Skip to main content

PEM Fuel Cell Materials: Costs, Performance and Durability

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Bipolar plate:

Forms the connection between MEAs in a fuel cell stack. The bipolar plate includes the gas flow channels and may also include cooling channels. Bipolar plates are also called flow plates.

Degradation:

The gradual loss of performance. Irreversible degradation is due to change of materials properties. Reversible degradation can be caused by non-optimal operating conditions. Quantitatively, the degradation can be expressed as a voltage decay rate.

Durability:

The capability of the fuel cell to operate in the operating window with limited loss of performance.

Lifetime:

The number of hours that a fuel cell can be operated in the operating window with a pre-defined performance loss relative to the initial performance.

MEA:

Membrane electrode assembly is the result of joining two electrodes and the electrolytic membrane together. Usually, the gas diffusion media are considered to be part of the MEA.

Operating window:

The range of conditions in which the PEMFC can be...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  1. US Department of Energy (2007) Multi-year research, development and demonstration plan, hydrogen, fuel cells & infrastructure technologies program. DOE/GO-102007-2430

    Google Scholar 

  2. de Bruijn FA, Makkus RC, Mallant RKAM, Janssen GJM (2007) Materials for state-of-the-art PEM fuel cells, and their suitability for operation above 100°C. In: Zhao T, Kreuer KD, Nguyen T (eds) Advances in fuel cells. Elsevier, Amsterdam

    Google Scholar 

  3. Zawodzinski TA Jr, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water uptake by and transport through Nafion® 117 membranes. J Electrochem Soc 140:1041–1047

    Article  CAS  Google Scholar 

  4. Gasteiger HA, Panels JE, Yan SG (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127:162–171

    Article  CAS  Google Scholar 

  5. TIAX LLC (2003) Platinum availability and economics for PEMFC commercialization, DOE report number: DE-FC04-01AL67601

    Google Scholar 

  6. Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cell Part I. The cathode challenges. Platin Met Rev 46:3–14

    CAS  Google Scholar 

  7. Heinzel A, Mahlendorf F, Niemzig O, Kreuz C (2004) Injection moulded low cost bipolar plates for PEM fuel cells. J Power Sources 131:35–40

    Article  CAS  Google Scholar 

  8. Stumper J, Stone C (2008) Recent advances in fuel cell technology at Ballard. J Power Sources 176:468–476

    Article  CAS  Google Scholar 

  9. Janssen GJM (2001) A phenomenological model of water transport in a proton-exchange-membrane fuel cell. J Electrochem Soc 148:A1313–A1323

    Article  CAS  Google Scholar 

  10. Weber AZ, Newman J (2005) Effects of microporous layers in polymer electrolyte fuel cells. J Electrochem Soc 152:A677–A688

    Article  CAS  Google Scholar 

  11. Hurvitz N (2008) An in-situ, real-time gas humidity sensor for fuel cells, fuel cells durability and performance. The Knowledge Press, Brookline, pp 231–244

    Google Scholar 

  12. Satayapal S (2009) Overview of hydrogen and fuel cell activities, 27-10-2009. Fuel Cells & Hydrogen Joint Undertaking Stakeholders General Assembly, Brussels

    Google Scholar 

  13. Ernst WD, Stone C, Wheeler D (2009) Fuel cell system cost for transportation-2008 Cost Estimate, NREL/BK-6A1-45457

    Google Scholar 

  14. Cleghorn SJC, Mayfield DK, Moore DA, Moore JC, Rusch G, Sherman TW, Sisofo NT, Beuscher U (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J Power Sources 158:446–454

    Article  CAS  Google Scholar 

  15. Yamazaki O, Oomori Y, Shintaku H, Tabata T (2005) Evaluation study of PEFC single cell at Osaka gas, 2005 fuel cell seminar abstracts. Courtesy Associates, Washington, DC

    Google Scholar 

  16. Huth H (2008) Volkswagen’s high temperature polymer electrolyte fuel cell. In: 4th annual international conference fuel cells durability and performance, Cambridge, 9-12-2008

    Google Scholar 

  17. Perti D (2009) DuPont next generation membrane and membrane electrode assembly development. In: FC Expo 2009, Tokyo

    Google Scholar 

  18. Johnson WB, Bazkowski C, Berta T, Crum M, Greene L, Kunitz B, Mao H, Priester S, Rudolph J, Ryan K, Seligura C (2011) MEA degradation issues opportunities and challenges using thin, reinforced polymer electrolyte membranes. In: 2nd international workshop on degradation issues on fuel cells, Thessaloniki, 21–23 Sept 2011

    Google Scholar 

  19. Hicks MT (2006) MEA and stack durability for PEM fuel cells. DOE hydrogen program FY 2006 annual progress report, Washington, DC pp 722–726

    Google Scholar 

  20. Sone Y, Ekdunge P, Simonsson D (1996) Proton conductivity of Nafion 117 as measured by a four-electrode AC impedance method. J Electrochem Soc 143:1254–1259

