Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Fuel Cells (SOFC): Alternative Approaches (Electroytes, Electrodes, Fuels)

  • K. SasakiEmail author
  • Y. Nojiri
  • Y. Shiratori
  • S. Taniguchi
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_138-3



Electrode for electrochemical oxidation reactions. In solid oxide fuel cells, hydrogen-containing fuels are oxidized by oxygen ions transported through an electrolyte to form water vapor or CO2 as the reaction products at this electrode. SOFC anodes may also act as fuel reforming catalysts when hydrocarbon-based fuels are supplied to the anodes.


Electrode for electrochemical reduction reactions. In solid oxide fuel cells, oxygen in ambient air is reduced to oxygen ions at this electrode.


Ionic conductor with negligible electronic conductivity, used as a membrane between an oxidation atmosphere and a reduction atmosphere. The essential material to construct electrochemical devices including fuel cells.

Fuel flexibility

While low-temperature fuel cells (such as polymer electrolyte membrane fuel cells) typically use pure hydrogen gas (or hydrogen gas mixed with CO2) as the fuel, high-temperature fuel cells can directly use various kinds of fuels, such...

This is a preview of subscription content, log in to check access.



Financial support by the NEDO project “Development of System and Elemental Technology on Solid Oxide Fuel Cells (SOFC)” is gratefully acknowledged. We thank Prof. A. Hayashi and Associate Profs. S. Lyth and Dr. S. Bishop in Kyushu University for carefully reading the manuscript and Ms. A. Zaitsu in Kyushu University for her editorial work.


  1. 1.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRefGoogle Scholar
  2. 2.
    Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and application. Elsevier, Oxford, UKGoogle Scholar
  4. 4.
    Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, West SussexCrossRefGoogle Scholar
  5. 5.
    Tagawa H (1998) Solid oxide fuel cells and global environment. Agune-Shofudo, Shinjuku. (in Japanese)Google Scholar
  6. 6.
    Steinberger-Wilckens R (2009) European SOFC R&D – status and trends. ECS Trans 25(2):3–10CrossRefGoogle Scholar
  7. 7.
    Hosoi K, Nakabaru M (2009) Status of national project for SOFC development in Japan. ECS Trans 25(2):11–20CrossRefGoogle Scholar
  8. 8.
    Surdoval WA (2009) The status of SOFC programs in USA 2009. ECS Trans 25(2):21–27CrossRefGoogle Scholar
  9. 9.
    Maier J (2004) Physical Chemistry of ionic materials: ions and electrons in solids. Wiley, West SussexCrossRefGoogle Scholar
  10. 10.
    Sata N, Eberman K, Eberl K, Maier J (2000) Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408:946–949CrossRefGoogle Scholar
  11. 11.
    Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook SJ, Santamaria J (2008) Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321(5889):676–680CrossRefGoogle Scholar
  12. 12.
    Tuller HL (2000) Ionic conduction in nanocrystalline materials. Solid State Ionics 131(1–2):143–157CrossRefGoogle Scholar
  13. 13.
    Maier J (2004) Nano-ionics: more than just a fashionable slogan. J Electroceram 13(1–3):593–598CrossRefGoogle Scholar
  14. 14.
    Araki W, Arai Y (2010) Oxygen diffusion in yttria-stabilized zirconia subjected to uniaxial stress. Solid State Ionics 181(8–10):441–446CrossRefGoogle Scholar
  15. 15.
    Litzelman SJ, Hertz JL, Jung W, Tuller HL (2008) Opportunities and challenges in materials development for thin film solid oxide fuel cells. Fuel Cells 8(5):294–302CrossRefGoogle Scholar
  16. 16.
    Evans A, Bieberle-Hütter A, Rupp JLM, Gauckler LJ (2009) Review on microfabricated micro-solid oxide fuel cell membranes. J Power Sources 194(1):119–129CrossRefGoogle Scholar
  17. 17.
    Ihara M, Hasegawa S (2006) Quickly rechargeable direct carbon solid oxide fuel cell with propane for recharging. J Electrochem Soc 153(8):A1544–A1546CrossRefGoogle Scholar
  18. 18.
    Hauch A, Jensen SH, Ramousse S, Mogensen M (2006) Performance and durability of solid oxide electrolysis cells. J Electrochem Soc 153(9):A1741–A1747CrossRefGoogle Scholar
  19. 19.
    Ishihara T, Kanno T (2010) Steam electrolysis using LaGaO3 based perovskite electrolyte for recovery of unused heat energy. ISIJ Int 50:1291–1295CrossRefGoogle Scholar
  20. 20.
    Minh NQ (2010) Operating characteristics of solid oxide fuel cell stacks and systems. ECS Trans 25(2):241–246Google Scholar
  21. 21.
    Steele BCH (1989) Oxygen ion conductors. In: Takahashi T (ed) High conductivity solid ionic conductors. World Scientific, Singapore, pp 402–446CrossRefGoogle Scholar
  22. 22.
    Steele BCH (1992) Oxygen ion conductors and their technological applications. In: Balkanski M, Takahashi T, Tuller HL (eds) Solid state ionics. Elsevier, Amsterdam, pp 17–28Google Scholar
  23. 23.
    Nowick AS (1984) Atom transport in oxides of the fluorite structure. In: Diffusion in crystalline solids. Academic, Orlando, pp 143–188CrossRefGoogle Scholar
  24. 24.
    Hayes W, Stoneham AM (1985) Defects and defect processes in nonmetallic solids. Wiley, New YorkGoogle Scholar
  25. 25.
    Kilner JA, Steele BCH (1981) Mass transport in anion-deficient fluorite oxides. In: Sørensen OT (ed) Nonstoichiometric oxides. Academic, New York, pp 233–269CrossRefGoogle Scholar
  26. 26.
    Kofstad P (1972) Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Wiley, New YorkGoogle Scholar
  27. 27.
    Eyring L (1979) The binary rare earth oxides. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. North-Holland, Amsterdam, pp 337–399. Chap 27Google Scholar
  28. 28.
    Tuller HL (1991) Highly conductive ceramics. In: Buchanan RC (ed) Ceramic materials for electronics. Marcel Dekker, New York, pp 379–433Google Scholar
  29. 29.
    Tuller HL (1981) Mixed conduction in nonstoichiometric oxides. In: Sørensen OT, Sørensen OT (eds) Nonstoichiometric oxides. Academic, New York, pp 271–335CrossRefGoogle Scholar
  30. 30.
    Shimizu K, Kashiwagi K, Nishiyama H, Kakimoto S, Sugaya S, Yokoi H, Satsuma A (2008) Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOx sensing materials. Sens Actuators B Chem 130:707–712CrossRefGoogle Scholar
  31. 31.
    Gong J, Li Y, Tang Z, Zhang Z (2000) Enhancement of the ionic conductivity of mixed calcia/yttria stabilized zirconia. Mater Lett 46:115–119CrossRefGoogle Scholar
  32. 32.
    Gauckler LJ, Sasaki K (1994) Ionic and electronic conductivities of homogeneous and heterogeneous materials in the system ZrO2-In2O3. Solid State Ionics 75:203–210CrossRefGoogle Scholar
  33. 33.
    Sasaki K (1993) Phase equilibria, electrical conductivity, and electrochemical properties of ZrO2-In2O3. Dissertation, Swiss Federal Institute of Technology, ZürichGoogle Scholar
  34. 34.
    Stafford RJ, Rothman SJ, Routbort JL (1989) Effect of dopant size on the ionic conductivity of cubic stabilized ZrO2. Solid State Ionics 37:67–72CrossRefGoogle Scholar
  35. 35.
    Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishi N (1999) Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system. Solid State Ionics 121:133–139CrossRefGoogle Scholar
  36. 36.
    Patterson JW (1971) Conduction domains for solid electrolytes. J Electrochem Soc 118:1033–1039CrossRefGoogle Scholar
  37. 37.
    Heyne L, Engleson D (1977) The speed of response of solid electrolyte galvanic cells for Gas sensing. J Electrochem Soc 124:727–735CrossRefGoogle Scholar
  38. 38.
    Tuller HL, Moon PK (1988) Fast ion conductors: future trends. Mater Sci Eng B1:171–191CrossRefGoogle Scholar
  39. 39.
    Nernst W (1899) Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen. Z Elektrochem 6(2):41–43CrossRefGoogle Scholar
  40. 40.
