Skip to main content

Sustainable Productivity, Heat Tolerance for

  • Living reference work entry
  • Latest version View entry history
  • First Online:
  • 149 Accesses

Glossary

C3 photosynthetic system:

In which the enzyme rubisco is responsible for the initial fixation of carbon dioxide. All tree and vine crops, all cool-season-adapted annual crops, and most warm-season-adapted annual crops have this photosynthetic system.

C4 photosynthetic system:

In which the enzyme PEP carboxylase is responsible for the initial fixation of carbon dioxide. A few tropical grasses (e.g., maize, sorghum, pearl millet, and sugarcane) and a very few warm-season-adapted herbaceous dicotyledonous crops (e.g., grain amaranth) have this photosynthetic system.

CTD:

Plant canopy temperature depression, the number of degrees Celsius the plant canopy is cooler than air temperature.

FACE:

Free-air CO2 enrichment is a system for studying crop responses to elevated [CO2] under natural open-air field conditions.

Harvest index:

The ratio of grain yield to total aboveground biomass at harvest.

Heat resistance:

A cultivar is heat resistant if it has greater yields of economic...

This is a preview of subscription content, log in via an institution.

Bibliography

Primary Literature

  1. Hall AE (2001) Crop responses to environment. CRC, Boca Raton

    Google Scholar 

  2. Hall AE (1992) Breeding for heat tolerance. Plant Breed Rev 10:129–168

    Google Scholar 

  3. Vose RS, Easterling DR, Gleason B (2005) Maximum and minimum temperature trends for the globe: an update through 2004. Geophys Res Lett 32:L23822

    Article  Google Scholar 

  4. Nielsen CL, Hall AE (1985) Responses of cowpea (Vigna unguiculata (L.) Walp.) in the field to high night air temperatures during flowering. I. Thermal regimes of production regions and field experimental system. Field Crop Res 10:167–179

    Article  Google Scholar 

  5. Nielsen CL, Hall AE (1985) Responses of cowpea (Vigna unguiculata (L.) Walp.) in the field to high night air temperatures during flowering. II. Plant responses. Field Crop Res 10:181–196

    Article  Google Scholar 

  6. Eastin JD, Castleberry RM, Gerik TJ, Hutquist JH, Mahalakshmi V, Ogunela VB, Rice JR (1983) Physiological aspects of high temperature and water stress. In: Raper CD, Kramer PJ (eds) Crop reactions to water and temperature stresses in humid, temperate climates. Westview Press, Boulder

    Google Scholar 

  7. Moya TB, Ziska LH, Namuco OS, Olszyk D (1998) Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature. Glob Chang Biol 4:645–656

    Article  Google Scholar 

  8. Matsui T, Namuco OS, Ziska LH, Horie T (1997) Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crop Res 51:213–219

    Article  Google Scholar 

  9. Ismail AM, Hall AE (1998) Positive and potential negative effects of heat-tolerance genes in cowpea lines. Crop Sci 38:381–390

    Article  Google Scholar 

  10. Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Kush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101:9971–9975

    Article  CAS  Google Scholar 

  11. Xiong D, Ling X, Huang J, Peng S (2017) Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environ Exp Bot 141:1–9

    Article  Google Scholar 

  12. Warrag MOA, Hall AE (1984) Reproductive responses of cowpea (Vigna unguiculata (L.) Walp.) to heat stress. II. Responses to night air temperature. Field Crop Res 8:17–33

    Article  Google Scholar 

  13. Warrag MOA, Hall AE (1984) Reproductive responses of cowpea (Vigna unguiculata (L.) Walp.) to heat stress. I. Responses to soil and day air temperatures. Field Crop Res 8:3–16

    Article  Google Scholar 

  14. Warrag MOA, Hall AE (1983) Reproductive responses of cowpea to heat stress: genotypic differences in tolerance to heat at flowering. Crop Sci 23:1088–1092

    Article  Google Scholar 

  15. Ahmed FE, Hall AE, DeMason DA (1992) Heat injury during floral development of cowpea (Vigna unguiculata, Fabaceae). Am J Bot 79:784–791

    Article  Google Scholar 

  16. Mutters RG, Hall AE (1992) Reproductive responses of cowpea to high temperatures during different night periods. Crop Sci 32:202–206

    Article  Google Scholar 

  17. Mutters RG, Ferreira GR, Hall AE (1989) Proline content of the anthers and pollen of heat-tolerant and heat-sensitive cowpea subjected to different temperatures. Crop Sci 29:1497–1500