    Article  CAS  Google Scholar 

  21. Maalouf M, Pyle B, Sun CN, Wu D, Paddison SJ, Schaberg M, Emery M, Lochhaas KH, Hamrock SJ, Ghassemi H, Zawodzinski TA (2009) Proton exchange membranes for high temperature fuel cells: equivalent weight and end group effects on conductivity. ECS Trans 25:1473–1481

    Article  CAS  Google Scholar 

  22. Aquivion PFSA mebrane performance data. http://www.solvaysites.com/sites/solvayplastics/EN/specialty_polymers/Specialties/Pages/Aquivion_PFSA.aspx

  23. Hamrock S (2009) Membranes and MEAs for dry, hot operating conditions. DOE hydrogen programme FY 2009 annual progress report, Washington, DC pp 1042–1047

    Google Scholar 

  24. Cleghorn S, Griffith M, Liu W, Pires J, Kolde J (2007) Gore’s development path to a commercial automotive membrane electrode assembly. 2007 fuel cell seminar. Courtesy Associates, Washington, DC

    Google Scholar 

  25. Zhang YM, Li L, Tang J, Bauer B, Zhang W, Gao HR, Taillades-Jacquin M, Jones DJ, Roziere J, Lebedeva N, Mallant R (2009) Development of covalently cross-linked and composite perfluorosulfonic acid membranes. ECS Trans 25:1469–1472

    Article  CAS  Google Scholar 

  26. Jones DJ, Rozière J (2003) Inorganic/organic composite membranes. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 447–455

    Google Scholar 

  27. Kerres J (2005) Blended and cross-linked Ionomer membranes for application in membrane fuel cells. Fuel Cells 5:230–240

    Article  CAS  Google Scholar 

  28. Aoki M, Asano N, Miyatake K, Uchida H, Watanabe M (2006) Durability of sulfonated polyimide membrane evaluated by long-term polymer electrolyte fuel cell operation. J Electrochem Soc 153:A1154–A1158

    Article  CAS  Google Scholar 

  29. de Araujo CC, Kreuer KD, Schuster M, Portale G, Mendil-Jakani H, Gebel G, Maier J (2009) Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features. Phys Chem Chem Phys 11:3305–3312

    Article  CAS  Google Scholar 

  30. FumaPem – High performance membranes for fuel cells. Products section of company website www.fumatech.com

  31. Herz HG, Kreuer KD, Maier J, Scharfenberger G, Schuster MFH, Meyer WH (2003) New fully polymeric proton solvents with high proton mobility. Electrochim Acta 48:2165–2171

    Article  CAS  Google Scholar 

  32. Scharfenberger G, Meyer WH, Wegner G, Schuster M, Kreuer KD, Maier J (2006) Anhydrous polymeric proton conductors based on imidazole functionalized polysiloxane. Fuel Cells 6:237–250

    Article  CAS  Google Scholar 

  33. Schuster MFH, Meyer WH, Schuster M, Kreuer KD (2004) Toward a new type of anhydrous organic proton conductor based on immobilized imidazole. Chem Mater 16:329–337

    Article  CAS  Google Scholar 

  34. Bozkurt A, Karadedeli B (2007) Copolymers of 4(5)-vinylimidazole and ethyleneglycol methacrylate phosphate: synthesis and proton conductivity properties. React Funct Polym 67:348–354

    Article  CAS  Google Scholar 

  35. Steininger H, Schuster M, Kreuer KD, Maier J (2006) Intermediate temperature proton conductors based on phosphonic acid functionalized oligosiloxanes. Solid State Ionics 177:2457–2462

    Article  CAS  Google Scholar 

  36. Bozkurt A, Meyer WH, Gutmann J, Wegner G (2003) Proton conducting copolymers on the basis of vinylphosphonic acid and 4-vinylimidazole. Solid State Ionics 164:169–176

    Article  CAS  Google Scholar 

  37. Seel DC, Benicewicz BC, Xiao L, Schmidt TJ (2009) High-temperature polybenzimidazole-based membranes. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 5. Wiley, Chichester, pp 300–312

    Google Scholar 

  38. PBI/H3PO4 fuel cell starts up at room temperature. Fuel Cells Bulletin November 2008, p 10

    Google Scholar 

  39. Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477

    Article  CAS  Google Scholar 

  40. Ahluwalia RK, Wang X (2006) Rapid self-start of polymer electrolyte fuel cell stacks from subfreezing temperatures. J Power Sources 162:502–512

    Article  CAS  Google Scholar 

  41. Oszcipok M, Hakenjos A, Riemann D, Hebling C (2007) Start up and freezing processes in PEM fuel cells. Fuel Cells 7:135–141

    Article  CAS  Google Scholar 

  42. Gebert M, Hoehlein B, Stolten D (2004) Benchmark cost analysis of main PEFC ionomer membrane solutions. J Fuel Cell Sci Technol 1:56