    Baur E, Preis H (1937) Über Brennstoff-Ketten mit Festleitern. Z Elektrochem 44(9):695–698Google Scholar
  41. 41.
    Sasaki K, Maier J (2000) Re-analysis of defect equilibria and transport properties of Y2O3-stabilized ZrO2 using EPR and optical relaxation. Solid State Ionics 134(3–4):303–321CrossRefGoogle Scholar
  42. 42.
    Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83:1–16CrossRefGoogle Scholar
  43. 43.
    Sammes NM, Tompsett GA, Näfe H, Aldinger F (1999) Bismuth based oxide electrolytes-structure and ionic conductivity. J Eur Ceram Soc 19:1801–1826CrossRefGoogle Scholar
  44. 44.
    Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94CrossRefGoogle Scholar
  45. 45.
    Yamamoto O, Arachi Y, Sakai H, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1998) Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics 4:403–408CrossRefGoogle Scholar
  46. 46.
    Arachi Y, Asai T, Yamamoto O, Takeda Y, Imanishi N, Kawate K, Tamakoshi C (2001) Electrical conductivity of ZrO2-Sc2O3 doped with HfO2, CeO2, and Ga2O3. J Electrochem Soc 148(5):A520–A523CrossRefGoogle Scholar
  47. 47.
    Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics 79:137–142CrossRefGoogle Scholar
  48. 48.
    Tietz F, Fischer W, Hauber T, Mariotto G (1997) Structural evolution of Sc-containing zirconia electrolytes. Solid State Ionics 100:289–295CrossRefGoogle Scholar
  49. 49.
    Wang Z, Cheng M, Bi Z, Dong Y, Zhang H, Zhang J, Feng Z, Li C (2005) Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater Lett 59:2579–2582CrossRefGoogle Scholar
  50. 50.
    Gödickemeier M, Michel B, Orliukas A, Bohac P, Sasaki K, Gauckler LJ, Heinrich H, Schwander P, Kostorz G, Hofmann H, Frei O (1994) Effect of intergranular glass films on the electrical conductivity of 3Y-TZP. J Mater Res 9(5):1228–1240CrossRefGoogle Scholar
  51. 51.
    Bieberle-Hütter A, Beckel D, Infortuna A, Muecke UP, JLM R, Gauckler LJ, Rey-Mermet S, Muralt P, Bieri NR, Hotz N, Stutz MJ, Poulikakos D, Heeb P, Müller P, Bernard A, Gmür R, Hocker T (2008) A micro-solid oxide fuel cell system as battery replacement. J Power Sources 177:123–130CrossRefGoogle Scholar
  52. 52.
    Ji Y, Kilner JA, Carolan MF (2005) Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnO3±δ(LSM) composites. Solid State Ionics 176:937–943CrossRefGoogle Scholar
  53. 53.
    Ralph JM, Rossignol C, Kumar R (2003) Cathode materials for reduced-temperature SOFCs. J Electrochem Soc 150(11):A1518–A1522CrossRefGoogle Scholar
  54. 54.
    Stochniol G, Syskakis E, Naoumidis A (1995) Chemical compatibility between strontium-doped lanthanum manganite and yttria-stabilized zirconia. J Am Ceram Soc 78:929–932CrossRefGoogle Scholar
  55. 55.
    Zhao H, Huo I, Sun L, Yu L, Gao S, Zhao J (2004) Preparation, chemical stability and electrochemical properties of LSCF-CBO composite cathodes. Mater Chem Phys 88:160–166CrossRefGoogle Scholar
  56. 56.
    Yahiro H, Eguchi K, Arai H (1986) Ionic conduction and microstructure of the ceria-strontia system. Solid State Ionics 21:37–47CrossRefGoogle Scholar
  57. 57.
    Thangadurai V, Kopp P (2007) Chemical synthesis of Ca-doped CeO2 – intermediate temperature oxide ion electrolytes. J Power Sources 168:178–183CrossRefGoogle Scholar
  58. 58.
    Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52:165–172CrossRefGoogle Scholar
  59. 59.
    Yahiro H, Baba Y, Eguchi Y, Eguchi K, Arai H (1988) High temperature fuel cell with ceria-yttria solid electrolyte. J Electrochem Soc 135:2077–2080CrossRefGoogle Scholar
  60. 60.
    Shobit Omar S, Wachsman ED, Nino JC (2008) Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178:1890–1897CrossRefGoogle Scholar
  61. 61.
    Bance P, Brandon NP, Girvan B, Holbeche P, O'Dea S, Steele BCH (2004) Spinning-out a fuel cell company from a UK University-2 years of progress at Ceres Power. J Power Sources 131:86–90CrossRefGoogle Scholar
  62. 62.
    Göedickemeier M, Gauckler LJ (1998) Engineering of solid oxide fuel cells with ceria-based electrolytes. J Electrochem Soc 145:414–421CrossRefGoogle Scholar
  63. 63.
    Atkinson A (1997) Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics 95:249–258CrossRefGoogle Scholar
  64. 64.
    Marques FMB, Navarro LM (1997) Performance of double layer electrolyte cells Part II: GCO/YSZ, a case study. Solid State Ionics 100:29–38CrossRefGoogle Scholar
  65. 65.
    Tsoda A, Gupta A, Naoumoidis A, Skarmoutsos D, Nikolopoulos P (1998) Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells. Ionics 4:234–240CrossRefGoogle Scholar
  66. 66.
    Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36:1105–1117CrossRefGoogle Scholar
  67. 67.
    Oishi N, Atkinson A, Brandon NP, Kilner JA, Steele BCH (2005) Fabrication of an anode-supported gadolinium-doped ceria solid oxide fuel cell and its operation at 550°C. J Am Ceram Soc 88(6):1394–1396CrossRefGoogle Scholar
  68. 68.
    Oishi N, Yoo Y (2010) Evaluation of metal supported ceria based solid oxide fuel cell fabricated by wet powder spray and sintering. J Electrochem Soc 157(1):B125–B129CrossRefGoogle Scholar
  69. 69.
    Moon PK, Tuller HL (1990) Evaluation of the Gd2(ZrxTi1-x)2O7 pyroclore system as an oxygen Gas sensor. Sens Actuators B Chem 1:199–202CrossRefGoogle Scholar
  70. 70.
    Yamamura H, Nishino H, Kakinuma K, Nomura K (2003) Electrical conductivity anomaly around fluorite-pyrochlore phase boundary. Solid State Ionics 158:359–365CrossRefGoogle Scholar
  71. 71.
    Moon PK, Tuller HL (1988) Ionic-conduction in the Gd2Ti2O7-Gd2Zr2O7 system. Solid State Ionics 28–30(1):470–474CrossRefGoogle Scholar
  72. 72.
    Kramer SA, Tuller HL (1995) A novel titanate-based oxygen ion conductor: Gd2Ti2O7. Solid State Ionics 82:15–23CrossRefGoogle Scholar
  73. 73.
    Kharton VV, Tsipis EV, Yaremechenko AA, Vyshatko NP, Shaula AL, Naumovich EN, Frade JR (2003) Oxygen ionic and electronic transport in Gd2-xCaxTi2O7-δ pyrochlores. J Solid State Electrochem 7:468–476CrossRefGoogle Scholar
  74. 74.
    Mori M, Tompsett GM, Sammes NM, Suda E, Takeda Y (2003) Compatibility of GdxTi2O7 pyrochlores (1.72 ≤ x ≤ 2.0) as electrolytes in high-temperature solid oxide fuel cells. Solid State Ionics 158:79–90CrossRefGoogle Scholar
  75. 75.
    Yasuda I, Matsuzaki Y, Yamakawa T, Koyama T (2000) Electrical conductivity and mechanical properties of alumina-dispersed doped lanthanum gallates. Solid State Ionics 135:381–388CrossRefGoogle Scholar
  76. 76.
    Tietz F (1999) Thermal expansion of SOFC materials. Ionics 5:129–139CrossRefGoogle Scholar
  77. 77.
    Lee JH, Yoshimura M (1999) Phase stability and electrical conductivity of the Zr0.5Y0.5O1.75-Y0.75Nb0.25O1.75 system. Solid State Ionics 124:185–191CrossRefGoogle Scholar
  78. 78.
    Lee JH, Yashima M, Yoshimura M (1998) Ionic conductivity of fluorite-structured solid solution Y0.8Nb0.2O1.7. Solid State Ionics 107:47–51CrossRefGoogle Scholar
  79. 79.
