detailed energy description and depletion capability, B-TM-1638. Bettis Atomic Power Laboratory, West Mifflin

    Google Scholar 

  17. TOP 500 Super Computing Sites. www.Top500.org

  18. Lathrop KA (1972) Discrete-ordinates methods for the numerical solution of the transport equation. Reactor Technol 15:107

    Google Scholar 

  19. Lathrop KA (1971) Remedies for ray effects. Nucl Sci Eng 45(3):355–368

    Article  Google Scholar 

  20. Varga RS (2000) Matrix iterative analysis, 2 revised and expandedth edn. Springer, Heidelberg

    Google Scholar 

  21. Henry A, Dias A, Frances W, Parlos A, Tanker E, Tanker Z (1986) Continued development of nodal methods for nuclear reactor analysis, MIT EL 86–002. Massachusetts Institute of Technology, Cambridge

    Google Scholar 

  22. Buslik AJ, Weinreich WA (1967) Variational calculation of complex natural modes of xenon oscillation, WAPD -TM-673 (LWB-LSBR Development Program). Bettis Atomic Power Laboratory, West Mifflin

    Google Scholar 

  23. Idaho National Laboratory (2009) RELAP5-D. www.INL.gov

  24. Thie JA (1963) Reactor noise (an AEC monograph). Rowman and Littlefield, New York

    Google Scholar 

  25. Osborn RK, Yip S (1966) Foundations of neutron transport theory, Monograph series on nuclear technology. Gordon and Breach, New York

    Google Scholar 

  26. Natelson M, Osborn RK, Shure S (1966) Space and energy effects in reactor fluctuation experiments. J Nucl Energy Parts A/B 20(7):557–585

    Article  Google Scholar 

  27. Hurwitz H Jr, MacMillan DB, Smith JH, Storm ML (1963) Kinetics of low source reactor startups, part I and II. Nucl Sci Eng 15:166

    Article  Google Scholar 

  28. Clark WG, Harris DR, Natelson M, Walter JF (1968) Variances and covariances of neutron and precursor populations in time-varying reactors. Nucl Sci Eng 31:440–457

    Google Scholar 

  29. Sutton TM et al, Knolls Atomic Power Lab., Griesheimer DP et al, Bettis Atomic Power Lab (2007) The MC21 Monte Carlo Code, LM-06K144, Proceedings (on CD-ROM) of the joint international topical meeting on M&C and supercomputing applications, Monterey

    Google Scholar 

  30. Palmiotti G et al, Argonne National Lab (2007) UNIC Ultimate Neutronic Investigation Code, Proceeding (on CD-ROM) of the joint international topical meeting on M&C and supercomputing applications, Monterey

    Google Scholar 

  31. Herman M et al (2008) Covariance evaluation methodology for neutron cross sections, BNL-81525-2008. Brookhaven National Lab, Upton

    Google Scholar 

  32. Belle J, Berman RM (eds) (1984) Chapter 2, Natelson M, Nuclear properties of the thorium fuel cycle. In: Thorium dioxide: properties and nuclear applications. Naval Reactors Office, U. S. Department of Energy, Govt. Printing Office, Washington, DC

    Google Scholar 

  33. Katcoff S (1958) Fission-Product yields from U, Th and Pu. Nucleonics 16(4):78

    CAS  Google Scholar 

Books and Reviews

  • Duderstadt JJ, Hamilton LJ (1976) Nuclear reactor analysis. Wiley, New York

    Google Scholar 

  • Evans RD (1955) The atomic nucleus. McGraw-Hill, New York

    Google Scholar 

  • Henry AF (1975) Nuclear-reactor analysis. MIT Press, Cambridge

    Google Scholar 

  • Kaplan I (1962) Nuclear physics, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  • Krane KS (1988) Introductory nuclear physics. Wiley, New York

    Google Scholar 

  • Mermin ND (2005) It’s about time, understanding Einstein’s relativity. Princeton University Press, Princeton

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Natelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this entry

Cite this entry

Natelson, M. (2016). Fission Reactor Physics. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_18-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_18-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics