Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Fuel Cell Comparison to Alternate Technologies

  • Julia Kunze-LiebhäuserEmail author
  • Odysseas Paschos
  • Sethu Sundar Pethaiah
  • Ulrich Stimming
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_157-3

Glossary

Battery

A battery or voltaic cell consists of one or more electrochemical cells which store and convert chemical energy into electric energy.

Electrochemical capacitor

An electrochemical capacitor (supercapacitor, ultracapacitor, or double-layer capacitor) is an electrochemical device that can store and convert energy by charging/discharging the electrochemical double-layer of two electrodes with large surface areas and thus large double layer capacitances.

Electromobility

Electromobility is a mobility concept in which electric vehicles instead of vehicles powered by internal combustion engines are used.

Fuel cell

A fuel cell is an electrochemical cell that can convert the chemical energy stored in a given fuel into electrical energy.

Ragone plot

A Ragone plot compares the performances of different energy storing devices by plotting power densities or specific power [W/kg] versus energy densities or specific energy [Wh/kg].

Definition of the Subject and Its Importance

The...

This is a preview of subscription content, log in to check access.

Bibliography

  1. 1.
    DOE/EIA-0484 (2010) National energy information center, EI-30, U.S. Energy Information Administration, Forrestal Building, Washington, DC 20585Google Scholar
  2. 2.
    Kunze-Liebhäuser J, Stimming U (2009) Electrochemical versus heat engine energy technology: a tribute to Wilhelm Ostwald’s visionary statements. Angew Chem Int Ed 48:9230–9237CrossRefGoogle Scholar
  3. 3.
    Black WZ, Hartley JG (1985) Thermodynamics. Harper & Row, New York, pp 339–429Google Scholar
  4. 4.
    Sundar Pethaiah S, Paruthimal Kalaignan G, Sasikumar G, Ulaganathan M, Swaminathan V (2013) Development of nano-catalyzed membrane for PEM fuel cell applications. J Solid State Electrochem.  https://doi.org/10.1007/s10008-013-2211-3
  5. 5.
    Sundar Pethaiah S, Subiantoro A, Stimming U (2013) The application of intermediate temperature fuel cell for auxiliary power unit of the air conditioning system in an electric vehicle. In: 223rd ECS meeting, TorontoCrossRefGoogle Scholar
  6. 6.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 45:652–657CrossRefGoogle Scholar
  7. 7.
    Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498CrossRefGoogle Scholar
  8. 8.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  9. 9.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269CrossRefGoogle Scholar
  10. 10.
    Jacoby M (2010) Rechargeable metal-air batteries. Chem Eng News 88:29–31CrossRefGoogle Scholar
  11. 11.
    Cairns EJ, Albertus P (2010) Batteries for electric and hybrid-electric vehicles. Annu Rev Chem Biomol Eng 1:299–320CrossRefGoogle Scholar
  12. 12.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1:2193–2203CrossRefGoogle Scholar
  13. 13.
    Zhang HM, Zhang Y, Liu ZH, Wang XL (2009) Redox flow battery technology. Prog Chem 21:2333–2340Google Scholar
  14. 14.
    De Leon CP, Frias-Ferrer A, Gonzalez-Garcia J, Szanto DA, Walsh FC (2006) Redox flow cells for energy conversion. J Power Sources 160:716–732CrossRefGoogle Scholar
  15. 15.
    Weber AZ, Mench MM, Meyers JP et al (2011) Redox flow batteries: a review. J Appl Electrochem 41:1137–1164CrossRefGoogle Scholar
  16. 16.
    Ponce de Leon C, Friasferrer A, Gonzalezgarcia J et al (2006) Redox flow cells for energy conversion. J Power Sources 160:716–732CrossRefGoogle Scholar
  17. 17.
    Skyllas-Kazacos M, Grossmith F (1987) Efficient vanadium redox flow cell. J Electrochem Soc 134:2950–2954CrossRefGoogle Scholar
  18. 18.
    Friedl J, Bauer C, Rinaldi A, Stimming U (2013) Electron transfer kinetics of the VO2+/VO2+-reaction on multi-walled carbon nanotubes. Carbon 63:228–239CrossRefGoogle Scholar
  19. 19.