    West AR (1999) Basic solid state chemistry. Wiley, ChichesterGoogle Scholar
  80. 80.
    Roth RS (1957) Classification of perovskite and other ABO3-type compounds. J Res Natl Bur Stand 58:75–88CrossRefGoogle Scholar
  81. 81.
    Takahashi T, Iwahara H (1971) Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell. Energy Convers 11:105–111CrossRefGoogle Scholar
  82. 82.
    Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803CrossRefGoogle Scholar
  83. 83.
    Ishihara T, Matsuda H, Takita Y (1995) Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide. Solid State Ionics 79:147–151CrossRefGoogle Scholar
  84. 84.
    Ishihara T, Ishikawa S, Yu C, Akbay T, Hosoi K, Nishiguchi H, Takita Y (2003) Oxide ion and electronic conductivity in Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite oxide. Phys Chem Chem Phys 5:2257–2263CrossRefGoogle Scholar
  85. 85.
    Ishihara T (2001) Current status of intermediate temperature solid oxide fuel cell (in Japanese). Bull Ceram Soc Jpn 36:483–485Google Scholar
  86. 86.
    Islam MS, Davis RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93CrossRefGoogle Scholar
  87. 87.
    Huang K, Feng M, Goodenough JB, Schmerling M (1996) Characterization of Sr-doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell. J Electrochem Soc 143(11):3630–3636CrossRefGoogle Scholar
  88. 88.
    Kostogloudis GC, Ftikos C, Ahmad-Khanlou A, Naoumidis A, Stöver D (2000) Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte. Solid State Ionics 134:127–138CrossRefGoogle Scholar
  89. 89.
    Shaula AL, Kharton VV, Marques FMB (2004) Phase interaction and oxygen transport in La0.8Sr0.2Fe0.8Co0.2O3-(La0.9Sr0.1)0.98 Ga0.8Mg0.2O3 composites. J Eur Ceram Soc 24:2631–2639CrossRefGoogle Scholar
  90. 90.
    Sakai N, Horita T, Yamaji K, Brito ME, Yokokawa H, Kawakami A, Matsuoka S, Watanabe N, Ueno A (2006) Interface stability among solid oxide fuel cell materials with perovskite structures. J Electrochem Soc 153(3):A621–A625CrossRefGoogle Scholar
  91. 91.
    Joshi AV, Steppan JJ, Taylor DM, Elangovan S (2004) Solid electrolyte materials, devices, and applications. J Electroceram 13:619–625CrossRefGoogle Scholar
  92. 92.
    Schober T (1998) Protonic conduction in BaIn0.5Sn0.5O2.75. Solid State Ionics 109:1–11CrossRefGoogle Scholar
  93. 93.
    Goodenough JB (1997) Ceramic solid electrolytes. Solid State Ionics 94:17–25CrossRefGoogle Scholar
  94. 94.
    Goodenough JB, Ruiz-Dias JE, Zhen YS (1990) Oxide-ion conduction in Ba2In2O5 and Ba3In2MO8 (M = Ce, Hf, or Zr). Solid State Ionics 44:21–31CrossRefGoogle Scholar
  95. 95.
    Manthiram A, Kuo JF, Goodenough JB (1993) Characterization of oxygen-deficient perovskites as oxide-ion electrolytes. Solid State Ionics 62:225–234CrossRefGoogle Scholar
  96. 96.
    Uchimoto Y, Kinuhata M, Takagi H, Yao T, Inagaki T, Yoshida H (1999) Crystal structure of metal cation-doped Ba2In2O5 and its oxide Ion conductivity. In: Proceedings of SOFC VI. Electrochemical Society, Pennington, pp 317–326Google Scholar
  97. 97.
    Schober T, Friedrich J, Krug F (1997) Phase transition in the oxygen and proton conductor Ba2In2O5 in humid atmospheres below 300°C. Solid State Ionics 99:9–13CrossRefGoogle Scholar
  98. 98.
    Hashimoto T, Inagaki Y, Kishi A, Dokiya M (2000) Absorption and secession of H2O and CO2 on Ba2In2O5 and their effects on crystal structure. Solid State Ionics 128:227–231CrossRefGoogle Scholar
  99. 99.
    Zhang GB, Smyth DM (1995) Defects and transport of the brownmillerite oxides with high oxygen ion conductivity – Ba2In2O5. Solid State Ionics 82:161–172CrossRefGoogle Scholar
  100. 100.
    Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New YorkGoogle Scholar
  101. 101.
    Oyane A (2010) Development of apatite-based composites by a biomimetic process for biomedical applications. J Ceram Soc Jpn 118(2):77–81CrossRefGoogle Scholar
  102. 102.
    Felsche J (1972) Rare earth silicates with the apatite structure. J Solid State Chem 5:266–275CrossRefGoogle Scholar
  103. 103.
    Park J, Lakes RS (2007) Biomaterials: an introduction, 3rd edn. Springer, New YorkGoogle Scholar
  104. 104.
    Bonder IA (1982) Rare-earth silicates. Ceram Int 8(3):83–89CrossRefGoogle Scholar
  105. 105.
    Higuchi Y, Sugawara M, Onishi K, Sakamoto M, Nakayama S (2010) Oxide ionic conductivities of apatite-type lanthanum silicates and germanates and their possibilities as an electrolyte of lower temperature operating SOFC. Ceram Int 36:955–959CrossRefGoogle Scholar
  106. 106.
    Panteix PJ, Béchade E, Julien I, Abélard P, Bernache-Assollant D (2008) Influence of anionic vacancies on the ionic conductivity of silicated rare earth apatites. Mater Res Bull 43:1223–1231CrossRefGoogle Scholar
  107. 107.
    Yoshioka H (2006) Oxide ionic conductivity of apatite-type lanthanum silicates. J Alloys Comp 408–412:649–652CrossRefGoogle Scholar
  108. 108.
    Higuchi M, Masubuchi Y, Nakayama S, Kikkawa S, Kodaira K (2004) Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates. Solid State Ionics 174:73–80CrossRefGoogle Scholar
  109. 109.
    Masubuchi Y, Higuchi M, Takeda T, Kikkawa S (2006) Preparation of apatite-type La9.33(SiO4)6O2 oxide ion conductor by alcoxide-hydrolysis. J Alloys Comp 408–412:641–644CrossRefGoogle Scholar
  110. 110.
    Nojiri Y, Tanase S, Iwasa M, Yoshioka H, Matsumura Y, Sakai T (2010) Ionic conductivity of apatite-type solid electrolyte material, La10−XBaXSi6O27−X/2 (X = 0−1), and its fuel cell performance. J Power Sources 195:4059–4064CrossRefGoogle Scholar
  111. 111.
    Mineshige A, Nakao T, Kobune M, Yazawa T, Yoshioka H (2008) Electrical properties of La10Si6O27-based oxides. Solid State Ionics 179:1009–1012CrossRefGoogle Scholar
  112. 112.
    Nakao T, Mineshige A, Kobune M, Yazawa T, Yoshioka H (2008) Chemical stability of La10Si6O27 and its application to electrolytes for solid oxide fuel cells. Solid State Ionics 179:1567–1569CrossRefGoogle Scholar
  113. 113.
    Nakayama S, Kageyama T, Aono H, Sadaoka Y (1995) Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J Mater Chem 5:1801–1805CrossRefGoogle Scholar
  114. 114.
    Nakayama S, Sakamoto M (1998) Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). J Euro Ceram Soc 18:1413–1418CrossRefGoogle Scholar
  115. 115.
    Yoshioka H (2007) Enhancement of ionic conductivity of apatite-type lanthanum silicates doped with cations. J Am Ceram Soc 90:3099–3105CrossRefGoogle Scholar
  116. 116.
    Yoshioka H, Nojiri Y, Tanase S (2008) Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions. Solid State Ionics 179:2165–2169CrossRefGoogle Scholar
  117. 117.
    Li B, Liu W, Pan W (2010) Synthesis and electrical properties of apatite-type La10Si6O27. J Power Sources 195:2196–2201CrossRefGoogle Scholar
  118. 118.
    Pivak YV, Kharton VV, Yaremchenko AA, Yakovlev SO, Kovalevsky AV, Frade JR, Marques FMB (2007) Phase relationships and transport in Ti-, Ce- and Zr-substituted lanthanum silicate systems. J Eur Ceram Soc 27:2445–2454CrossRefGoogle Scholar
  119. 119.