    Article  CAS  Google Scholar 

  43. Springer TE, Wilson MS, Gottesfeld S (1993) Modeling and experimental diagnostics in polymer electrolyte fuel cells. J Electrochem Soc 140:3513–3526

    Article  CAS  Google Scholar 

  44. Mathias MF, Roth J, Fleming J, Lehnert W (2003) Diffusion media materials and characterisation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells – fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 515–537

    Google Scholar 

  45. Neyerlin KC, Gu W, Jorne J, Gasteiger HA (2007) Study of the exchange current density for the hydrogen oxidation and evolution reactions. J Electrochem Soc 154:B631–B635

    Article  CAS  Google Scholar 

  46. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35

    Article  CAS  Google Scholar 

  47. Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229

    Article  CAS  Google Scholar 

  48. Bonakdarpour A, Stevens K, Vernstrom GD, Atanasoski R, Schmoeckel AK, Debe MK, Dahn JR (2007) Oxygen reduction activity of Pt and Pt-Mn-Co electrocatalysts sputtered on nano-structured thin film support. Electrochim Acta 53:688–694

    Article  CAS  Google Scholar 

  49. Debe MK, Schmoeckel AK, Vernstrom GD, Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161:1002–1011

    Article  CAS  Google Scholar 

  50. Debe MK (2003) Novel catalysts, catalyst support and catalyst coated membrane methods. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 576–590

    Google Scholar 

  51. Gancs L, Kobayashi T, Debe MK, Atanasoski R, Wieckowsk A (2008) Crystallographic characteristics of nanostructured thin-film fuel cell electrocatalysts: a HRTEM study. Chem Mater 20:2444–2454

    Article  CAS  Google Scholar 

  52. Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135

    Article  CAS  Google Scholar 

  53. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rosswmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901

    Article  CAS  Google Scholar 

  54. Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  55. Antolini E, Salgado JRC, Gonzalez ER (2006) The stability of Pt-M (M=first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells. J Power Sources 160:957–968

    Article  CAS  Google Scholar 

  56. Mukerjee S, Srinivasan S (1993) Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells. J Electroanal Chem 357:201–224

    Article  CAS  Google Scholar 

  57. Murthi VS (2009) Highly dispersed alloy catalyst for durability. DOE hydrogen programme FY 2009 annual progress report, US DOE in Washington, DC, pp 1075–1080

    Google Scholar 

  58. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262

    Article  CAS  Google Scholar 

  59. Ball SC, Burton SL, Fisher J, ÓMalley R, Tessier BC, Theobald B, Thompsett D, Zhou WP, Su D, Zhu Y, Adzic R (2009) Structure and activity of novel Pt core-shell catalysts for the oxygen reduction reaction. ECS Trans 25:1023–1036

    Article  CAS  Google Scholar 

  60. Neyerlin KC, Srivastava R, Yu C, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186: 261–267

    Article  CAS  Google Scholar 

  61. Strasser P (2009) Dealloyed Pt bimetallic electrocatalysts for oxygen reduction. In: Vielstich W, Yokokawa H, Gasteiger HA (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 5. Wiley, Chichester, pp 30–47

    Google Scholar 

  62. Wang X, Kariuki N, Niyogi S, Smith MC, Myers DJ, Hofmann T, Zhang Y, Bar M, Heske C (2008) Bimetallic palladium-base metal nanoparticle oxygen reduction electrocatalysts. ECS Trans 16:109–119

    Article  CAS  Google Scholar 

  63. Zhou Y, Holme T, Berry J, Ohno TR, Ginley D, ÓHayre R (2009) Dopant-induced electronic structure modification of HOPG surfaces: implications for high activity fuel cell catalysts. J Phys Chem C 114: 506–515

    Article  CAS  Google Scholar 

  64. Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19:46–59

    Article  CAS  Google Scholar 

  65. Bashyam R, Zelenay P (2006) A class of non-precious metal composite catalysts for fuel cells. Nature 443: 63–66

    Article  CAS  Google Scholar 

  66. Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324:71–74. Washington, DC

    Article  CAS  Google Scholar 

  67. Wu G, Artyushkova K, Ferrandon M, Kropf AJ, Myers D, Zelenay P (2009) Performance durability of polyaniline-derived non-precious cathode catalysts. ECS Trans 25:1299–1311

    Article  Google Scholar 

  68. Neyerlin KC, Gasteiger HA, Mittelsteadt CK, Jorne J, Gu W (2005) Effect of relative humidity on oxygen reduction kinetics in a PEMFC. J Electrochem Soc 152:A1073–A1080

    Article  CAS  Google Scholar 

  69. Kocha SS (2003) Principles of MEA preparation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 538–565

    Google Scholar 

  70. Xie Z, Zhao X, Gazzarri J, Wang Q, Navessin T, Holdcroft S (2009) Identification of dominant transport mechanisms in PEMFC cathode catalyst layers operated under low RH. ECS Trans 25:1187–1192

    Article  CAS  Google Scholar 

  71. Quick C, Ritzinger D, Lehnert W, Hartnig C (2009) Characterization of water transport in gas diffusion media. J Power Sources 190:110–120