    Article  CAS  Google Scholar 

  18. Dundas I, Saxena KB, Byth DE (1981) Microsporogenesis and anther wall development in male-sterile and fertile lines of pigeon pea (Cajanus cajan [L.] Millsp.) Euphytica 30:431–435

    Article  Google Scholar 

  19. Nakishima H, Horner HT, Palmer RG (1984) Histological features of anthers from normal and ms3 mutant soybean. Crop Sci 24:735–739

    Article  Google Scholar 

  20. Mutters RG, Hall AE, Patel PN (1989) Photoperiod and light quality effects on cowpea floral development at high temperatures. Crop Sci 29:1501–1505

    Article  Google Scholar 

  21. Ehlers JD, Hall AE (1998) Heat tolerance of contrasting cowpea lines in short and long days. Field Crop Res 55:11–21

    Article  Google Scholar 

  22. Ishimaru T, Hirabayashi H, Ida M, Takai T, San-Oh YA, Yoshinaga S, Ando I, Ogawa T, Kondo M (2010) A genetic resource for early-morning flowering trait of wild rice Oryza officinalis to mitigate high temperature-induced spikelet sterility at anthesis. Ann Bot 106:515–520

    Article  Google Scholar 

  23. Ziguo Z, Hanlai Z (1992) Fertility alteration in photoperiod-sensitive genic male sterile (PGMS) rice in response to photoperiod and temperature. Int Rice Res Newsl 17:7–8

    Google Scholar 

  24. Mohammed AR, Tarpley L (2009) High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility. Agric Forest Meteor 149:999–1008

    Article  Google Scholar 

  25. Ziska LH, Manalo PA (1996) Increasing night temperature can reduce seed set and potential yield of tropical rice. Aust J Plant Physiol 23:791–794

    Article  Google Scholar 

  26. Gross Y, Kigel J (1994) Differential sensitivity to high temperatures of stages in the reproductive development of common bean (Phaseolus vulgaris L.) Field Crops Res 36:201–212

    Article  Google Scholar 

  27. Vara Prasad PV, Craufurd PQ, Summerfield RJ (1999) Sensitivity of peanut to timing of heat stress during reproductive development. Crop Sci 39:1352–1357

    Article  Google Scholar 

  28. Vara Prasad PV, Craufurd PQ, Summerfield RJ (1999) Fruit number in relation to pollen production and viability in groundnut exposed to short periods of heat stress. Ann Bot 84:381–386

    Article  Google Scholar 

  29. Peet MM, Sato S, Gardner R (1998) Comparing heat stress on male-fertile and male-sterile tomatoes. Plant Cell Environ 21:225–231

    Article  Google Scholar 

  30. Wien HC (1997) Pepper. In: Wien HC (ed) The physiology of vegetable crops. CAB International, Wallingford

    Google Scholar 

  31. Singh RP, Prasad PVV, Sunita K, Giri SN, Reddy KR (2007) Influence of high temperature and breeding for heat tolerance in cotton: a review. Adv Agron 93:313–385

    Article  CAS  Google Scholar 

  32. Nava GA, Damalgo GA, Bergamaschi H, Paniz R, Pires dos Santos R, Marodin GAB (2009) Effect of high temperatures in the pre-blooming and blooming periods on ovule formation, pollen grains and yield of ‘Granada’ peach. Sci Hortic 122:37–44

    Article  Google Scholar 

  33. Reynolds MP, Ewing EE, Owens TG (1990) Photosynthesis at high temperature in tuber-bearing Solanum species. Plant Physiol 93:791–797

    Article  CAS  Google Scholar 

  34. Reynolds MP, Ewing EE (1989) Effects of high air and soil temperature stress on growth and tuberization in Solanum tuberosum. Ann Bot 64:241–247

    Article  Google Scholar 

  35. Kim Y-U, Seo B-S, Choi D-H, Ban H-Y, Lee B-W (2017) Impact of high temperatures on the marketable tuber yield and related traits of potato. European. J Agron 89:46–52

    Google Scholar 

  36. Reynolds MP, Balota M, Delgado MIB, Amani I, Fischer RA (1994) Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Aust J Plant Physiol 21:717–730

    Article  Google Scholar 

  37. Sharma DK, Andersen SB, Ottosen C-O, Rosenqvist E (2012) Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence. Funct Plant Biol 39:936–947