    Nojiri Y, Chen WF, Tanase S, Iwasa M, Matsumura Y, Sakai T, Tanase S (2008) Lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature SOFCs and the electrode materials. ITE-IBA Lett 1(6):498–506Google Scholar
  120. 120.
    León-Reina L, Porras-Vázquez JM, Losilla ER, Aranda MAG (2007) Phase transition and mixed oxide-proton conductivity in germanium oxy-apatites. J Solid State Chem 180:1250–1258CrossRefGoogle Scholar
  121. 121.
    Arikawa H, Nishiguchi H, Ishihara T, Takita Y (2000) Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide. Solid State Ionics 136–137:31–37CrossRefGoogle Scholar
  122. 122.
    Ishihara T, Arikawa H, Akbay T, Nishiguchi H, Takita Y (2001) Nonstoichiometric La2−xGeO5−δ monoclinic oxide as a new fast oxide ion conductor. J Am Chem Soc 123:203–209CrossRefGoogle Scholar
  123. 123.
    Nakayama S, Higuchi Y, Kondo Y, Sakamoto M (2004) Effects of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics. Solid State Ionics 170:219–223CrossRefGoogle Scholar
  124. 124.
    Berastegui P, Hull S, García García FJ, Grins J (2002) A structural investigation of La2(GeO4)O and alkaline-earth-doped La9.33(GeO4)6O2. J Solid State Chem 168:294–305CrossRefGoogle Scholar
  125. 125.
    Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8(3):610–641CrossRefGoogle Scholar
  126. 126.
    Wagner C (1968) Die Löslichkeit von Wasserdampf in ZrO2-Y2O3-Mischkristallen, Berichte Bunseng. Phys Chem 72(7):778–781Google Scholar
  127. 127.
    Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16CrossRefGoogle Scholar
  128. 128.
    ZP X, Jin Y, Diniz da Costa JC, GQM L (2008) Zr(HPO4)2 based organic/inorganic nanohybrids as new proton conductors. Solid State Ionics 178:1654–1659CrossRefGoogle Scholar
  129. 129.
    Ahmad MI, Zaidi SMJ, Ruhman SU, Ahmed S (2006) Synthesis and proton conductivity of heteropolyacids loaded Y-zeolite as solid proton conductors for fuel cell applications. Miropor Mesopor Mater 91:296–304CrossRefGoogle Scholar
  130. 130.
    Norby T (1999) Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics 125:1–11CrossRefGoogle Scholar
  131. 131.
    Daiko Y, Nguyen VH, Yazawa T, Muto H, Sakai M, Matsuda A (2010) Phase transition and proton conductivity of CsHSO4-WPA composites prepared by mechanical milling. Solid State Ionics 181:183–186CrossRefGoogle Scholar
  132. 132.
    Sugahara T, Hayashi A, Tadanaga K, Tatsumisago M (2010) Characterization of proton conducting CsHSO4-CsH2PO4 ionic glasses prepared by the melt-quenching method. Solid State Ionics 181:190–192CrossRefGoogle Scholar
  133. 133.
    Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3(4):359–363CrossRefGoogle Scholar
  134. 134.
    Fukatsu N, Kurita N, Yajima T, Koide K, Ohashi T (1995) Proton conductors of oxide and their application to research into metal-hydrogen systems. J Alloys Comp 231:706–712CrossRefGoogle Scholar
  135. 135.
    Schwartz M, Link BF, Sammells AF (1993) New brownmillerite solid electrolytes. J Electrochem Soc 140:L62–L63CrossRefGoogle Scholar
  136. 136.
    Zahang GB, Smyth DM (1995) Protonic conduction in Ba2In2O5. Solid State Ionics 82:153–160CrossRefGoogle Scholar
  137. 137.
    Fisher CSJ, Islam MS (1999) Defect, protons and conductivity in brownmillerite-structured Ba2In2O5. Solid State Ionics 118:355–363CrossRefGoogle Scholar
  138. 138.
    Orera A, Slater PR (2010) Water incorporation studies in apatite-type rare earth silicates/germinates. Solid State Ionics 181:110–114CrossRefGoogle Scholar
  139. 139.
    Marrero-López D, Martín-Sedeño MC, Ruiz-Morales JC, Núñez P, Ramos-Barrado JR (2010) Preparation and characterisation of La10-xGe5.5Al0.5O26±δ apatites by freeze-drying precursor method. Mater Res Bull 45:409–415CrossRefGoogle Scholar
  140. 140.
    Ito N, Iijima M, Kimura K, Iguchi S (2005) New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte. J Power Sources 152:200–203CrossRefGoogle Scholar
  141. 141.
    Matsumoto H, Nomura I, Okada S, Ishihara T (2008) Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate. Solid State Ionics 179:1486–1489CrossRefGoogle Scholar
  142. 142.
    Ishigaki T, Yamauchi S, Kishio K, Fueki K, Iwahara H (1986) Dissolution of deuterium into proton conductor SrCe0.95Yb0.05O3−δ. Solid State Ionics 21:239–241CrossRefGoogle Scholar
  143. 143.
    Iwahara H, Uchida H, Ono K, Ogaki K (1998) Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc 135:529–533CrossRefGoogle Scholar
  144. 144.
    Bonanos N, Ellis B, Mahmood MN (1991) Construction and operation of fuel cells based on the solid electrolyte BaCeO3: Gd. Solid State Ionics 44:305–311CrossRefGoogle Scholar
  145. 145.
    Ma G, Matsumoto H, Iwahara H (1999) Ionic conduction and nonstoichiometry in non-doped BaxCeO3−α. Solid State Ionics 122:237–247CrossRefGoogle Scholar
  146. 146.
    Taniguchi N, Hatoh K, Niikura J, Gamo T, Iwahara H (1992) Proton conductive properties of gadolinium-doped barium cerates at high temperatures. Solid State Ionics 53–56:998–1003CrossRefGoogle Scholar
  147. 147.
    Ma G, Shimura T, Iwahara H (1998) Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3−α. Solid State Ionics 110:103–110CrossRefGoogle Scholar
  148. 148.
    Ma G, Shimura T, Iwahara H (1999) Simultaneous doping with La3+ and Y3+ for Ba2+ −and Ce4+ −sites in BaCeO3 and the ionic conduction. Solid State Ionics 120:51–60CrossRefGoogle Scholar
  149. 149.
    Katahira K, Kohchi Y, Shimura T, Iwahara H (2000) Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138:91–98CrossRefGoogle Scholar
  150. 150.
    Ranran P, Yan W, Lizhai Y, Zongqiang M (2006) Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics 177:389–393CrossRefGoogle Scholar
  151. 151.
    XT S, Yan QZ, Ma YH, Zhang WF, Ge CC (2006) Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte. Solid State Ionics 177:1041–1045CrossRefGoogle Scholar
  152. 152.
    Gorbova E, Zhuravlev BV, Demin AK, Song SQ, Tsiakaras PE (2006) Charge transfer properties of BaCe0.88Nd0.12O3−δ co-ionic electrolyte. J Power Sources 157:720–723CrossRefGoogle Scholar
  153. 153.
    Taherparvar H, Kilner JA, Baker RT, Sahibzada M (2003) Effect of humidification at anode and cathode in proton-conducting SOFCs. Solid State Ionics 162–163:297–303CrossRefGoogle Scholar
  154. 154.
    Du Y, Nowick AS (1995) Structural transitions and proton conduction in nonstoichiometric A3B′B2″O9 perovskite-type oxides. J Am Ceram Soc 78:3033–3039CrossRefGoogle Scholar
  155. 155.
    Murugaraj P, Kreuer KD, He T, Schober T, Maier J (1997) High proton conductivity in barium yttrium stannate Ba2YSnO5.5. Solid State Ionics 98:1–6CrossRefGoogle Scholar
  156. 156.
    Kreuer KD (2003) Proton conducting oxides. Ann Rev Mater Res 33:333–359CrossRefGoogle Scholar
  157. 157.
    He T, Kreuer KD, Baikov YM, Maier J (1997) Impedance spectroscopic study of thermodynamics and kinetics of Gd-doped BaCeO3 single crystal. Solid State Ionics 95:301–308CrossRefGoogle Scholar
  158. 158.
    Fabbri E, D'Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179:558–564CrossRefGoogle Scholar
  159. 159.
    Kreuer KD (1999) Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125:285–302CrossRefGoogle Scholar
  160. 160.