    Article  CAS  Google Scholar 

  72. Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hydrog Energy 30:1297–1302

    Article  CAS  Google Scholar 

  73. Morikawa H, Kikushi H, Saito N (2009) Development and advances of a V-flow FC stack for FCX clarity. SAE Int J Engines 2:955–959

    Article  Google Scholar 

  74. Shimoi R, Aoyama T, Iiyama A (2009) Development of fuel cell stack durability based on actual vehicle test data: current status and future work. SAE Int J Engines 2:960–970

    Article  Google Scholar 

  75. Makkus RC, Janssen AHH, de Bruijn FA, Mallant RKAM (2000) Use of stainless steel for cost competitive bipolar plates in the SPFC. J Power Sources 86:274–282

    Article  CAS  Google Scholar 

  76. Suria OV, Bruno M, Bois P, Maggiore P, Cazzolato C (2009) Fuel size and weight reduction due to innovative metallic bipolar plates: Technical process details and improvements, SAE Technical Papers Series, pp 2009-01-1009

    Google Scholar 

  77. Brady MP, Yang B, Wang H, Turner JA, More KL, Wilson M, Garzon F (2006) The formation of protective nitride surfaces for PEM fuel cell metallic bipolar plates. JOM 58:50–57

    Article  CAS  Google Scholar 

  78. Cho EA, Jeon US, Hong SA, Oh IH, Kang SG (2005) Performance of a 1-kW-class PEMFC stack using TiN-coated 316 stainless steel bipolar plates. J Power Sources 142:177–183

    Article  CAS  Google Scholar 

  79. Mepsted GO, Moore JM (2003) Performance and durability of bipolar plate materials. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 3. Wiley, Chichester, pp 286–293

    Google Scholar 

  80. Joseph S, McClure JC, Sebastian PJ, Moreira J, Valenzuela E (2008) Polyaniline and polypyrrole coatings on aluminum for PEM fuel cell bipolar plates. J Power Sources 177:161–166

    Article  CAS  Google Scholar 

  81. Ahluwalia R, Wang X, Lasher S, Sinha J, Yang Y, Sriramulu S (2007) Performance of automotive fuel cell systems with nanostructured thin film catalysts, 2007 fuel cell seminar, 15-10-2007. Courtesy Associates, Washington, DC

    Google Scholar 

  82. Dobrovol’skii YA, Ukshe AE, Levchenko AE, Arkhangel’skii IV, Ionov SG, Avdeev VV, Aldoshin SM (2007) Materials for bipolar plates for proton-conducting membrane fuel cells. Russ J Gen Chem 77:752–765

    Article  CAS  Google Scholar 

  83. Cleghorn SJC, Mayfield DK, Moore DA, Moore JC, Rusch G, Sherman TW, Sisofo N, Beuscher U (2006) A polymer electrolyte fuel cell life test: 3 years of continuous operation. J Power Sources 158:4–455

    Article  CAS  Google Scholar 

  84. Schulze M, Knöri T, Schneider A, Gülzow E (2004) Degradation of sealings for PEFC test cells during fuel cell operation. J Power Sources 127:222–229

    Article  CAS  Google Scholar 

  85. Tan J, Chao YJ, Van Zee JW, Lee WK (2007) Degradation of elastomeric gasket materials in PEM fuel cells. Mater Sci Eng A 445-446:669–675

    Article  CAS  Google Scholar 

  86. Ralph TR, Barnwell DE, Bouwman PJ, Hodgkinson AJ, Petch MI, Pollington M (2008) Reinforced membrane durability in proton exchange membrane fuel cell stacks for automotive applications. J Electrochem Soc 155:B411–B422

    Article  CAS  Google Scholar 

  87. de Bruijn FA, Dam VAT, Janssen GJM (2008) Review: durability and degradation issues of PEM fuel cell components. Fuel Cells 8:3–22

    Article  CAS  Google Scholar 

  88. Noto H, Kondo M, Otake Y, Kato M (2009) Development of fuel cell hybrid vehicle by Toyota, SAE technical paper series, pp 2009-01-1002

    Google Scholar 

  89. Reiser CA, Bregoli L, Patterson TW, Yi JS, Yang JD, Perry ML, Jarvi TD (2005) A reverse-current decay mechanism for fuel cells. Electrochem Solid-State Lett 8:A273–A276

    Article  CAS  Google Scholar 

  90. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP (2004) Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 127:127–134

    Article  CAS  Google Scholar 

  91. Ferreira-Aparicio P, Chaparro AM, Gallardo B, Folgado M, Daza L (2009) Anode degradation effects in PEMFC stacks by localized fuel starvation, 2009 fuel cell seminar. Courtesy Associates, Washington, DC

    Google Scholar 

  92. Schmittinger W, Vahidi A (2008) A review of the main parameters influencing long-term performance and durability of PEM fuel cells. J Power Sources 180:1–14