    Article  CAS  Google Scholar 

  38. Dawson IA, Wardlaw IF (1989) The tolerance of wheat to high temperatures during reproductive growth. III. Booting to anthesis. Aust J Agric Res 40:965–980

    Article  Google Scholar 

  39. Dolferus R, Xuemei J, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  CAS  Google Scholar 

  40. Hall AE, Allen LH (1993) Designing cultivars for the climatic conditions of the next century. In: Buxton DR, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (eds) International crop science I. Crop Science Society of America, Madison

    Google Scholar 

  41. Hall AE, Ziska LH (2000) Crop breeding strategies for the 21st century. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CAB International, Wallingford

    Google Scholar 

  42. Gifford RM (1986) Partitioning of photoassimilate in the development of crop yield. In: Luca WJ, Cronshaw J (eds) Phloem transport. Alan R. Liss, New York

    Google Scholar 

  43. Kimball BA (1983) Carbon dioxide and agricultural yield: an assembly and analysis of 430 prior observations. Agron J 75:779–788

    Article  Google Scholar 

  44. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  Google Scholar 

  45. Allen LH (1994) Carbon dioxide increase: direct impacts on crops and indirect effects mediated through anticipated climate changes. In: Boote KJ, Bennett JM, Sinclair TR, Paulsen GM (eds) Physiology and determination of crop yield. Crop Science Society of America, Madison

    Google Scholar 

  46. Poorter H (1993) Interspecific variation in the growth responses of plants to an elevated ambient CO2 concentration. Vegetatio 104(105):77–97

    Article  Google Scholar 

  47. Conroy JP, Seneweera S, Basra AS, Rogers G, Nissen-Wooler B (1994) Influence of rising atmospheric CO2 concentrations and temperature on growth, yield and grain quality of cereal crops. Aust J Plant Physiol 21:741–758

    Article  Google Scholar 

  48. Baker JT, Allen LH, Boote KJ, Jones P, Jones JW (1989) Responses of soybean to air temperature and carbon dioxide concentration. Crop Sci 29:98–105

    Article  Google Scholar 

  49. Reddy KR, Hodges HF, McKinion JM, Wall GW (1992) Temperature effects on Pima cotton growth and development. Agron J 84:237–243

    Article  Google Scholar 

  50. Reddy KR, Hodges HF, McKinion JM (1995) Carbon dioxide and temperature effects on Pima cotton development. Agron J 87:820–826

    Article  Google Scholar 

  51. Reddy KR, Hodges HF, McKinion JM (1997) A comparison of scenarios for the effect of global climate change on cotton growth and yield. Aust J Plant Physiol 24:707–713

    Article  Google Scholar 

  52. Baker JT, Allen LH (1993) Contrasting crop species response to CO2 and temperature: rice, soybean and citrus. Vegetatio 104(105):239–260

    Article  Google Scholar 

  53. Lin W, Ziska LH, Namuco OS, Bai K (1997) The interaction of high temperature and elevated CO2 on photosynthetic acclimation of single leaves of rice in situ. Physiol Plant 99:178–184

    Article  CAS  Google Scholar 

  54. Ehlers JD, Hall AE (1996) Genotypic classification of cowpea based on responses to heat and photoperiod. Crop Sci 36:673–679

    Article  Google Scholar 

  55. Ahmed FE, Hall AE, Madore MA (1993) Interactive effects of high temperature and elevated carbon dioxide concentration on cowpea (Vigna unguiculata (L.) Walp.) Plant Cell Environ 16:835–842

    Article  CAS  Google Scholar 

  56. Rawson HM (1995) Yield responses of two wheat genotypes to carbon dioxide and temperature in field studies using temperature gradient tunnels. Aust J Plant Physiol 22:23–32

    Article  Google Scholar 

  57. Lawlor DW, Mitchell RAC (2000) Crop ecosystems responses to climate change: wheat. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CAB International, Wallingford

    Google Scholar 

  58. Peet MM, Wolfe DW (2000) Crop ecosystem responses to climate change: vegetable crops. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CAB International, Wallingford

    Google Scholar 

  59. Ehlers JD, Hall AE, Patel PN, Roberts PA, Matthews WC (2000) Registration of ‘California Blackeye 27’ cowpea. Crop Sci 40:854–855