    He T, Ehrhart P, Meuffels P (1995) Optical band gap and Urbach tail in Y-doped BaCeO3. J Appl Phys 79:3219–3223CrossRefGoogle Scholar
  161. 161.
    Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76(3):563–588CrossRefGoogle Scholar
  162. 162.
    Mackor A, Koster TPM, Kraaijkamp JG, Gerretsen J, van Eijk JPGM (1991) Influence of La-substitution and -substoichiometry on conductivity, thermal expansion and chemical stability of Ca- or Sr-doped lanthanum manganites as SOFC cathodes. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium of solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 463–471Google Scholar
  163. 163.
    Anderson HU (1992) Review of p-type doped perovskite materials for SOFC and other applications. Solid State Ionics 52:33–41CrossRefGoogle Scholar
  164. 164.
    Kuo JH, Anderson HU, Sparlin DM (1989) Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: nonstoichiometry and defect structure. J Solid State Chem 83:52–60CrossRefGoogle Scholar
  165. 165.
    Kuo JH, Anderson HU, Sparlin DM (1990) Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J Solid State Chem 87:55–63CrossRefGoogle Scholar
  166. 166.
    van Roosmalen JAM, Huijsmans JPP, Cordfunke EHP (1991) Sinter behavior and electrical conductivity of (La,Sr)MnO3 as a function of Sr-content. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings 2nd International symposium on solid oxide fuel cells. Commission of European Communities, Luxemborg, pp 507–516Google Scholar
  167. 167.
    Hammouche A, Siebert E, Hammou A (1989) Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells. Mater Res Bull 24:367–380CrossRefGoogle Scholar
  168. 168.
    Yamada H, Nagamoto H (1993) Thermal expansion coefficient and electrical conductivity of Mn-based perovskite-type oxides. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd International symposium on solid oxide fuel cells, vol 93–94. The Electrochem Society Inc, Pennington, pp 213–219Google Scholar
  169. 169.
    Nasrallah MM, Anderson HU, Stevenson JW (1991) Defect chemistry and properties of Y1−xCaxMnO3. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 545–552Google Scholar
  170. 170.
    Stevenson JW, Nasrallah MM, Anderson HU, Parlin DMS (1993) Defect structure of Y1−yCayMnO3 and La1−yCayMnO3 , I. Electrical properties. J Solid State Chem 102:175–184CrossRefGoogle Scholar
  171. 171.
    Stevenson JW, Nasrallah MM, Anderson HU, Sparlin DM (1993) Defect structure of Y1−yCayMnO3 and La1−yCayMnO3 II Oxidation-reduction behavior. J Solid State Chem 102:185–197CrossRefGoogle Scholar
  172. 172.
    Fu B, Huebner W, Trubelja MF, Stubican VS (1993) (Y1−xCax)FeO3: a potential cathode material for solid oxide fuel cells. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 276–287Google Scholar
  173. 173.
    Yamamoto O, Takeda Y, Imanishi N, Sakaki Y (1993) Electrochemical properties of La1−xCaxMnO3−z as cathode in SOFC. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 205–212Google Scholar
  174. 174.
    Mizusaki J, Tagawa H, Katou M, Hirano K, Sawata A, Tsuneyoshi K (1991) Electrochemical properties of some perovskite-type oxides as oxygen gas electrodes on yttria stabilized zirconia. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 487–494Google Scholar
  175. 175.
    Mizusaki J, Tagawa H, Tsuneyoshi K, Sawata A (1991) Reaction kinetics and microstructure of the solid oxide fuel cells air electrode La0.6Ca0.4MnO3/YSZ. J Electrochem Soc 138(7):1867–1873CrossRefGoogle Scholar
  176. 176.
    Dokiya M (1992) A historical review on the SOFC research activity at NCLI, (in Japanese). In: Extended abstracts 1st symposium on solid oxide fuel cells, Japan. Solid Oxide Fuel Cells Society, Tokyo, pp 11–14Google Scholar
  177. 177.
    Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) Chemical thermodynamic compatibility of solid oxide fuel cell materials. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 663–670Google Scholar
  178. 178.
    Yokokawa H, Sakai N, Kawada T, Dokiya M (1992) Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials. Solid State Ionics 52:43–56CrossRefGoogle Scholar
  179. 179.
    Otoshi S, Sasaki H, Ohnishi H, Hase M, Ishimaru K, Ippommatsu M, Higuchi T, Miyayama M, Yanagida H (1991) Changes in the phases and electrical conduction properties of (La1−xSrx)1−yMnO3−δ. J Electrochem Soc 138(5):1519–1523CrossRefGoogle Scholar
  180. 180.
    Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia. J Electrochem Soc 134(11):2656–2661CrossRefGoogle Scholar
  181. 181.
    Mizusaki J (1992) Nonstoichiometry, diffusion, and electrical properties of perovskite-type oxide electrode materials. Solid State Ionics 52:79–91CrossRefGoogle Scholar
  182. 182.
    Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N (1991) Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics 48:207–212CrossRefGoogle Scholar
  183. 183.
    Ivers-Tiffée E, Schieβl M, Oel HJ, Wersing W (1993) Investigations of cobalt- containing perovskites in SOFC single cells with respect to interface reactions and cell performance. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 613–622Google Scholar
  184. 184.
    Iberl A, von Philipsborn H, Schieβl M, Ivers-Tiffée E, Wersing W, Zorn G (1991) High-temperature X-ray diffraction measurements of phase transitions and thermal expansion in (La,Sr)(Mn,Co)O3-cathode materials. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 527–535Google Scholar
  185. 185.
    Mackor A, Spee CIMA, van der Zouwen-Assink EA, Baptista JL, Schoonman J (1990) Mixed conductivity in perovskite SOFC materials La1−xMxMn1−yCoyO3 (M = Ca or Sr). In: Proceedings of the 25th intersociety energy conversion engineering conference, American Institute of Chemical Engineers, vol 3, pp 251–255Google Scholar
  186. 186.
    Tai LW, Nasrallah MM, Anderson HU (1993) (La1−xSrx)(Co1−yFey)O3, A potential cathode for intermediate temperature SOFC applications. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 241–251Google Scholar
  187. 187.
    Chen CC, Nasrallah MM, Anderson HU (1993) Preparation and electrode characteristics of dense La0.6Sr0.4Co0.2Fe0.8O3 thin film by polymetric precursors. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society Inc., Pennington, pp 252–266Google Scholar
  188. 188.
    Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ. Mater Res Bull 23:51–58CrossRefGoogle Scholar
  189. 189.
    Ftikos C, Carter S, Steele BCH (1993) Mixed electronic/ionic conductivity of the solid solutions La(1−x)SrxCo(1−y)NiyO3−δ (x:0.4, 0.5, 0.6 and y:0.2, 0.4, 0.6). J Europ Ceram Soc 12:79–86CrossRefGoogle Scholar
  190. 190.
    Inoue T, Seki N, Eguchi K, Arai H (1990) Low-temperature operation of solid electrolyte oxygen sensors using perovskite-type oxide electrodes and cathodic reaction kinetics. J Electrochem Soc 137(8):2523–2527CrossRefGoogle Scholar
  191. 191.
    Sasaki K, Wurth JP, Gschwend R, Gödickemeier M, Gauckler LJ (1996) Microstructure-property relations of solid oxide fuel cell cathodes and current collectors: cathodic polarization and ohmic resistance. J Electrochem Soc 143:530–543CrossRefGoogle Scholar
  192. 192.
    Kleitz M (1992) Reaction pathways: a new electrode modelling concept. In: McEvoy A (ed) Fundamental barriers to SOFC performance. Swiss Federal Office of Energy, Bern, pp 4–12Google Scholar
  193. 193.
    Steele BCH, Carter S, Kajda J, Kontoulis I, Kilner JA (1991) Optimisation of fuel cell components using 18O/16O exchange and dynamic SIMS techniques. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 517–525Google Scholar
  194. 194.
    Hammou A (1992) Solid oxide fuel cells. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering, vol 2. VCH-Verlag, Weinheim, pp 87–139CrossRefGoogle Scholar
  195. 195.
    Hammouche A, Siebert E, Hammou A, Kleitz M, Caneiro A (1991) Electrocatalytic properties and nonstoichiometry of the high temperature air electrode La1−xSrxMnO3. J Electrochem Soc 138(5):1212–1216CrossRefGoogle Scholar
  196. 196.
    Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K (1988) Diffusion of oxide Ion vacancies in perovskite-type oxides. J Solid State Chem 73:179–187CrossRefGoogle Scholar
  197. 197.