    Article  CAS  Google Scholar 

  93. Baldasano JM, Valera E, Jimenez P (2003) Air quality data from large cities. Sci Total Environ 307:141–165

    Article  CAS  Google Scholar 

  94. Huang W, Tan J, Kan H, Zhao N, Song W, Song G, Chen G, Jiang L, Jiang C, Chen R, Chen B (2009) Visibility, air quality and daily mortality in Shanghai, China. Sci Total Environ 407:3295–3300

    Article  CAS  Google Scholar 

  95. A Report on the achievements and learnings from the HyFleet: CUTE project 2006–2009

    Google Scholar 

  96. Narusawa K, Myong K, Murooka K, Kamiya Y (2007) A study regarding effects of proton exchange membrane fuel cell poisoning due to impurities on fuel cell performance, SAE technical paper series, pp 2007-01-0698

    Google Scholar 

  97. Adjemian K, Iiyama A (2008) MEA development for automotive applications, fuel cells durability and performance, 3rd edn. The Knowledge Press, Inc., Brookline, pp 5–16

    Google Scholar 

  98. Veldhuis JBJ, de Bruijn FA, Mallant RKAM (1998) Fuel cell seminar abstracts, 16-11-1998. Courtesy Associates, Washington, DC, p 598

    Google Scholar 

  99. Knights SD, Jia N, Chuy C, Zhang J (2005) Fuel cell seminar abstracts, 14-11-2005. Courtesy associates, Washington, DC

    Google Scholar 

  100. Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu ZS, Wang H, Shen J (2007) A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J Power Sources 165:739–756

    Article  CAS  Google Scholar 

  101. Kennedy DM, Cahela DR, Zhu WH, Westrom KC, Nelms RM, Tatarchuk BJ (2007) Fuel cell cathode air filters: methodologies for design and optimization. J Power Sources 168:391–399

    Article  CAS  Google Scholar 

  102. Matsuda Y (2009) Accumulation behavior of impurities in fuel cell hydrogen circulation system, 2009 fuel cell seminar, 16-11-2009. Courtesy associates, Washington, DC

    Google Scholar 

  103. Papasavva S (2005) Developing hydrogen (H2) specification guidelines for proton exchange membrane (PEM) fuel cell vehicles, SAE technical series papers, pp 2005-01-0011

    Google Scholar 

  104. Recupero V, Pino L, Vita A, Cipiti F, Cordaro M, Lagana M (2005) Development of a LPG fuel processor for PEFC systems: Laboratory scale evaluation of autothermal reforming and preferential oxidation subunits. Int J Hydrog Energy 30:963–971

    Article  CAS  Google Scholar 

  105. de Bruijn FA, Rietveld G, van den Brink RW (2007) Hydrogen production and fuel cells as the bridging technologies towards a sustainable energy system. In: Centi G, Santen RA (eds) Catalysis for renewables. Wiley-VCH, Weinheim, pp 299–336

    Chapter  Google Scholar 

  106. Li Q, He R, Gao J-A, Jensen JO, Bjerrum NJ (2003) The CO poisoning effect in polymer electrolyte fuel cells operational at temperatures up to 200°C. J Electrochem Soc 150:A1599–A1605

    Article  CAS  Google Scholar 

  107. Wipke K, Sprik S, Kurtz J, Ramsden T (2009) Controlled hydrogen fleet and infrastructure demonstration and validation project, NRELNREL/TP-560-46679

    Google Scholar 

  108. Mallant RKAM, Lebedeva NP, Zhang YM, Li L, Tang JK, Bukhtiyarov VI, Romanenko AV, Voropaev I, Bauer B, Zhang W, Jones DJ, Rozière J, Gao HR (2009) Significant steps towards medium temperature/low RH PEMFC, 2009 fuel cell seminar. Courtesy Associates, Washington, DC

    Google Scholar 

  109. Bono T, Kizaki M, Mizuno H, Nonobe Y, Takahashi T, Matsumoto T, Kobayashi N (2010) Development of new Toyota FCHV-adv fuel cell system. SAE Int J Engines 2:948–954

    Article  Google Scholar 

  110. Power backup solutions for telecom and related networks. Dantherm Power Catalogue 2008

    Google Scholar 

  111. Ferreira PJ, la Ó GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. J Electrochem Soc 152:A2256–A2271

    Article  Google Scholar 

  112. Xie J, Wood DL, More KL, Atanassov P, Borup RL (2005) Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. J Electrochem Soc 152:A1011–A1020

    Article  CAS  Google Scholar 

  113. Guilminot E, Corcella A, Charlot F, Maillard F, Chatenet M (2007) Detection of Pt[sup z+] Ions and Pt nanoparticles Inside the membrane of a used PEMFC. J Electrochem Soc 154:B96–B105

    Article  CAS  Google Scholar 

  114. Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46:285–305

    Article  CAS  Google Scholar 

  115. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions. National Association of Corrosion Engineers, New York