    Article  Google Scholar 

  60. Hall AE (1993) Physiology and breeding for heat tolerance in cowpea, and comparison with other crops. In: Kuo CG (ed) Adaptation of food crops to temperature and water stress. Asian Vegetable Research and Development Center, Shanhua. Publication No 93-410

    Google Scholar 

  61. Hall AE (2011) Breeding cowpea for future climates. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley-Blackwell, Ames

    Google Scholar 

  62. Marfo KO, Hall AE (1992) Inheritance of heat tolerance during pod set in cowpea. Crop Sci 32:912–918

    Article  Google Scholar 

  63. Blum A (1988) Plant breeding for stress environments. CRC, Boca Raton

    Google Scholar 

  64. Thiaw S, Hall AE (2004) Comparison of selection for either leaf-electrolyte-leakage or pod set in enhancing heat tolerance and grain yield of cowpea. Field Crop Res 86:239–253

    Article  Google Scholar 

  65. Padi FK, Denwar NN, Kaleem FZ, Salifu AB, Clottey VA, Kombiok J, Haruna M, Hall AE, Marfo KO (2004) Registration of ‘Apagbaala’ cowpea. Crop Sci 44:1486

    Article  Google Scholar 

  66. Padi FK, Denwar NN, Kaleem FZ, Salifu AB, Clottey VA, Kombiok J, Haruna M, Hall AE, Marfo KO (2004) Registration of ‘Marfo-Tuya’ cowpea. Crop Sci 44:1486–1487

    Article  Google Scholar 

  67. Hall AE, Cisse N, Thiaw S, Elawad HOA, Ehlers JD, Ismail AM, Fery RL, Roberts PA, Kitch LW, Murdock LL, Boukar O, Phillips RD, McWatters KH (2003) Development of cowpea cultivars and germplasm by the bean/cowpea CRSP. Field Crop Res 82:103–134

    Article  Google Scholar 

  68. Hall AE (2004) Comparative ecophysiology of cowpea, common bean and peanut. In: Nguyen HT, Blum A (eds) Physiology and biotechnology integration for plant breeding. Marcel Decker, New York

    Google Scholar 

  69. Dickson MH (1993) Breeding for heat tolerance in green beans and broccoli. In: Kuo CG (ed) Adaptation of food crops to temperature and water stress. Asian Vegetable Research and Development Center, Shanhua, Publication no 93-410

    Google Scholar 

  70. Patel PN, Hall AE (1986) Registration of snap-cowpea germplasms. Crop Sci 26:207–208

    Article  Google Scholar 

  71. Beaver JS, Miklas PN, Echavez-Badel R (1999) Registration of ‘Rosada Nativa’ pink bean. Crop Sci 39:1257

    Google Scholar 

  72. Beaver JS, Rosas JC, Myers J, Acosta J, Kelly JD, Nchimbi-Msolla S, Misangu R, Bokosi J, Temple S, Arnaud-Santana E, Coyne DP (2003) Contributions of the bean/cowpea CRSP to cultivar and germplasm development in common bean. Field Crop Res 82:87–102

    Article  Google Scholar 

  73. Opeña RT, Chen JT, Kuo CG, Chen HM (1993) Genetic and physiological aspects of tropical adaptation in tomato. In: Kuo CG (ed) Adaptation of food crops to temperature and water stress. Asian Vegetable Research and Development Center, Shanhua. Publication No 93-410

    Google Scholar 

  74. Stevens MA (1979) Breeding tomatoes for processing. In: Cowell R (ed) Proceedings first international symposium tropical tomato. Asian Vegetable Research and Development Center, Shanua

    Google Scholar 

  75. Scott JW, Jones JB, Somodi GC, Chellemi DO, Olson SM (1995) ‘Neptune’, a heat-tolerant, bacterial-wilt-tolerant tomato. Hortscience 30:641–642

    Google Scholar 

  76. Scott JW, Olson SM, Howe TK, Stoffella PJ, Bartz JA, Bryan HH (1995) ‘Equinox’ heat-tolerant hybrid tomato. Hortscience 30:647–648

    Google Scholar 

  77. Scott JW, Olson SM, Bryan HH, Bartz JA, Maynard DN, Stoffella PJ (2006) ‘Solar Fire’ hybrid tomato: Fla. 7776 tomato breeding line. Hortscience 41:1504–1505

    Google Scholar 

  78. Wasserman R, Jagadish SVK, Heuer S, Ismail A, Redona E, Serraj R, Singh RK, Howell G, Pathak H, Sumfleth K (2009) Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Adv Agron 101:59–67