    Takeda Y, Ueno H, Imanishi N, Yamamoto O, Sammes N, Phillipps M (1996) Gd1−xSrxCoO3 for the electrode of solid oxide fuel cells. Solid State Ionics 86–88:1187–1190CrossRefGoogle Scholar
  198. 198.
    Tu H, Takeda Y, Imanishi N, Yamamoto O (1997) Ln1−xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ionics 100:283–288Google Scholar
  199. 199.
    Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Iio M, Esaki Y (1999) Ln1−xSrxMnO3 (Ln = Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells. Solid State Ionics 118:187–194CrossRefGoogle Scholar
  200. 200.
    Phillipps M, Sammes N, Yamamoto O (1999) Gd1−xAxCo1−yMnyO3 (A = Sr, Ca) as a cathode for the SOFC. Solid State Ionics 123:131–138CrossRefGoogle Scholar
  201. 201.
    Tu H, Takeda Y, Imanishi N, Yamamoto O (1999) Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics 117:277–281CrossRefGoogle Scholar
  202. 202.
    Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y (2003) Ln1−xSrxCo1−yFeyO3−δ(Ln = Pr, Nd, Gd; x = 0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics 158:55–65CrossRefGoogle Scholar
  203. 203.
    Ishihara T, Honda M, Shibayama T, Nishiguchi H, Takita Y (1998) Intermediate temperature solid oxide fuel cells using a New LaGaO3 based oxide ion conductor. J Electrochem Soc 145:3177–3183CrossRefGoogle Scholar
  204. 204.
    Ishihara T, Fukui S, Nishiguchi H, Takita Y (2002) Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell. Solid State Ionics 152–153:609–613CrossRefGoogle Scholar
  205. 205.
    Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173CrossRefGoogle Scholar
  206. 206.
    Li S, Lu Z, Wei B, Huang X, Miao J, Cao G, Zhu R, Su W (2006) A study of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ as a cathode material for IT-SOFCs. J Alloys Comp 426:408–414CrossRefGoogle Scholar
  207. 207.
    Kotomin EA, Mastrikov YA, Kuklja MM, Merkle R, Roytburd A, Maier J (2011) First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1−yFeyO3−δ perovskites. Solid State Ionics 188:1–5CrossRefGoogle Scholar
  208. 208.
    Yan A, Cheng M, Dong Y, Yang W, Maragou V, Song S, Tsiakaras P (2006) Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode IT-SOFC I. The effect of CO2 on the cell performance. Appl Catal B Environ 66:64–71CrossRefGoogle Scholar
  209. 209.
    Yan A, Yang M, Hou Z, Dong Y, Cheng M (2008) Investigation of Ba1−xSrxCo0.8Fe0.2O3−δ as cathodes for low-temperature solid oxide fuel cells both in the absence and presence of CO2. J Power Sources 185:76–84CrossRefGoogle Scholar
  210. 210.
    Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y, Saitoh T (1995) Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator. J Power Sources 55:73–79CrossRefGoogle Scholar
  211. 211.
    Taniguchi S, Kadowaki M, Yasuo T, Akiyama Y, Itoh Y, Miyake Y, Nishio K (1996) Suppression of chromium diffusion to an SOFC cathode from an alloy separator by a cathode second layer. Denki Kagaku 64(6):568–574Google Scholar
  212. 212.
    Matsuzaki Y, Yasuda I (2001) Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes. J Electrochem Soc 148(2):A126–A131CrossRefGoogle Scholar
  213. 213.
    Chiba R, Yoshimura F, Sakurai Y (1999) An investigation of LaNi1−xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ionics 124:281–288CrossRefGoogle Scholar
  214. 214.
    Komatsu T, Chiba R, Arai H, Sato K (2008) Chemical compatibility and electrochemical property of intermediate-temperature SOFC cathodes under Cr poisoning condition. J Power Sources 176:132–137CrossRefGoogle Scholar
  215. 215.
    Jiang SP, Zhen Y (2008) Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells. Solid State Ionics 179:1459–1464CrossRefGoogle Scholar
  216. 216.
    Lee S, Bevilacqua M, Fornasiero P, Vohs JM, Gorte RJ (2009) Solid oxide fuel cell cathodes prepared by infiltration of LaNi0.6Fe0.4O3 and La0.91Sr0.09Ni0.6Fe0.4O3 in porous yttria-stabilized zirconia. J Power Sources 193:747–753CrossRefGoogle Scholar
  217. 217.
    Skinner S, Kilner J (2000) Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics 135:709–712CrossRefGoogle Scholar
  218. 218.
    Mauvy F, Bassat J, Boehm E, Manaud J, Dordor P, Grenier J (2003) Oxygen electrode reaction on Nd2NiO4+δcathode materials: impedance spectroscopy study. Solid State Ionics 158:17–28CrossRefGoogle Scholar
  219. 219.
    Lalanne C, Prosperi G, Bassat J, Mauvy F, Fourcade S, Stevens P, Zahid M, Diethelm S, van Herle J, Grenier J (2008) Neodymium-deficient nickelate oxide Nd1.95NiO4+δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells. J Power Sources 185:1218–1224CrossRefGoogle Scholar
  220. 220.
    Nie H, Wen T, Wang S, Wang Y, Guth U, Vashook V (2006) Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−αA′αMO4 (A = Pr, Sm; A′ = Sr; M = Mn, Ni; α = 0.3, 0.6) as a new cathode for SOFC. Solid State Ionics 177:1929–1932CrossRefGoogle Scholar
  221. 221.
    Wang Y, Nie H, Wang S, Wen T, Guth U, Valshook V (2006) A2−αA′αBO4-type oxides as cathode materials for IT-SOFCs (A = Pr, Sm; A′ = Sr; B = Fe, Co). Mater Lett 60:1174–1178CrossRefGoogle Scholar
  222. 222.
    Haanappel V, Rutenbeck D, Mai A, Uhlenbruck S, Sebold D, Wesemeyer H, Röwekamp B, Tropartz C, Tietz F (2004) The influence of noble-metal-containing cathodes on the electrochemical performance of anode-supported SOFCs. J Power Sources 130:119–128CrossRefGoogle Scholar
  223. 223.
    Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag cathode for ceria electrolyte SOFCs. Solid State Ionics 146:203–210CrossRefGoogle Scholar
  224. 224.
    Zhang J, Ji Y, Gao H, He T, Liu J (2005) Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells. J Alloys Compounds 395:322–325CrossRefGoogle Scholar
  225. 225.
    Simner S, Anderson MJ, Coleman JS (2006) Performance of a novel La(Sr)Fe(Co)O3-Ag SOFC cathode. J Power Sources 161:115–122CrossRefGoogle Scholar
  226. 226.
    Mogensen M, Lindegaard T, Hansen TU, Mogensen G (1994) Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2. J Electrochem Soc 141(8):2122–2128CrossRefGoogle Scholar
  227. 227.
    Setoguchi T, Okamoto K, Eguchi K, Arai H (1992) Effects of anode material and fuel on anodic reaction of solid oxide fuel cells. J Electrochem Soc 139:2875–2880CrossRefGoogle Scholar
  228. 228.
    Sasaki H, Otoshi S, Suzuki M, Sogi T, Kajimura A, Sugiura N, Ippommatsu M (1994) Fabrication of high power density tabular type solid oxide fuel cells. Solid State Ionics 72:253–256CrossRefGoogle Scholar
  229. 229.
    Lide DR (2008) CRC handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  230. 230.
    Tao SW, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323CrossRefGoogle Scholar
  231. 231.
    Zha SW, Tsang P, Cheng Z, Liu ML (2005) Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−xMnxO3 under anodic conditions. J Solid State Chem 178:1844–1850CrossRefGoogle Scholar
  232. 232.
    Huang YH, Dass RI, Denyszyn JC, Goodenough JB (2006) Synthesis and characterization of Sr2MgMoO6−δ an anode material for the solid oxide fuel cell. J Electrochem Soc 153:A1266–A1272CrossRefGoogle Scholar
  233. 233.
    Vernoux P, Guillodo M, Foulrtier J, Hammou A (2000) Alternative anode material for gradual methane reforming in solid oxide fuel cells. Solid State Ionics 135:425–431CrossRefGoogle Scholar
  234. 234.
    Ruiz-morales JC, Canales-Vázquez J, Peña-Martínez J, López DM, Núñez P (2006) On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochim Acta 52:278–284CrossRefGoogle Scholar
  235. 235.
    Sauvet AL, Fouletier J (2001) Electrochemical properties of a new type of anode material La1−xSrxCr1−yRuyO3−δ for SOFC under hydrogen and methane at intermediate temperatures. Electrochim Acta 47:987–995CrossRefGoogle Scholar
  236. 236.
    Sauvet AL, Fouletier J, Gaillard F, Primet M (2002) Surface properties and physicochemical characterizations of a New type of anode material, La1−xSrxCr1−yRuyO3−δ, for a solid oxide fuel cell under methane at intermediate temperature. J Catal 209:25–34CrossRefGoogle Scholar
  237. 237.
    Sauvet AL, Irvine JTS (2004) Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ. Solid State Ionics 167:1–8CrossRefGoogle Scholar
  238. 238.
    Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricô AS, Gullo LR, Rosa DL, Antonucci V (2005) Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. J Power Sources 145:68–73CrossRefGoogle Scholar
  239. 239.
    Lepe FJ, Fernández-Urbán J, Mestres L, Martínez-Sarrión ML (2005) Synthesis and electrical properties of new rare-earth titanium perovskites for SOFC anode applications. J Power Sources 151:74–78CrossRefGoogle Scholar
  240. 240.
    Fagg DP, Kharton VV, Kovalevsky AV, Viskup AP, Naumovich EN, Frade JR (2001) The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. J Eur Ceram Soc 21:1831–1835CrossRefGoogle Scholar
  241. 241.
    Hui S, Petric A (2002) Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. J Eur Ceram Soc 22:1673–1681CrossRefGoogle Scholar
  242. 242.
    Moos R, Härdtl KH (1997) Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400°C. J Am Ceram Soc 80(10):2549–2562CrossRefGoogle Scholar
  243. 243.
    Hui SQ, Petric A (2001) Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures. Solid State Ionics 143:275–283CrossRefGoogle Scholar
  244. 244.
    Bieger T, Waser MJ, Waser R (1992) Optical investigation of oxygen incorporation in SrTiO3. Solid State Ionics 53–56:578–582CrossRefGoogle Scholar
  245. 245.
    Sasaki K, Claus J, Maier J (1999) Defect chemistry of oxides in partially frozen-in states: case studies for ZrO2(Y2O3), SrZrO3(Y2O3), and SrTiO3. Solid State Ionics 121:51–60CrossRefGoogle Scholar
  246. 246.
    Park S, Gorte RJ, Vohs JM (2000) Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Appl Catal A Gen 200:55–61CrossRefGoogle Scholar
  247. 247.
    Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–267CrossRefGoogle Scholar
  248. 248.
    Zhou ZF, Kumar R, Thakur ST, Rudnick LR, Schobert H, Lvov SN (2007) Direct oxidation of waste vegetable oil in solid-oxide fuel cells. J Power Sources 171:856–860CrossRefGoogle Scholar
  249. 249.
    Craciun R, Park S, Gorte RJ, Vohs JM, Wang C, Worrell WL (1999) A novel method for preparing anode cermets for solid oxide fuel cells. J Electrochem Soc 146:4019–4022CrossRefGoogle Scholar
  250. 250.
    Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, ChichesterGoogle Scholar
  251. 251.
    Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases I. equilibrium compositions and reforming conditions. J Electrochem Soc 150(7):A878–A884CrossRefGoogle Scholar
  252. 252.
    Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases II. the C─H─O ternary diagrams. J Electrochem Soc 150(7):A885–A888CrossRefGoogle Scholar
  253. 253.
    Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases. In: Proceedings of the 8th international symposium on solid oxide fuel cells, vol 2003–2007. Electrochemical Society, Pennington, pp 1225–1239Google Scholar
  254. 254.
    Sasaki K, Kojo H, Hori Y, Kikuchi R, Eguchi K (2002) Direct-alcohol/hydrocarbon SOFCs: comparison of power generation characteristics for various fuels. Electrochemistry 70(1):18–22Google Scholar
  255. 255.
    Eguchi K, Kojo H, Takeguchi T, Kikuchi R, Sasaki K (2002) Fuel flexibility in power generation by solid oxide fuel cells. Solid State Ionics 152:411–416CrossRefGoogle Scholar
  256. 256.
    Sasaki K, Hori Y, Kikuchi R, Eguchi K, Ueno A, Takeuchi H, Aizawa M, Tsujimoto K, Tajiri H, Nishikawa H, Uchida Y (2002) Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases. J Electrochem Soc 149(3):A227–A233CrossRefGoogle Scholar
  257. 257.
    Sasaki K, Watanabe K, Teraoka Y (2004) Direct-alcohol solid oxide fuel cells: current-voltage characteristics and fuel gas compositions. J Electrochem Soc 151(7):A965–A970CrossRefGoogle Scholar
  258. 258.
    Sasaki K, Watanabe K, Shiosaki K, Susuki K, Teraoka Y (2003) Power generation characteristics of SOFCs for alcohols and hydrocarbons. In: Proceedings of the 8th international symposium on solid oxide fuel cells, vol 2003–2007. Electrochemical Society, Pennington, pp 1295–1304Google Scholar
  259. 259.
    Kishimoto H, Horita T, Yamaji K, Xiong Y, Sakai N, Brito ME, Yokokawa H (2005) Feasibility of n-Dodecane fuel for solid oxide fuel cell with Ni-ScSZ anode. J Electrochem Soc 152(3):A532–A538CrossRefGoogle Scholar
  260. 260.
    Sasaki K, Watanabe K, Shiosaki K, Susuki K, Teraoka Y (2004) Multi-fuel capability of solid oxide fuel cells. J Electroceram 13(1–3):669–675CrossRefGoogle Scholar
  261. 261.
    Haga K (2010) Chemical degradation of Ni-based anode materials in solid oxide fuel cells. Dissertation, Kyushu University, FukuokaGoogle Scholar
  262. 262.
    Sasaki K, Haga K, Yoshizumi T, Minematsu D, Yuki E, Liu RR, Uryu C, Oshima T, Ogura T, Shiratori Y, Ito K, Koyama M, Yokomoto K (2011) Chemical durability of SOFCs: influence of impurities on long-term performance. J Power Sources 196(22):9130–9140CrossRefGoogle Scholar
  263. 263.
    Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2006) H2S poisoning of solid oxide fuel cells. J Electrochem Soc 153:A2023–A2029CrossRefGoogle Scholar
  264. 264.
    Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2005) Sulfur tolerance of solid oxide fuel cells. In: Proceedings of the 9th international symposium on solid oxide fuel cells, vol 2005–2007. Electrochemical Society, Pennington, pp 1267–1274Google Scholar
  265. 265.
    Sasaki K, Adachi S, Haga K, Uchikawa M, Yamamoto J, Iyoshi A, Chou J-T, Shiratori Y, Itoh K (2007) Fuel impurity tolerance of solid oxide fuel cells. Solid oxide fuel cells 10 (SOFC-10). ECS Trans 7(1):1675–1683CrossRefGoogle Scholar
  266. 266.
    Haga K, Adachi S, Shiratori Y, Ito K, Sasaki K (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179(27–32):1427–1431CrossRefGoogle Scholar
  267. 267.
    Haga K, Shiratori Y, Ito K, Sasaki K (2008) Chlorine poisoning of SOFC Ni-cermet anodes. J Electrochem Soc 155(12):B1233–B1239CrossRefGoogle Scholar
  268. 268.
    Haga K, Shiratori Y, Nojiri Y, Ito K, Sasaki K (2010) Phosphorus poisoning of Ni-cermet anodes in solid oxide fuel cells. J Electrochem Soc 157(11):B1693–B1700CrossRefGoogle Scholar
  269. 269.
    Park S, Cracium R, Vohs JM, Gorte RJ (1999) Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. Methane oxidation. J Electrochem Soc 146:3603–3605CrossRefGoogle Scholar
  270. 270.
    Shiratori Y, Oshima T, Sasaki K (2008) Feasibility of direct-biogas SOFC. Int J Hydrogen Energ 33:6316–6321CrossRefGoogle Scholar
  271. 271.
    Gorte RJ, Kim H, Vohs JM (2002) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon. J Power Sources 106:10–15CrossRefGoogle Scholar
  272. 272.
    Kim H, Park S, Vohs JM, Gorte RJ (2001) Direct oxidation of liquid fuels in a solid oxide fuel cell. J Electrochem Soc 148:A693–A695CrossRefGoogle Scholar
  273. 273.