    Google Scholar 

  116. Darling RM, Meyers JP (2003) Kinetic model of platinum dissolution in PEMFCs. J Electrochem Soc 150:A1523–A1527

    Article  CAS  Google Scholar 

  117. Virkar AN, Zhou Y (2007) Mechanism of catalyst degradation in proton exchange membrane fuel cells. J Electrochem Soc 154:B540–B547

    Article  CAS  Google Scholar 

  118. Dam VAT, de Bruijn FA (2007) The stability of PEMFC electrodes. J Electrochem Soc 154:B494–B499

    Article  CAS  Google Scholar 

  119. Wang X, Kumar R, Myers DJ (2006) Effect of voltage on platinum dissolution. Electrochem Solid-State Lett 9:A225–A227

    Article  CAS  Google Scholar 

  120. Kawahara S, Mitsushima S, Ota K, Kamiya N (2006) Deterioration of Pt catalyst under potential cycling. ECS Trans 3:625–631

    Article  CAS  Google Scholar 

  121. Kawahara S, Mitsushima S, Ota K, Kamiya N (2006) Comsumption of Pt catalyst under electrolysis and fuel cell operation. ECS Trans 1:85–100

    Article  CAS  Google Scholar 

  122. Burke LD, Buckley DT (1994) Anomalous stability of acid-grown hydrous platinum oxide films in aqueous media. J Electroanal Chem 366:239–251

    Article  CAS  Google Scholar 

  123. Burke LD, ÓDwyer KJ (1992) Multilayer oxide growth on Pt under potential cycling conditions. Electrochim Acta 37:43–50

    Article  CAS  Google Scholar 

  124. Birss VI, Chang M, Segal J (1993) Platinum oxide film formation-reduction: an in-situ mass measurement study. J Electroanal Chem 355:181–191

    Article  CAS  Google Scholar 

  125. Nagy Z, You H (2002) Applications of surface X-ray scattering to electrochemistry problems. Electrochim Acta 47:3037–3055

    Article  CAS  Google Scholar 

  126. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  127. Guilminot E, Corcella A, Chatenet M, Maillard F, Charlot F, Berthome G, Iojoiu C, Sanchez JY, Rossinot E, Claude E (2007) Membrane and active layer degradation upon PEMFC steady-state operation. J Electrochem Soc 154:B1106–B1114

    Article  CAS  Google Scholar 

  128. Honji A, Mori T, Tamura K, Hishinuma M (1988) Agglomeration of platinum particles supported on carbon in phosphoric acid. J Electrochem Soc 135: 355–359

    Article  CAS  Google Scholar 

  129. Ascarelli P, Contini V, Giorgi R (2002) Formation process of nanocrystalline materials from x-ray diffraction profile analysis: application to platinum catalysts. J Appl Phys 91:4556–4561

    Article  CAS  Google Scholar 

  130. Borup RL, Davey JR, Garzon FH, Wood DL, Inbody MA (2006) PEM fuel cell electrocatalyst durability measurements. J Power Sources 163:76–81

    Article  CAS  Google Scholar 

  131. Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CJ, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two fuel cell cars in every garage. Electrochem Soc Interface 14(Fall):24–35

    CAS  Google Scholar 

  132. Haas HR, Davis MT (2009) Electrode and catalyst durability requirements in automotive PEM applications: technology status of a recent MEA design and next generation challenges. ECS Trans 25: 1623–1631

    Article  CAS  Google Scholar 

  133. Schulze M, Wagner N, Kaz T, Friedrich KA (2007) Combined electrochemical and surface analysis investigation of degradation processes in polymer electrolyte membrane fuel cells. Electrochim Acta 52:2328–2336

    Article  CAS  Google Scholar 

  134. Janssen GJM, de Heer MP, Papageorgopoulos DC (2004) Bilayer anodes for improved reformate tolerance of PEM fuel cells. Fuel Cells 4:169–174

    Article  CAS  Google Scholar 

  135. Yu H, Hou Z, Yi B, Lin Z (2002) Composite anode for CO tolerance proton exchange membrane fuel cells. J Power Sources 105:52–57

    Article  CAS  Google Scholar 

  136. Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059

    Article  CAS  Google Scholar 

  137. Lebedeva NP, Rosca V, Janssen GJM (2010) CO oxidation and CO2 reduction on carbon supported PtWO3 catalyst. Electrochim Acta 55:7659–7668

    Article  CAS  Google Scholar 

  138. de Bruijn FA, Papageorgopoulos DC, Sitters EF, Janssen GJM (2002) The influence of carbon dioxide on PEM fuel cells anodes. J Power Sources 110: 117–124

    Article  Google Scholar 

  139. Janssen GJM (2004) Modelling study of CO2 poisoning on PEMFC anodes. J Power Sources 136: 45–54

    Article  CAS  Google Scholar 

  140. Ahluwalia RK, Wang X (2008) Effect of CO and CO2 impurities on performance of direct hydrogen polymer-electrolyte fuel cells. J Power Sources 180:122–131