    Li L, Kim S, Wang W et al (2010) A stable vanadium redox-flow battery with high energy density for large-scale energy storage. Adv Energy Mater 1:394–400CrossRefGoogle Scholar
  20. 20.
    Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA et al (2011) Progress in flow battery research and development. J Electrochem Soc 158:R55–R79CrossRefGoogle Scholar
  21. 21.
    Zhang M, Moore M, Watson JS et al (2012) Capital cost sensitivity analysis of an all-vanadium redox-flow battery. J Electrochem Soc 159:A1183–A1188CrossRefGoogle Scholar
  22. 22.
    Cluzel VC, Dougles C (2012) Final Report for the Committee on Climate Change. Cost and performance of EV batteries. CambridgeGoogle Scholar
  23. 23.
    Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313:1760–1763CrossRefGoogle Scholar
  24. 24.
    Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim B-S, Hammond PT, Shao-Horn Y (2010) High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol 5:531–537CrossRefGoogle Scholar
  25. 25.
    Gerischer H, Tributsch H (1968) Electrochemical studies on the spectral sensitization of ZnO single crystals Ber unsenges. Phys Chem 72:437–445Google Scholar
  26. 26.
    Hauffe K, Danzmann HJ, Pusch H, Range J, Volz H (1970) New experiments on the sensitization of zinc oxide by means of the electrochemical cell technique. J Electrochem Soc 117:993–999CrossRefGoogle Scholar
  27. 27.
    Myamlin VA, Pleskov YV (1967) Electrochemistry of semiconductors. Plenum, New YorkCrossRefGoogle Scholar
  28. 28.
    Gratzel M (2003) Applied physics: solar cells to dye for. Nature 421:586–587CrossRefGoogle Scholar
  29. 29.
    Gratzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A 164:3–14CrossRefGoogle Scholar
  30. 30.
    Hagfeldt A, Gratzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68CrossRefGoogle Scholar
  31. 31.
    Hagfeldt A, Gratzel M (2000) Molecular photovoltaics. Acc Chem Res 33:269–277CrossRefGoogle Scholar
  32. 32.
    Ellis AB, Kaiser SW, Wrighton MS (1976) Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes. J Am Chem Soc 98:1635–1637CrossRefGoogle Scholar
  33. 33.
    Ellis AB, Bolts JM, Wrighton MS (1977) Characterization of n-type semiconducting indium phosphide photoelectrodes. J Electrochem Soc 124:1603–1607CrossRefGoogle Scholar
  34. 34.
    Hodes G, Manassen J, Cahen D (1976) Photoelectrochemical energy onversion and storage using polycrystalline chalcogenide electrodes. Nature 261:403–404CrossRefGoogle Scholar
  35. 35.
    Miller B, Heller A (1976) Semiconductor liquid junction solar cells based on anodic sulfide films. Nature 262:680–681CrossRefGoogle Scholar
  36. 36.
    Wurfel U, Peters M, Hinsch A (2008) Detailed experimental and theoretical investigation of the electron transport in a dye solar cell by means of a three-electrode configuration. J Phys Chem C 112:1711–1720CrossRefGoogle Scholar
  37. 37.
    Chen C, Wang M, Li J, Pootrakulchote N, Alibabaei L, Ngoc-le C, Decoppet J-D, Tsai J-H, Grätzel C, C-G W, Zakeeruddin SM, Grätzel M (2009) Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS Nano 3:3103CrossRefGoogle Scholar
  38. 38.
    Gratzel M (2007) Photovoltaic and photoelectrochemical conversion of solar energy. Philos Trans R Soc A 365:993–1005CrossRefGoogle Scholar
  39. 39.
    Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phys Chem Lett 1:2204–2219CrossRefGoogle Scholar
  40. 40.
    Wang MQ (2007) Greenhouse gases, regulated emissions, and energy use in transportation (GREET). The Argonne National Laboratory, Argonne. www.transportation.anl.gov/modeling_simulation/GREET/index.html

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Julia Kunze-Liebhäuser
    • 1
    Email author
  • Odysseas Paschos
    • 2
  • Sethu Sundar Pethaiah
    • 3
  • Ulrich Stimming
    • 4
  1. 1.Institute of Physical Chemistry, University of InnsbruckInnsbruckAustria
  2. 2.BMW AGMunichGermany
  3. 3.Gashubin Engineering Private LimitedSingaporeSingapore
  4. 4.Newcastle University, Chemistry – School of Natural and Environmental SciencesNewcastle upon TyneUK