    Zhou ZF, Gallo C, Pague MB, Schobert H, Lvov SN (2004) Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell. J Power Sources 133:181–187CrossRefGoogle Scholar
  274. 274.
    Shiratori Y, Tran TQ, Takahashi Y, Sasaki K (2011) Application of biofuels to solid oxide fuel cell. ECS Trans 35:2641–2651CrossRefGoogle Scholar
  275. 275.
    van Herle J, Maréchal F, Leuenberger S, Membrez Y, Bucheli O, Favrat D (2004) Process flow model of solid oxide fuel cell system supplied with sewage biogas. J Power Sources 131:127–141CrossRefGoogle Scholar
  276. 276.
    Girona K, Laurencin J, Petitjean M, Fouletier J, Lefebvre-Joud F (2009) SOFC running on biogas: identification and experimental validation of “safe” operating conditions. ECS Trans 25(2):1041–1050CrossRefGoogle Scholar
  277. 277.
    Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Internal reforming SOFC running on biogas. Int J Hydrog Energy 35:7905–7912CrossRefGoogle Scholar
  278. 278.
    Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Performance of internal reforming SOFC running on biogas. In: Proceedings of 9th European SOFC Forum, Luzern, pp 4-77–4-87Google Scholar
  279. 279.
    Swaine DJ (1990) Trace elements in coal. Butterworths, LondonGoogle Scholar
  280. 280.
    Lobachyov K, Richter HJ (1996) Combined cycle gas turbine power plant with coal gasification and solid oxide fuel cell. J Energy Resour Technol 118:285–292CrossRefGoogle Scholar
  281. 281.
    Iritani J, Kougami K, Komiyama N, Nagata K, Ikeda K, Tomida K (2001) Pressurized 10kW class module of SOFC. In: Yokokawa H, Singhal SC (eds) Proceedings of the 7th international symposium on solid oxide fuel cells, vol 2001–2016. Pennington, Electrochemical Society, pp 63–71Google Scholar
  282. 282.
    Doctor RD, Molburg JC, Thimmapuram PR (1997) Oxygen-blown gasification combined cycle: carbon dioxide recovery, transport, and disposal. Energy Convers Manag 38:S575–S580CrossRefGoogle Scholar
  283. 283.
    Timpe RC, Kulas RW, Hauserman WB, Sharma RK, Olson ES, Willson WG (1997) Catalytic gasification of coal for the production of fuel cell feedstock. Int J Hydrog Energy 22:487–492CrossRefGoogle Scholar
  284. 284.
    Sjunnesson L (1998) Utilities and their investments in fuel cells. J Power Sources 71:41–44CrossRefGoogle Scholar
  285. 285.
    Cayan FN, Zhi M, Pakalapati SR, Celik I, Wu N, Gemmen RS (2008) Effects of coal syngas impurities on anodes of solid oxide fuel cells. J Power Sources 185:595–602CrossRefGoogle Scholar
  286. 286.
    Marina OA, Pederson LR, Coyle CA, Thomsen EC, Coffey GW (2005) Ni/YSZ anode interactions with impurities in coal gas. ECS Trans 25(2):2125–2130Google Scholar
  287. 287.
    Bao JE, Krishnan GN, Jayaweera P, Perez-Mariano J, Sanjurjo A (2009) Effect of various coal contaminants on the performance of solid oxide fuel cells: part I. accelerated testing. J Power Sources 193:607–616CrossRefGoogle Scholar
  288. 288.
    Bao JE, Krishnan GN, Jayaweera P, Lau KH, Sanjurjo A (2009) Effect of various coal contaminants on the performance of solid oxide fuel cells: part II. ppm and sub-ppm level testing. J Power Sources 193:617–624CrossRefGoogle Scholar
  289. 289.
    Bao JE, Krishnan GN, Jayaweera P, Sanjurjo A (2010) Effect of various coal gas contaminants on the performance of solid oxide fuel cells: part III. synergistic effects. J Power Sources 195:1316–1324CrossRefGoogle Scholar
  290. 290.
    Trembly JP, Gemmen RS, Bayless DJ (2007) The effect of IGFC warm gas cleanup system conditions on the gas-solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes. J Power Sources 163:986–996CrossRefGoogle Scholar
  291. 291.
    Yoshida S, Kabata T, Nishiura M, Koga S, Tomida K, Miyamoto K, Teramoto Y, Matake N, Tsukuda H, Suemori S, Ando Y, Kobayashi Y (2011) Development of the SOFC-GT combined cycle system with tubular type cell stack. ECS Trans 35(1):105–111CrossRefGoogle Scholar
  292. 292.
    Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, New YorkCrossRefGoogle Scholar
  293. 293.
    Tsuchiya M, Lai BK, Ramanathan S (2011) Scalable nanostructured membranes for solid oxide fuel cells. Nat Nanotechnol 6:282–286CrossRefGoogle Scholar
  294. 294.
    Karageorgakis NI, Heel A, Rupp JLM, Aguirre MH, Graule T, Gauckler LJ (2011) Properties of flame sprayed Ce0.8Gd0.2O1.9−δ electrolyte thin films. Adv Funct Mater 21(3):532–539CrossRefGoogle Scholar
  295. 295.
    Bonderer LJ, Chen PW, Kocher P, Gauckler LJ (2010) Free-standing ultrathin ceramic foils. J Am Ceram Soc 93(11):3624–3631CrossRefGoogle Scholar
  296. 296.
    Ryll T, Galinski H, Schlagenhauf L, Elser P, Rupp JLM, Bieberle-Hutter A, Gauckler LJ (2011) Microscopic and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte. Adv Funct Mater 21(3):565–572CrossRefGoogle Scholar
  297. 297.
    Tuller HL, Litzelman SJ, Jung WC (2009) Micro-ionics: next generation power sources. Phys Chem Chem Phys 11:3023–3034CrossRefGoogle Scholar
  298. 298.
    Tuller HL, Bishop SR (2011) Point defects in oxides: tailoring materials through defect engineering. Annu Rev Mater Res 41:369–398CrossRefGoogle Scholar
  299. 299.
    Sasaki K, Maier J (1999) Low temperature defect chemistry of oxides: I. general aspects and numerical calculations. J Appl Phys 86(10):5422–5433CrossRefGoogle Scholar
  300. 300.
    Sasaki K, Maier J (1999) Low temperature defect chemistry of oxides: II. analytical relations. J Appl Phys 86(10):5434–5443CrossRefGoogle Scholar
  301. 301.
    Matsumoto K, Fujigaya T, Sasaki K, Nakashima N (2011) Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells. J Mater Chem 21(4):1187–1190CrossRefGoogle Scholar
  302. 302.
    Masao A, Noda Z, Takasaki F, Ito K, Sasaki K (2009) Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells. Electrochem Solid-State Lett 12(9):B119–B122CrossRefGoogle Scholar
  303. 303.
    Sasaki K, Takasaki F, Noda Z, Hayashi S, Shiratori Y, Ito K (2010) Alternative electrocatalyst support materials for polymer electrolyte fuel cells. ECS Trans 33(1):473–482CrossRefGoogle Scholar
  304. 304.
    Hayashi A, Notsu H, Kimijima K, Miyamoto J, Yagi I (2008) Preparation of Pt/mesoporous carbon (MC) electrode catalyst and its reactivity toward oxygen reduction. Electrochim Acta 53(21):6117–6125CrossRefGoogle Scholar
  305. 305.
    Masuda H, Yamamoto A, Sasaki K, Lee S, Ito K (2011) A visualization study on relationship between water-droplet behavior and cell voltage appeared in straight, parallel and serpentine channel pattern cells. J Power Sources 196:5377–5385CrossRefGoogle Scholar
  306. 306.
    Sasaki K, Li HW, Hayashi A, Yamabe J, Ogura T, Lyth SM (2016) Hydrogen Energy Engineering: A Japanese Perspective. Springer, Tokyo, JapanGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • K. Sasaki
    • 1
    • 2
    • 3
    Email author
  • Y. Nojiri
    • 1
  • Y. Shiratori
    • 1
    • 3
  • S. Taniguchi
    • 1
  1. 1.International Research Center for Hydrogen EnergyKyushu UniversityFukuokaJapan
  2. 2.International Institute for Carbon-Neutral Energy Research (WPI)Kyushu UniversityFukuokaJapan
  3. 3.Faculty of EngineeringKyushu UniversityFukuokaJapan