    Article  CAS  Google Scholar 

  141. Mohtadi R, Lee W, Van Zee JW (2004) Assessing durability of cathodes exposed to common air impurities. J Power Sources 138:216–225

    Article  CAS  Google Scholar 

  142. Paulus UA, Schmidt TJ, Gasteiger HA (2003) Poisons for the O2 reduction reaction. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells-fundamentals, technology and applications, vol 2. Wiley, Chichester, pp 555–569

    Google Scholar 

  143. Kinoshita K (1988) Carbon. Electrochemical and physicochemical properties. Wiley, New York

    Google Scholar 

  144. Giordano N, Antonucci PL, Passalacqua E, Pino L, Arico AS, Kinoshita K (1991) Relationship between physicochemical properties and electrooxidation behaviour of carbon materials. Electrochim Acta 36:1931–1935

    Article  CAS  Google Scholar 

  145. Ball SC, Hudson SL, Thompsett D, Theobald B (2007) An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hols regimes at a range of temperatures. J Power Sources 171:18–15

    Article  CAS  Google Scholar 

  146. Garland N, Benjamin T, Kopasz J (2007) DOE fuel cell program: durability technical targets and testing protocols. ECS Trans 11:923–931

    Article  CAS  Google Scholar 

  147. Stevens DA, Dahn JR (2005) Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43:179–188

    Article  CAS  Google Scholar 

  148. Stevens DA, Hicks MT, Haugen GM, Dahn JR (2005) Ex situ and in situ stability studies of PEMFC catalysts12. J Electrochem Soc 152:A2309–A2315

    Article  CAS  Google Scholar 

  149. Cai M, Ruthkosky MS, Merzougui B, Swathirajan S, Balogh MP, Oh SE (2006) Investigation of thermal and electrochemical degradation of fuel cell catalysts. J Power Sources 160:977–986

    Article  CAS  Google Scholar 

  150. Shao Y, Yin G, Gao Y, Shi P (2006) Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J Electrochem Soc 153:A1093–A1097

    Article  CAS  Google Scholar 

  151. Tang Z, Ng HY, Lin J, Wee ATS, Chua DHC (2010) Pt/CNT-based electrodes with high electrochemical activity and stability for proton exchange membrane fuel cells. J Electrochem Soc 157:B245–B250

    Article  CAS  Google Scholar 

  152. Healy J, Hayden C, Xie T, Olson K, Waldo R, Brundage M, Gasteiger H, Abbott J (2005) Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. Fuel Cells 5:302–308

    Article  CAS  Google Scholar 

  153. St-Pierre J, Wilkinson DP, Knights SD, Bos M (2000) Relationships between water management, contamination and lifetime degradation in PEFC. J New Mater Electrochem Syst 3:99–106

    CAS  Google Scholar 

  154. Wood D, Davey J, Garzon F, Atanassov P, Borup R (2005) Mass-transport phenomena and long-term performance limitations in H2-air PEMFC durability testing, 2005 fuel cell seminar abstracts, 14-11-2005. Courtesy Associates, Washington, DC

    Google Scholar 

  155. Jordan LR, Shukla AK, Behrsing T, Avery NR, Muddle BC, Forsyth M (2000) Diffusion layer parameters influencing optimal fuel cell performance. J Power Sources 86:250–254

    Article  CAS  Google Scholar 

  156. Williams MV, Begg E, Bonville L, Kunz HR, Fenton JM (2004) Characterization of gas diffusion layers for PEMFC. J Electrochem Soc 151:A1173–A1180

    Article  CAS  Google Scholar 

  157. de Bruijn FA, Dam VAT, Janssen GJM, Makkus RC (2009) Electrode degradation in PEMFCs as studied in model systems and PEMFC testing. ECS Trans 25:1835–1847

    Article  Google Scholar 

  158. Lee C, Merida W (2007) Gas diffusion layer durability under steady-state and freezing conditions. J Power Sources 164:141–153

    Article  CAS  Google Scholar 

  159. Coms FD (2008) The chemistry of fuel cell membrane chemical degradation. ECS Trans 16:235–255

    Article  CAS  Google Scholar 

  160. Liu H, Gasteiger HA, LaConti AB, Zhang J (2006) Factors impacting chemical degradation of perfluorinated sulfonic acid ionomers. ECS Trans 1:283–293

    Article  CAS  Google Scholar 

  161. Mittal VO, Kunz HR, Fenton JM (2007) Membrane degradation mechanisms in PEMFCs. J Electrochem Soc 154:B652–B656

    Article  CAS  Google Scholar 

  162. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME (2004) Advanced materials for improved PEMFC performance and life20. J Power Sources 131:41–48

    Article  CAS  Google Scholar 

  163. Coms FD, Liu H, Owejan JE (2008) Mitigation of perfluorosulfonic acid membrane chemical degradation using cerium and manganese ions. ECS Trans 16:1735–1747

    Article  CAS  Google Scholar 

  164. Endoh E (2008) Development of highly durable PFSA membrane and MEA for PEMFC under high temperature and low humidity conditions. ECS Trans 16:1229–1240