    Article  Google Scholar 

  79. Mackill DJ, Coffman WR (1983) Inheritance of high temperature tolerance and pollen shedding in a rice cross. Z Pflanzenzüchtg 91:61–69

    Google Scholar 

  80. Kittock DL, Turcotte EL, Hofman WC (1988) Estimation of heat tolerance improvement in recent American Pima cotton cultivars. J Agron Crop Sci 161:305–309

    Article  Google Scholar 

  81. Lu Z, Percy RG, Qualset CO, Zeiger E (1998) Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures. J Exp Bot 49:453–460

    Article  Google Scholar 

  82. Singh RP, Prasad PVV, Sharma AK, Reddy KR (2011) Impacts of high-temperature stress and potential opportunities for breeding. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley-Blackwell, Ames

    Google Scholar 

  83. Trethowan RM, Mahmood T (2011) Genetic options for improving the productivity of wheat in water-limited and temperature-stressed environments. In: Yadav SS, Redden RJ, Hatfield JL, Lotze-Campen H, Hall AE (eds) Crop adaptation to climate change. Wiley-Blackwell, Ames

    Google Scholar 

  84. Amani I, Fischer RA, Reynolds MP (1996) Canopy temperature depression associated with yield of irrigated spring wheat cultivars in a hot climate. J Agron Crop Sci 176:119–129

    Article  Google Scholar 

  85. Reynolds MP, Singh RP, Ibrahim A, Ageeb OAA, Larqué-Saavedra A, Quick JS (1998) Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100:85–94

    Article  Google Scholar 

  86. Blum A, Klueva N, Nguyen HT (2001) Wheat thermotolerance is related to yield under heat stress. Euphytica 117:117–123

    Article  Google Scholar 

  87. Behl RK, Nainawatee HS, Singh KP (1993) High temperature tolerance in wheat. In: Buxton DR, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (eds) International crop science I. Crop Science Society of America, Madison

    Google Scholar 

  88. Ismail AM, Hall AE (2000) Semidwarf and standard-height cowpea responses to row spacing in different environments. Crop Sci 40:1618–1623

    Article  Google Scholar 

  89. Ismail AM, Hall AE (1999) Reproductive-stage heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Sci 39:1762–1768

    Article  Google Scholar 

  90. Ismail AM, Hall AE, Close TJ (1999) Allelic variation of a dehydrin gene co-segregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci 96:13566–13570

    Article  CAS  Google Scholar 

  91. El-Kholy AS, Hall AE, Mohsen AA (1997) Heat and chilling tolerance during germination and heat tolerance during flowering are not associated in cowpea. Crop Sci 37:456–463

    Article  Google Scholar 

  92. Grover A, Mittal D, Negi M, Lavania D (2013) Generating high temperature tolerant transgenic plants: achievements and challenges. Plant Sci 205–206(38–47):25

    Google Scholar 

  93. Yarwood CE (1961) Acquired heat tolerance of leaves to heat. Science 134:941–942

    Article  CAS  Google Scholar 

  94. Cheikh N, Miller PR, Kishore G (2000) Role of biotechnology in crop productivity in a changing environment. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CAB International, Wallingford

    Google Scholar 

  95. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  96. Lobell DB, Field CB, Cahill KN, Bonfils C (2006) Impacts of future climate change on California perennial crop yields: model predictions with climate and crop uncertainties. Agric Forest Meteor 141:208–218

    Article  Google Scholar 

  97. Baldocchi D, Wong S (2008) Accumulated winter chill is decreasing in the fruit growing regions of California. Clim Chang 87:S153–S166

    Article  Google Scholar 

  98. Luedling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS One 6(5):e20155

    Article  Google Scholar 

  99. Vierling E (1991) The roles of heat-shock proteins in plants. Annu Rev Plant Physiol 42:579–620

    Article  CAS  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony E. Hall .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hall, A.E. (2018). Sustainable Productivity, Heat Tolerance for. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_158-4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_158-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Sustainable Productivity, Heat Tolerance for
    Published:
    15 February 2018

    DOI: https://doi.org/10.1007/978-1-4939-2493-6_158-4

  2. Original

    Sustainable Productivity, Heat Tolerance for
    Published:
    13 March 2015

    DOI: https://doi.org/10.1007/978-1-4939-2493-6_158-3