    Article  CAS  Google Scholar 

  165. Trogadas P, Parrondo J, Ramani V (2008) Degradation mitigation in polymer electrolyte membranes using free radical scavengers. ECS Trans 16: 1725–1733

    Article  CAS  Google Scholar 

  166. Rozière J, Jones DJ (2003) Non-fluorinated polymer materials for proton exchange membrane fuel cells. Annu Rev Mater Res 33:503–555

    Article  CAS  Google Scholar 

  167. Zhang L, Ma CS, Mukerjee S (2003) Oxygen permeation studies on alternative proton exchange membranes designed for elevated temperature operation. Electrochim Acta 48:1845–1859

    Article  CAS  Google Scholar 

  168. Schuster M, Kreuer KD, Andersen HT, Maier J (2007) Sulfonated poly(phenylene sulfone) polymers as hydrolytically and thermooxidatively stable proton conducting ionomers. Macromolecules 40:598–607

    Article  CAS  Google Scholar 

  169. Escobedo G, Raiford K, Nagarajan GS, Schwiebert KE (2006) Strategies for mitigation of PFSA polymer degradation in PEM fuel cells. ECS Trans 1:303–311

    Article  Google Scholar 

  170. Stone C, Calis GHM (2006) Improved composite membranes and related performance in commercial PEM fuel cells, 2006 fuel cell seminar abstracts. Courtesy Associates, Washington, DC

    Google Scholar 

  171. LaConti AB, Hamdan M, McDonald RC (2003) Mechanisms of membrane degradation. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol 3. Wiley, Chichester, pp 647–663

    Google Scholar 

  172. Silberstein MN, Boyce MC (2010) Constitutive modeling of the rate, temperature, and hydration dependent deformation response of Nafion to monotonic and cyclic loading. J Power Sources 195: 5692–5706

    Article  CAS  Google Scholar 

  173. Liu W, Ruth K, Rusch G (2001) Membrane durability in PEM fuel cells. J New Mater Electrochem Syst 4:227–231

    CAS  Google Scholar 

  174. McDonald RC, Mittelsteadt CK, Thompson EL (2004) Effects of deep temperature cycling on Nafion® 112 membranes and membrane electrode assemblies. Fuel Cells 4:208–213

    Article  CAS  Google Scholar 

  175. Okada T (2003) Ionic Contaminants. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol 3. Wiley, Chichester, pp 627–646

    Google Scholar 

  176. Davies DP, Adcock PL, Turpin M, Rowen SJ (2000) Bipolar plate materials for solid polymer fuel cells. J Appl Electrochem 30:101–105

    Article  CAS  Google Scholar 

  177. Gallagher KG, Wong DT, Fuller TF (2008) The effect of transient potential exposure on the electrochemical oxidation of carbon black in low-temperature fuel cells. J Electrochem Soc 155:B488–B493

    Article  CAS  Google Scholar 

  178. Frisch L (2001) PEM fuel cell stack sealing using silicone elastomers. Seal Technol 2001:7–9

    Article  Google Scholar 

  179. Du B, Guo R, Pollard R, Rodriguez D, Smith J, Elter J (2006) PEM fuel cells: status and challenges for commercial stationary power applications. JOM 58(8):45–49

    Article  CAS  Google Scholar 

  180. St-Pierre J, Jia N (2002) Succesful demonstration of Ballard PEMFCs for space shuttle applications. J New Mater Electrochem Syst 5:263

    CAS  Google Scholar 

Books and Reviews

  • Barbir F (2005) PEM fuel cells, theory and practice. Elsevier, Amsterdam

    Google Scholar 

  • Büchi FN, Inaba M, Schmidt TJ (eds) (2009) Polymer electrolyte fuel cell durability. Springer, New York

    Google Scholar 

  • Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Scherer GG (ed) (2008) Fuel cells I, advances in polymer science, vol 215. Springer, New York

    Google Scholar 

  • Scherer GG (ed) (2008) Fuel cells II, advances in polymer science, vol 216. Springer, New York

    Google Scholar 

  • Vielstich W, Lamm A, Gasteiger HA (eds) (2003) Handbook of fuel cells, fundamental, technology and applications, 4th edn. Wiley, Chichester

    Google Scholar 

  • Vielstich W, Yokokawa H, Gasteiger HA (eds) (2009) Handbook of fuel cells: advances in electrocatalysis, materials, diagnostics and durability, vol 5 & 6. Wiley, Chichester

    Google Scholar 

  • Zhang J (ed) (2009) PEM fuel cell electrocatalysts and catalyst layers. Springer, New York

    Google Scholar 

  • Zhao TS, Kreuer KD, Van Nguyen T (eds) (2007) Advances in fuel cells I. Elsevier, Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. de Frank Bruijn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

de Frank Bruijn, A., Janssen, G.J.M. (2017). PEM Fuel Cell Materials: Costs, Performance and Durability. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_152-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_152-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics