Skip to main content

Fuel Cells (SOFC): Alternative Approaches (Electroytes, Electrodes, Fuels)

  • Living reference work entry
  • First Online:
  • 241 Accesses

Anode:

Electrode for electrochemical oxidation reactions. In solid oxide fuel cells, hydrogen-containing fuels are oxidized by oxygen ions transported through an electrolyte to form water vapor or CO2 as the reaction products at this electrode. SOFC anodes may also act as fuel reforming catalysts when hydrocarbon-based fuels are supplied to the anodes.

Cathode:

Electrode for electrochemical reduction reactions. In solid oxide fuel cells, oxygen in ambient air is reduced to oxygen ions at this electrode.

Electrolyte:

Ionic conductor with negligible electronic conductivity, used as a membrane between an oxidation atmosphere and a reduction atmosphere. The essential material to construct electrochemical devices including fuel cells.

Fuel flexibility:

While low-temperature fuel cells (such as polymer electrolyte membrane fuel cells) typically use pure hydrogen gas (or hydrogen gas mixed with CO2) as the fuel, high-temperature fuel cells can directly use various kinds of fuels, such as...

This is a preview of subscription content, log in via an institution.

Bibliography

  1. Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352

    Article  CAS  Google Scholar 

  2. Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, Amsterdam

    Google Scholar 

  3. Singhal SC, Kendall K (2003) High-temperature solid oxide fuel cells: fundamentals, design and application. Elsevier, Oxford, UK

    Google Scholar 

  4. Larminie J, Dicks A (2003) Fuel cell systems explained, 2nd edn. Wiley, West Sussex

    Book  Google Scholar 

  5. Tagawa H (1998) Solid oxide fuel cells and global environment. Agune-Shofudo, Shinjuku. (in Japanese)

    Google Scholar 

  6. Steinberger-Wilckens R (2009) European SOFC R&D – status and trends. ECS Trans 25(2):3–10

    Article  CAS  Google Scholar 

  7. Hosoi K, Nakabaru M (2009) Status of national project for SOFC development in Japan. ECS Trans 25(2):11–20

    Article  CAS  Google Scholar 

  8. Surdoval WA (2009) The status of SOFC programs in USA 2009. ECS Trans 25(2):21–27

    Article  CAS  Google Scholar 

  9. Maier J (2004) Physical Chemistry of ionic materials: ions and electrons in solids. Wiley, West Sussex

    Book  Google Scholar 

  10. Sata N, Eberman K, Eberl K, Maier J (2000) Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408:946–949

    Article  CAS  Google Scholar 

  11. Garcia-Barriocanal J, Rivera-Calzada A, Varela M, Sefrioui Z, Iborra E, Leon C, Pennycook SJ, Santamaria J (2008) Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321(5889):676–680

    Article  CAS  Google Scholar 

  12. Tuller HL (2000) Ionic conduction in nanocrystalline materials. Solid State Ionics 131(1–2):143–157

    Article  CAS  Google Scholar 

  13. Maier J (2004) Nano-ionics: more than just a fashionable slogan. J Electroceram 13(1–3):593–598

    Article  CAS  Google Scholar 

  14. Araki W, Arai Y (2010) Oxygen diffusion in yttria-stabilized zirconia subjected to uniaxial stress. Solid State Ionics 181(8–10):441–446

    Article  CAS  Google Scholar 

  15. Litzelman SJ, Hertz JL, Jung W, Tuller HL (2008) Opportunities and challenges in materials development for thin film solid oxide fuel cells. Fuel Cells 8(5):294–302

    Article  CAS  Google Scholar 

  16. Evans A, Bieberle-Hütter A, Rupp JLM, Gauckler LJ (2009) Review on microfabricated micro-solid oxide fuel cell membranes. J Power Sources 194(1):119–129

    Article  CAS  Google Scholar 

  17. Ihara M, Hasegawa S (2006) Quickly rechargeable direct carbon solid oxide fuel cell with propane for recharging. J Electrochem Soc 153(8):A1544–A1546

    Article  CAS  Google Scholar 

  18. Hauch A, Jensen SH, Ramousse S, Mogensen M (2006) Performance and durability of solid oxide electrolysis cells. J Electrochem Soc 153(9):A1741–A1747

    Article  CAS  Google Scholar 

  19. Ishihara T, Kanno T (2010) Steam electrolysis using LaGaO3 based perovskite electrolyte for recovery of unused heat energy. ISIJ Int 50:1291–1295

    Article  CAS  Google Scholar 

  20. Minh NQ (2010) Operating characteristics of solid oxide fuel cell stacks and systems. ECS Trans 25(2):241–246

    Google Scholar 

  21. Steele BCH (1989) Oxygen ion conductors. In: Takahashi T (ed) High conductivity solid ionic conductors. World Scientific, Singapore, pp 402–446

    Chapter  Google Scholar 

  22. Steele BCH (1992) Oxygen ion conductors and their technological applications. In: Balkanski M, Takahashi T, Tuller HL (eds) Solid state ionics. Elsevier, Amsterdam, pp 17–28

    Google Scholar 

  23. Nowick AS (1984) Atom transport in oxides of the fluorite structure. In: Diffusion in crystalline solids. Academic, Orlando, pp 143–188

    Chapter  Google Scholar 

  24. Hayes W, Stoneham AM (1985) Defects and defect processes in nonmetallic solids. Wiley, New York

    Google Scholar 

  25. Kilner JA, Steele BCH (1981) Mass transport in anion-deficient fluorite oxides. In: Sørensen OT (ed) Nonstoichiometric oxides. Academic, New York, pp 233–269

    Chapter  Google Scholar 

  26. Kofstad P (1972) Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. Wiley, New York

    Google Scholar 

  27. Eyring L (1979) The binary rare earth oxides. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths, vol 3. North-Holland, Amsterdam, pp 337–399. Chap 27

    Google Scholar 

  28. Tuller HL (1991) Highly conductive ceramics. In: Buchanan RC (ed) Ceramic materials for electronics. Marcel Dekker, New York, pp 379–433

    Google Scholar 

  29. Tuller HL (1981) Mixed conduction in nonstoichiometric oxides. In: Sørensen OT, Sørensen OT (eds) Nonstoichiometric oxides. Academic, New York, pp 271–335

    Chapter  Google Scholar 

  30. Shimizu K, Kashiwagi K, Nishiyama H, Kakimoto S, Sugaya S, Yokoi H, Satsuma A (2008) Impedancemetric gas sensor based on Pt and WO3 co-loaded TiO2 and ZrO2 as total NOx sensing materials. Sens Actuators B Chem 130:707–712

    Article  CAS  Google Scholar 

  31. Gong J, Li Y, Tang Z, Zhang Z (2000) Enhancement of the ionic conductivity of mixed calcia/yttria stabilized zirconia. Mater Lett 46:115–119

    Article  CAS  Google Scholar 

  32. Gauckler LJ, Sasaki K (1994) Ionic and electronic conductivities of homogeneous and heterogeneous materials in the system ZrO2-In2O3. Solid State Ionics 75:203–210

    Article  Google Scholar 

  33. Sasaki K (1993) Phase equilibria, electrical conductivity, and electrochemical properties of ZrO2-In2O3. Dissertation, Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  34. Stafford RJ, Rothman SJ, Routbort JL (1989) Effect of dopant size on the ionic conductivity of cubic stabilized ZrO2. Solid State Ionics 37:67–72

    Article  CAS  Google Scholar 

  35. Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishi N (1999) Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system. Solid State Ionics 121:133–139

    Article  CAS  Google Scholar 

  36. Patterson JW (1971) Conduction domains for solid electrolytes. J Electrochem Soc 118:1033–1039

    Article  CAS  Google Scholar 

  37. Heyne L, Engleson D (1977) The speed of response of solid electrolyte galvanic cells for Gas sensing. J Electrochem Soc 124:727–735

    Article  CAS  Google Scholar 

  38. Tuller HL, Moon PK (1988) Fast ion conductors: future trends. Mater Sci Eng B1:171–191

    Article  CAS  Google Scholar 

  39. Nernst W (1899) Über die elektrolytische Leitung fester Körper bei sehr hohen Temperaturen. Z Elektrochem 6(2):41–43

    Article  Google Scholar 

  40. Baur E, Preis H (1937) Über Brennstoff-Ketten mit Festleitern. Z Elektrochem 44(9):695–698

    Google Scholar 

  41. Sasaki K, Maier J (2000) Re-analysis of defect equilibria and transport properties of Y2O3-stabilized ZrO2 using EPR and optical relaxation. Solid State Ionics 134(3–4):303–321

    Article  CAS  Google Scholar 

  42. Inaba H, Tagawa H (1996) Ceria-based solid electrolytes. Solid State Ionics 83:1–16

    Article  CAS  Google Scholar 

  43. Sammes NM, Tompsett GA, Näfe H, Aldinger F (1999) Bismuth based oxide electrolytes-structure and ionic conductivity. J Eur Ceram Soc 19:1801–1826

    Article  CAS  Google Scholar 

  44. Mogensen M, Sammes NM, Tompsett GA (2000) Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129:63–94

    Article  CAS  Google Scholar 

  45. Yamamoto O, Arachi Y, Sakai H, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1998) Zirconia based oxide ion conductors for solid oxide fuel cells. Ionics 4:403–408

    Article  CAS  Google Scholar 

  46. Arachi Y, Asai T, Yamamoto O, Takeda Y, Imanishi N, Kawate K, Tamakoshi C (2001) Electrical conductivity of ZrO2-Sc2O3 doped with HfO2, CeO2, and Ga2O3. J Electrochem Soc 148(5):A520–A523

    Article  CAS  Google Scholar 

  47. Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Electrical conductivity of stabilized zirconia with ytterbia and scandia. Solid State Ionics 79:137–142

    Article  CAS  Google Scholar 

  48. Tietz F, Fischer W, Hauber T, Mariotto G (1997) Structural evolution of Sc-containing zirconia electrolytes. Solid State Ionics 100:289–295

    Article  CAS  Google Scholar 

  49. Wang Z, Cheng M, Bi Z, Dong Y, Zhang H, Zhang J, Feng Z, Li C (2005) Structure and impedance of ZrO2 doped with Sc2O3 and CeO2. Mater Lett 59:2579–2582

    Article  CAS  Google Scholar 

  50. Gödickemeier M, Michel B, Orliukas A, Bohac P, Sasaki K, Gauckler LJ, Heinrich H, Schwander P, Kostorz G, Hofmann H, Frei O (1994) Effect of intergranular glass films on the electrical conductivity of 3Y-TZP. J Mater Res 9(5):1228–1240

    Article  Google Scholar 

  51. Bieberle-Hütter A, Beckel D, Infortuna A, Muecke UP, JLM R, Gauckler LJ, Rey-Mermet S, Muralt P, Bieri NR, Hotz N, Stutz MJ, Poulikakos D, Heeb P, Müller P, Bernard A, Gmür R, Hocker T (2008) A micro-solid oxide fuel cell system as battery replacement. J Power Sources 177:123–130

    Article  CAS  Google Scholar 

  52. Ji Y, Kilner JA, Carolan MF (2005) Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnO3±δ(LSM) composites. Solid State Ionics 176:937–943

    Article  CAS  Google Scholar 

  53. Ralph JM, Rossignol C, Kumar R (2003) Cathode materials for reduced-temperature SOFCs. J Electrochem Soc 150(11):A1518–A1522

    Article  CAS  Google Scholar 

  54. Stochniol G, Syskakis E, Naoumidis A (1995) Chemical compatibility between strontium-doped lanthanum manganite and yttria-stabilized zirconia. J Am Ceram Soc 78:929–932

    Article  CAS  Google Scholar 

  55. Zhao H, Huo I, Sun L, Yu L, Gao S, Zhao J (2004) Preparation, chemical stability and electrochemical properties of LSCF-CBO composite cathodes. Mater Chem Phys 88:160–166

    Article  CAS  Google Scholar 

  56. Yahiro H, Eguchi K, Arai H (1986) Ionic conduction and microstructure of the ceria-strontia system. Solid State Ionics 21:37–47

    Article  CAS  Google Scholar 

  57. Thangadurai V, Kopp P (2007) Chemical synthesis of Ca-doped CeO2 – intermediate temperature oxide ion electrolytes. J Power Sources 168:178–183

    Article  CAS  Google Scholar 

  58. Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics 52:165–172

    Article  CAS  Google Scholar 

  59. Yahiro H, Baba Y, Eguchi Y, Eguchi K, Arai H (1988) High temperature fuel cell with ceria-yttria solid electrolyte. J Electrochem Soc 135:2077–2080

    Article  CAS  Google Scholar 

  60. Shobit Omar S, Wachsman ED, Nino JC (2008) Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials. Solid State Ionics 178:1890–1897

    Article  CAS  Google Scholar 

  61. Bance P, Brandon NP, Girvan B, Holbeche P, O'Dea S, Steele BCH (2004) Spinning-out a fuel cell company from a UK University-2 years of progress at Ceres Power. J Power Sources 131:86–90

    Article  CAS  Google Scholar 

  62. Göedickemeier M, Gauckler LJ (1998) Engineering of solid oxide fuel cells with ceria-based electrolytes. J Electrochem Soc 145:414–421

    Article  Google Scholar 

  63. Atkinson A (1997) Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ionics 95:249–258

    Article  CAS  Google Scholar 

  64. Marques FMB, Navarro LM (1997) Performance of double layer electrolyte cells Part II: GCO/YSZ, a case study. Solid State Ionics 100:29–38

    Article  CAS  Google Scholar 

  65. Tsoda A, Gupta A, Naoumoidis A, Skarmoutsos D, Nikolopoulos P (1998) Performance of a double-layer CGO/YSZ electrolyte for solid oxide fuel cells. Ionics 4:234–240

    Article  Google Scholar 

  66. Kharton VV, Figueiredo FM, Navarro L, Naumovich EN, Kovalevsky AV, Yaremchenko AA, Viskup AP, Carneiro A, Marques FMB, Frade JR (2001) Ceria-based materials for solid oxide fuel cells. J Mater Sci 36:1105–1117

    Article  CAS  Google Scholar 

  67. Oishi N, Atkinson A, Brandon NP, Kilner JA, Steele BCH (2005) Fabrication of an anode-supported gadolinium-doped ceria solid oxide fuel cell and its operation at 550°C. J Am Ceram Soc 88(6):1394–1396

    Article  CAS  Google Scholar 

  68. Oishi N, Yoo Y (2010) Evaluation of metal supported ceria based solid oxide fuel cell fabricated by wet powder spray and sintering. J Electrochem Soc 157(1):B125–B129

    Article  CAS  Google Scholar 

  69. Moon PK, Tuller HL (1990) Evaluation of the Gd2(ZrxTi1-x)2O7 pyroclore system as an oxygen Gas sensor. Sens Actuators B Chem 1:199–202

    Article  CAS  Google Scholar 

  70. Yamamura H, Nishino H, Kakinuma K, Nomura K (2003) Electrical conductivity anomaly around fluorite-pyrochlore phase boundary. Solid State Ionics 158:359–365

    Article  CAS  Google Scholar 

  71. Moon PK, Tuller HL (1988) Ionic-conduction in the Gd2Ti2O7-Gd2Zr2O7 system. Solid State Ionics 28–30(1):470–474

    Article  Google Scholar 

  72. Kramer SA, Tuller HL (1995) A novel titanate-based oxygen ion conductor: Gd2Ti2O7. Solid State Ionics 82:15–23

    Article  CAS  Google Scholar 

  73. Kharton VV, Tsipis EV, Yaremechenko AA, Vyshatko NP, Shaula AL, Naumovich EN, Frade JR (2003) Oxygen ionic and electronic transport in Gd2-xCaxTi2O7-δ pyrochlores. J Solid State Electrochem 7:468–476

    Article  CAS  Google Scholar 

  74. Mori M, Tompsett GM, Sammes NM, Suda E, Takeda Y (2003) Compatibility of GdxTi2O7 pyrochlores (1.72 ≤ x ≤ 2.0) as electrolytes in high-temperature solid oxide fuel cells. Solid State Ionics 158:79–90

    Article  CAS  Google Scholar 

  75. Yasuda I, Matsuzaki Y, Yamakawa T, Koyama T (2000) Electrical conductivity and mechanical properties of alumina-dispersed doped lanthanum gallates. Solid State Ionics 135:381–388

    Article  CAS  Google Scholar 

  76. Tietz F (1999) Thermal expansion of SOFC materials. Ionics 5:129–139

    Article  CAS  Google Scholar 

  77. Lee JH, Yoshimura M (1999) Phase stability and electrical conductivity of the Zr0.5Y0.5O1.75-Y0.75Nb0.25O1.75 system. Solid State Ionics 124:185–191

    Article  CAS  Google Scholar 

  78. Lee JH, Yashima M, Yoshimura M (1998) Ionic conductivity of fluorite-structured solid solution Y0.8Nb0.2O1.7. Solid State Ionics 107:47–51

    Article  CAS  Google Scholar 

  79. West AR (1999) Basic solid state chemistry. Wiley, Chichester

    Google Scholar 

  80. Roth RS (1957) Classification of perovskite and other ABO3-type compounds. J Res Natl Bur Stand 58:75–88

    Article  CAS  Google Scholar 

  81. Takahashi T, Iwahara H (1971) Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell. Energy Convers 11:105–111

    Article  CAS  Google Scholar 

  82. Ishihara T, Matsuda H, Takita Y (1994) Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. J Am Chem Soc 116:3801–3803

    Article  CAS  Google Scholar 

  83. Ishihara T, Matsuda H, Takita Y (1995) Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide. Solid State Ionics 79:147–151

    Article  CAS  Google Scholar 

  84. Ishihara T, Ishikawa S, Yu C, Akbay T, Hosoi K, Nishiguchi H, Takita Y (2003) Oxide ion and electronic conductivity in Co doped La0.8Sr0.2Ga0.8Mg0.2O3 perovskite oxide. Phys Chem Chem Phys 5:2257–2263

    Article  CAS  Google Scholar 

  85. Ishihara T (2001) Current status of intermediate temperature solid oxide fuel cell (in Japanese). Bull Ceram Soc Jpn 36:483–485

    CAS  Google Scholar 

  86. Islam MS, Davis RA (2004) Atomistic study of dopant site-selectivity and defect association in the lanthanum gallate perovskite. J Mater Chem 14:86–93

    Article  CAS  Google Scholar 

  87. Huang K, Feng M, Goodenough JB, Schmerling M (1996) Characterization of Sr-doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell. J Electrochem Soc 143(11):3630–3636

    Article  CAS  Google Scholar 

  88. Kostogloudis GC, Ftikos C, Ahmad-Khanlou A, Naoumidis A, Stöver D (2000) Chemical compatibility of alternative perovskite oxide SOFC cathodes with doped lanthanum gallate solid electrolyte. Solid State Ionics 134:127–138

    Article  CAS  Google Scholar 

  89. Shaula AL, Kharton VV, Marques FMB (2004) Phase interaction and oxygen transport in La0.8Sr0.2Fe0.8Co0.2O3-(La0.9Sr0.1)0.98 Ga0.8Mg0.2O3 composites. J Eur Ceram Soc 24:2631–2639

    Article  CAS  Google Scholar 

  90. Sakai N, Horita T, Yamaji K, Brito ME, Yokokawa H, Kawakami A, Matsuoka S, Watanabe N, Ueno A (2006) Interface stability among solid oxide fuel cell materials with perovskite structures. J Electrochem Soc 153(3):A621–A625

    Article  CAS  Google Scholar 

  91. Joshi AV, Steppan JJ, Taylor DM, Elangovan S (2004) Solid electrolyte materials, devices, and applications. J Electroceram 13:619–625

    Article  CAS  Google Scholar 

  92. Schober T (1998) Protonic conduction in BaIn0.5Sn0.5O2.75. Solid State Ionics 109:1–11

    Article  CAS  Google Scholar 

  93. Goodenough JB (1997) Ceramic solid electrolytes. Solid State Ionics 94:17–25

    Article  CAS  Google Scholar 

  94. Goodenough JB, Ruiz-Dias JE, Zhen YS (1990) Oxide-ion conduction in Ba2In2O5 and Ba3In2MO8 (M = Ce, Hf, or Zr). Solid State Ionics 44:21–31

    Article  CAS  Google Scholar 

  95. Manthiram A, Kuo JF, Goodenough JB (1993) Characterization of oxygen-deficient perovskites as oxide-ion electrolytes. Solid State Ionics 62:225–234

    Article  CAS  Google Scholar 

  96. Uchimoto Y, Kinuhata M, Takagi H, Yao T, Inagaki T, Yoshida H (1999) Crystal structure of metal cation-doped Ba2In2O5 and its oxide Ion conductivity. In: Proceedings of SOFC VI. Electrochemical Society, Pennington, pp 317–326

    Google Scholar 

  97. Schober T, Friedrich J, Krug F (1997) Phase transition in the oxygen and proton conductor Ba2In2O5 in humid atmospheres below 300°C. Solid State Ionics 99:9–13

    Article  CAS  Google Scholar 

  98. Hashimoto T, Inagaki Y, Kishi A, Dokiya M (2000) Absorption and secession of H2O and CO2 on Ba2In2O5 and their effects on crystal structure. Solid State Ionics 128:227–231

    Article  CAS  Google Scholar 

  99. Zhang GB, Smyth DM (1995) Defects and transport of the brownmillerite oxides with high oxygen ion conductivity – Ba2In2O5. Solid State Ionics 82:161–172

    Article  CAS  Google Scholar 

  100. Kingery WD, Bowen HK, Uhlmann DR (1976) Introduction to ceramics, 2nd edn. Wiley, New York

    Google Scholar 

  101. Oyane A (2010) Development of apatite-based composites by a biomimetic process for biomedical applications. J Ceram Soc Jpn 118(2):77–81

    Article  CAS  Google Scholar 

  102. Felsche J (1972) Rare earth silicates with the apatite structure. J Solid State Chem 5:266–275

    Article  CAS  Google Scholar 

  103. Park J, Lakes RS (2007) Biomaterials: an introduction, 3rd edn. Springer, New York

    Google Scholar 

  104. Bonder IA (1982) Rare-earth silicates. Ceram Int 8(3):83–89

    Article  Google Scholar 

  105. Higuchi Y, Sugawara M, Onishi K, Sakamoto M, Nakayama S (2010) Oxide ionic conductivities of apatite-type lanthanum silicates and germanates and their possibilities as an electrolyte of lower temperature operating SOFC. Ceram Int 36:955–959

    Article  CAS  Google Scholar 

  106. Panteix PJ, Béchade E, Julien I, Abélard P, Bernache-Assollant D (2008) Influence of anionic vacancies on the ionic conductivity of silicated rare earth apatites. Mater Res Bull 43:1223–1231

    Article  CAS  Google Scholar 

  107. Yoshioka H (2006) Oxide ionic conductivity of apatite-type lanthanum silicates. J Alloys Comp 408–412:649–652

    Article  CAS  Google Scholar 

  108. Higuchi M, Masubuchi Y, Nakayama S, Kikkawa S, Kodaira K (2004) Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates. Solid State Ionics 174:73–80

    Article  CAS  Google Scholar 

  109. Masubuchi Y, Higuchi M, Takeda T, Kikkawa S (2006) Preparation of apatite-type La9.33(SiO4)6O2 oxide ion conductor by alcoxide-hydrolysis. J Alloys Comp 408–412:641–644

    Article  CAS  Google Scholar 

  110. Nojiri Y, Tanase S, Iwasa M, Yoshioka H, Matsumura Y, Sakai T (2010) Ionic conductivity of apatite-type solid electrolyte material, La10−XBaXSi6O27−X/2 (X = 0−1), and its fuel cell performance. J Power Sources 195:4059–4064

    Article  CAS  Google Scholar 

  111. Mineshige A, Nakao T, Kobune M, Yazawa T, Yoshioka H (2008) Electrical properties of La10Si6O27-based oxides. Solid State Ionics 179:1009–1012

    Article  CAS  Google Scholar 

  112. Nakao T, Mineshige A, Kobune M, Yazawa T, Yoshioka H (2008) Chemical stability of La10Si6O27 and its application to electrolytes for solid oxide fuel cells. Solid State Ionics 179:1567–1569

    Article  CAS  Google Scholar 

  113. Nakayama S, Kageyama T, Aono H, Sadaoka Y (1995) Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J Mater Chem 5:1801–1805

    Article  CAS  Google Scholar 

  114. Nakayama S, Sakamoto M (1998) Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy). J Euro Ceram Soc 18:1413–1418

    Article  CAS  Google Scholar 

  115. Yoshioka H (2007) Enhancement of ionic conductivity of apatite-type lanthanum silicates doped with cations. J Am Ceram Soc 90:3099–3105

    Article  CAS  Google Scholar 

  116. Yoshioka H, Nojiri Y, Tanase S (2008) Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions. Solid State Ionics 179:2165–2169

    Article  CAS  Google Scholar 

  117. Li B, Liu W, Pan W (2010) Synthesis and electrical properties of apatite-type La10Si6O27. J Power Sources 195:2196–2201

    Article  CAS  Google Scholar 

  118. Pivak YV, Kharton VV, Yaremchenko AA, Yakovlev SO, Kovalevsky AV, Frade JR, Marques FMB (2007) Phase relationships and transport in Ti-, Ce- and Zr-substituted lanthanum silicate systems. J Eur Ceram Soc 27:2445–2454

    Article  CAS  Google Scholar 

  119. Nojiri Y, Chen WF, Tanase S, Iwasa M, Matsumura Y, Sakai T, Tanase S (2008) Lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature SOFCs and the electrode materials. ITE-IBA Lett 1(6):498–506

    Google Scholar 

  120. León-Reina L, Porras-Vázquez JM, Losilla ER, Aranda MAG (2007) Phase transition and mixed oxide-proton conductivity in germanium oxy-apatites. J Solid State Chem 180:1250–1258

    Article  CAS  Google Scholar 

  121. Arikawa H, Nishiguchi H, Ishihara T, Takita Y (2000) Oxide ion conductivity in Sr-doped La10Ge6O27 apatite oxide. Solid State Ionics 136–137:31–37

    Article  Google Scholar 

  122. Ishihara T, Arikawa H, Akbay T, Nishiguchi H, Takita Y (2001) Nonstoichiometric La2−xGeO5−δ monoclinic oxide as a new fast oxide ion conductor. J Am Chem Soc 123:203–209

    Article  CAS  Google Scholar 

  123. Nakayama S, Higuchi Y, Kondo Y, Sakamoto M (2004) Effects of cation- or oxide ion-defect on conductivities of apatite-type La-Ge-O system ceramics. Solid State Ionics 170:219–223

    Article  CAS  Google Scholar 

  124. Berastegui P, Hull S, García García FJ, Grins J (2002) A structural investigation of La2(GeO4)O and alkaline-earth-doped La9.33(GeO4)6O2. J Solid State Chem 168:294–305

    Article  CAS  Google Scholar 

  125. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8(3):610–641

    Article  CAS  Google Scholar 

  126. Wagner C (1968) Die Löslichkeit von Wasserdampf in ZrO2-Y2O3-Mischkristallen, Berichte Bunseng. Phys Chem 72(7):778–781

    CAS  Google Scholar 

  127. Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16

    Article  CAS  Google Scholar 

  128. ZP X, Jin Y, Diniz da Costa JC, GQM L (2008) Zr(HPO4)2 based organic/inorganic nanohybrids as new proton conductors. Solid State Ionics 178:1654–1659

    Article  CAS  Google Scholar 

  129. Ahmad MI, Zaidi SMJ, Ruhman SU, Ahmed S (2006) Synthesis and proton conductivity of heteropolyacids loaded Y-zeolite as solid proton conductors for fuel cell applications. Miropor Mesopor Mater 91:296–304

    Article  CAS  Google Scholar 

  130. Norby T (1999) Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ionics 125:1–11

    Article  CAS  Google Scholar 

  131. Daiko Y, Nguyen VH, Yazawa T, Muto H, Sakai M, Matsuda A (2010) Phase transition and proton conductivity of CsHSO4-WPA composites prepared by mechanical milling. Solid State Ionics 181:183–186

    Article  CAS  Google Scholar 

  132. Sugahara T, Hayashi A, Tadanaga K, Tatsumisago M (2010) Characterization of proton conducting CsHSO4-CsH2PO4 ionic glasses prepared by the melt-quenching method. Solid State Ionics 181:190–192

    Article  CAS  Google Scholar 

  133. Iwahara H, Esaka T, Uchida H, Maeda N (1981) Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3(4):359–363

    Article  Google Scholar 

  134. Fukatsu N, Kurita N, Yajima T, Koide K, Ohashi T (1995) Proton conductors of oxide and their application to research into metal-hydrogen systems. J Alloys Comp 231:706–712

    Article  CAS  Google Scholar 

  135. Schwartz M, Link BF, Sammells AF (1993) New brownmillerite solid electrolytes. J Electrochem Soc 140:L62–L63

    Article  CAS  Google Scholar 

  136. Zahang GB, Smyth DM (1995) Protonic conduction in Ba2In2O5. Solid State Ionics 82:153–160

    Article  Google Scholar 

  137. Fisher CSJ, Islam MS (1999) Defect, protons and conductivity in brownmillerite-structured Ba2In2O5. Solid State Ionics 118:355–363

    Article  CAS  Google Scholar 

  138. Orera A, Slater PR (2010) Water incorporation studies in apatite-type rare earth silicates/germinates. Solid State Ionics 181:110–114

    Article  CAS  Google Scholar 

  139. Marrero-López D, Martín-Sedeño MC, Ruiz-Morales JC, Núñez P, Ramos-Barrado JR (2010) Preparation and characterisation of La10-xGe5.5Al0.5O26±δ apatites by freeze-drying precursor method. Mater Res Bull 45:409–415

    Article  CAS  Google Scholar 

  140. Ito N, Iijima M, Kimura K, Iguchi S (2005) New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte. J Power Sources 152:200–203

    Article  CAS  Google Scholar 

  141. Matsumoto H, Nomura I, Okada S, Ishihara T (2008) Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate. Solid State Ionics 179:1486–1489

    Article  CAS  Google Scholar 

  142. Ishigaki T, Yamauchi S, Kishio K, Fueki K, Iwahara H (1986) Dissolution of deuterium into proton conductor SrCe0.95Yb0.05O3−δ. Solid State Ionics 21:239–241

    Article  CAS  Google Scholar 

  143. Iwahara H, Uchida H, Ono K, Ogaki K (1998) Proton conduction in sintered oxides based on BaCeO3. J Electrochem Soc 135:529–533

    Article  Google Scholar 

  144. Bonanos N, Ellis B, Mahmood MN (1991) Construction and operation of fuel cells based on the solid electrolyte BaCeO3: Gd. Solid State Ionics 44:305–311

    Article  CAS  Google Scholar 

  145. Ma G, Matsumoto H, Iwahara H (1999) Ionic conduction and nonstoichiometry in non-doped BaxCeO3−α. Solid State Ionics 122:237–247

    Article  CAS  Google Scholar 

  146. Taniguchi N, Hatoh K, Niikura J, Gamo T, Iwahara H (1992) Proton conductive properties of gadolinium-doped barium cerates at high temperatures. Solid State Ionics 53–56:998–1003

    Article  Google Scholar 

  147. Ma G, Shimura T, Iwahara H (1998) Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3−α. Solid State Ionics 110:103–110

    Article  CAS  Google Scholar 

  148. Ma G, Shimura T, Iwahara H (1999) Simultaneous doping with La3+ and Y3+ for Ba2+ −and Ce4+ −sites in BaCeO3 and the ionic conduction. Solid State Ionics 120:51–60

    Article  CAS  Google Scholar 

  149. Katahira K, Kohchi Y, Shimura T, Iwahara H (2000) Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138:91–98

    Article  CAS  Google Scholar 

  150. Ranran P, Yan W, Lizhai Y, Zongqiang M (2006) Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics 177:389–393

    Article  CAS  Google Scholar 

  151. XT S, Yan QZ, Ma YH, Zhang WF, Ge CC (2006) Effect of co-dopant addition on the properties of yttrium and neodymium doped barium cerate electrolyte. Solid State Ionics 177:1041–1045

    Article  CAS  Google Scholar 

  152. Gorbova E, Zhuravlev BV, Demin AK, Song SQ, Tsiakaras PE (2006) Charge transfer properties of BaCe0.88Nd0.12O3−δ co-ionic electrolyte. J Power Sources 157:720–723

    Article  CAS  Google Scholar 

  153. Taherparvar H, Kilner JA, Baker RT, Sahibzada M (2003) Effect of humidification at anode and cathode in proton-conducting SOFCs. Solid State Ionics 162–163:297–303

    Article  CAS  Google Scholar 

  154. Du Y, Nowick AS (1995) Structural transitions and proton conduction in nonstoichiometric A3B′B2″O9 perovskite-type oxides. J Am Ceram Soc 78:3033–3039

    Article  CAS  Google Scholar 

  155. Murugaraj P, Kreuer KD, He T, Schober T, Maier J (1997) High proton conductivity in barium yttrium stannate Ba2YSnO5.5. Solid State Ionics 98:1–6

    Article  CAS  Google Scholar 

  156. Kreuer KD (2003) Proton conducting oxides. Ann Rev Mater Res 33:333–359

    Article  CAS  Google Scholar 

  157. He T, Kreuer KD, Baikov YM, Maier J (1997) Impedance spectroscopic study of thermodynamics and kinetics of Gd-doped BaCeO3 single crystal. Solid State Ionics 95:301–308

    Article  CAS  Google Scholar 

  158. Fabbri E, D'Epifanio A, Di Bartolomeo E, Licoccia S, Traversa E (2008) Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179:558–564

    Article  CAS  Google Scholar 

  159. Kreuer KD (1999) Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125:285–302

    Article  CAS  Google Scholar 

  160. He T, Ehrhart P, Meuffels P (1995) Optical band gap and Urbach tail in Y-doped BaCeO3. J Appl Phys 79:3219–3223

    Article  Google Scholar 

  161. Minh NQ (1993) Ceramic fuel cells. J Am Ceram Soc 76(3):563–588

    Article  CAS  Google Scholar 

  162. Mackor A, Koster TPM, Kraaijkamp JG, Gerretsen J, van Eijk JPGM (1991) Influence of La-substitution and -substoichiometry on conductivity, thermal expansion and chemical stability of Ca- or Sr-doped lanthanum manganites as SOFC cathodes. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium of solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 463–471

    Google Scholar 

  163. Anderson HU (1992) Review of p-type doped perovskite materials for SOFC and other applications. Solid State Ionics 52:33–41

    Article  CAS  Google Scholar 

  164. Kuo JH, Anderson HU, Sparlin DM (1989) Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: nonstoichiometry and defect structure. J Solid State Chem 83:52–60

    Article  CAS  Google Scholar 

  165. Kuo JH, Anderson HU, Sparlin DM (1990) Oxidation-reduction behavior of undoped and Sr-doped LaMnO3: defect structure, electrical conductivity, and thermoelectric power. J Solid State Chem 87:55–63

    Article  CAS  Google Scholar 

  166. van Roosmalen JAM, Huijsmans JPP, Cordfunke EHP (1991) Sinter behavior and electrical conductivity of (La,Sr)MnO3 as a function of Sr-content. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings 2nd International symposium on solid oxide fuel cells. Commission of European Communities, Luxemborg, pp 507–516

    Google Scholar 

  167. Hammouche A, Siebert E, Hammou A (1989) Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells. Mater Res Bull 24:367–380

    Article  CAS  Google Scholar 

  168. Yamada H, Nagamoto H (1993) Thermal expansion coefficient and electrical conductivity of Mn-based perovskite-type oxides. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd International symposium on solid oxide fuel cells, vol 93–94. The Electrochem Society Inc, Pennington, pp 213–219

    Google Scholar 

  169. Nasrallah MM, Anderson HU, Stevenson JW (1991) Defect chemistry and properties of Y1−xCaxMnO3. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 545–552

    Google Scholar 

  170. Stevenson JW, Nasrallah MM, Anderson HU, Parlin DMS (1993) Defect structure of Y1−yCayMnO3 and La1−yCayMnO3 , I. Electrical properties. J Solid State Chem 102:175–184

    Article  CAS  Google Scholar 

  171. Stevenson JW, Nasrallah MM, Anderson HU, Sparlin DM (1993) Defect structure of Y1−yCayMnO3 and La1−yCayMnO3 II Oxidation-reduction behavior. J Solid State Chem 102:185–197

    Article  CAS  Google Scholar 

  172. Fu B, Huebner W, Trubelja MF, Stubican VS (1993) (Y1−xCax)FeO3: a potential cathode material for solid oxide fuel cells. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 276–287

    Google Scholar 

  173. Yamamoto O, Takeda Y, Imanishi N, Sakaki Y (1993) Electrochemical properties of La1−xCaxMnO3−z as cathode in SOFC. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 205–212

    Google Scholar 

  174. Mizusaki J, Tagawa H, Katou M, Hirano K, Sawata A, Tsuneyoshi K (1991) Electrochemical properties of some perovskite-type oxides as oxygen gas electrodes on yttria stabilized zirconia. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 487–494

    Google Scholar 

  175. Mizusaki J, Tagawa H, Tsuneyoshi K, Sawata A (1991) Reaction kinetics and microstructure of the solid oxide fuel cells air electrode La0.6Ca0.4MnO3/YSZ. J Electrochem Soc 138(7):1867–1873

    Article  CAS  Google Scholar 

  176. Dokiya M (1992) A historical review on the SOFC research activity at NCLI, (in Japanese). In: Extended abstracts 1st symposium on solid oxide fuel cells, Japan. Solid Oxide Fuel Cells Society, Tokyo, pp 11–14

    Google Scholar 

  177. Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) Chemical thermodynamic compatibility of solid oxide fuel cell materials. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 663–670

    Google Scholar 

  178. Yokokawa H, Sakai N, Kawada T, Dokiya M (1992) Thermodynamic stabilities of perovskite oxides for electrodes and other electrochemical materials. Solid State Ionics 52:43–56

    Article  CAS  Google Scholar 

  179. Otoshi S, Sasaki H, Ohnishi H, Hase M, Ishimaru K, Ippommatsu M, Higuchi T, Miyayama M, Yanagida H (1991) Changes in the phases and electrical conduction properties of (La1−xSrx)1−yMnO3−δ. J Electrochem Soc 138(5):1519–1523

    Article  CAS  Google Scholar 

  180. Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia. J Electrochem Soc 134(11):2656–2661

    Article  CAS  Google Scholar 

  181. Mizusaki J (1992) Nonstoichiometry, diffusion, and electrical properties of perovskite-type oxide electrode materials. Solid State Ionics 52:79–91

    Article  CAS  Google Scholar 

  182. Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N (1991) Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics 48:207–212

    Article  CAS  Google Scholar 

  183. Ivers-Tiffée E, Schieβl M, Oel HJ, Wersing W (1993) Investigations of cobalt- containing perovskites in SOFC single cells with respect to interface reactions and cell performance. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 613–622

    Google Scholar 

  184. Iberl A, von Philipsborn H, Schieβl M, Ivers-Tiffée E, Wersing W, Zorn G (1991) High-temperature X-ray diffraction measurements of phase transitions and thermal expansion in (La,Sr)(Mn,Co)O3-cathode materials. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 527–535

    Google Scholar 

  185. Mackor A, Spee CIMA, van der Zouwen-Assink EA, Baptista JL, Schoonman J (1990) Mixed conductivity in perovskite SOFC materials La1−xMxMn1−yCoyO3 (M = Ca or Sr). In: Proceedings of the 25th intersociety energy conversion engineering conference, American Institute of Chemical Engineers, vol 3, pp 251–255

    Google Scholar 

  186. Tai LW, Nasrallah MM, Anderson HU (1993) (La1−xSrx)(Co1−yFey)O3, A potential cathode for intermediate temperature SOFC applications. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society, Pennington, pp 241–251

    Google Scholar 

  187. Chen CC, Nasrallah MM, Anderson HU (1993) Preparation and electrode characteristics of dense La0.6Sr0.4Co0.2Fe0.8O3 thin film by polymetric precursors. In: Singhal SC, Iwahara H (eds) Proceedings of the 3rd international symposium on solid oxide fuel cells, vol 93–94. The Electrochemical Society Inc., Pennington, pp 252–266

    Google Scholar 

  188. Teraoka Y, Zhang HM, Okamoto K, Yamazoe N (1988) Mixed ionic-electronic conductivity of La1−xSrxCo1−yFeyO3−δ. Mater Res Bull 23:51–58

    Article  CAS  Google Scholar 

  189. Ftikos C, Carter S, Steele BCH (1993) Mixed electronic/ionic conductivity of the solid solutions La(1−x)SrxCo(1−y)NiyO3−δ (x:0.4, 0.5, 0.6 and y:0.2, 0.4, 0.6). J Europ Ceram Soc 12:79–86

    Article  CAS  Google Scholar 

  190. Inoue T, Seki N, Eguchi K, Arai H (1990) Low-temperature operation of solid electrolyte oxygen sensors using perovskite-type oxide electrodes and cathodic reaction kinetics. J Electrochem Soc 137(8):2523–2527

    Article  CAS  Google Scholar 

  191. Sasaki K, Wurth JP, Gschwend R, Gödickemeier M, Gauckler LJ (1996) Microstructure-property relations of solid oxide fuel cell cathodes and current collectors: cathodic polarization and ohmic resistance. J Electrochem Soc 143:530–543

    Article  CAS  Google Scholar 

  192. Kleitz M (1992) Reaction pathways: a new electrode modelling concept. In: McEvoy A (ed) Fundamental barriers to SOFC performance. Swiss Federal Office of Energy, Bern, pp 4–12

    Google Scholar 

  193. Steele BCH, Carter S, Kajda J, Kontoulis I, Kilner JA (1991) Optimisation of fuel cell components using 18O/16O exchange and dynamic SIMS techniques. In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) Proceedings of the 2nd international symposium on solid oxide fuel cells. Commission of European Communities, Luxembourg, pp 517–525

    Google Scholar 

  194. Hammou A (1992) Solid oxide fuel cells. In: Gerischer H, Tobias CW (eds) Advances in electrochemical science and engineering, vol 2. VCH-Verlag, Weinheim, pp 87–139

    Chapter  Google Scholar 

  195. Hammouche A, Siebert E, Hammou A, Kleitz M, Caneiro A (1991) Electrocatalytic properties and nonstoichiometry of the high temperature air electrode La1−xSrxMnO3. J Electrochem Soc 138(5):1212–1216

    Article  CAS  Google Scholar 

  196. Ishigaki T, Yamauchi S, Kishio K, Mizusaki J, Fueki K (1988) Diffusion of oxide Ion vacancies in perovskite-type oxides. J Solid State Chem 73:179–187

    Article  CAS  Google Scholar 

  197. Takeda Y, Ueno H, Imanishi N, Yamamoto O, Sammes N, Phillipps M (1996) Gd1−xSrxCoO3 for the electrode of solid oxide fuel cells. Solid State Ionics 86–88:1187–1190

    Article  Google Scholar 

  198. Tu H, Takeda Y, Imanishi N, Yamamoto O (1997) Ln1−xSrxCoO3 (Ln = Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ionics 100:283–288

    Google Scholar 

  199. Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M, Iio M, Esaki Y (1999) Ln1−xSrxMnO3 (Ln = Pr, Nd, Sm and Gd) as the cathode material for solid oxide fuel cells. Solid State Ionics 118:187–194

    Article  CAS  Google Scholar 

  200. Phillipps M, Sammes N, Yamamoto O (1999) Gd1−xAxCo1−yMnyO3 (A = Sr, Ca) as a cathode for the SOFC. Solid State Ionics 123:131–138

    Article  CAS  Google Scholar 

  201. Tu H, Takeda Y, Imanishi N, Yamamoto O (1999) Ln0.4Sr0.6Co0.8Fe0.2O3−δ (Ln = La, Pr, Nd, Sm, Gd) for the electrode in solid oxide fuel cells. Solid State Ionics 117:277–281

    Article  CAS  Google Scholar 

  202. Qiu L, Ichikawa T, Hirano A, Imanishi N, Takeda Y (2003) Ln1−xSrxCo1−yFeyO3−δ(Ln = Pr, Nd, Gd; x = 0.2, 0.3) for the electrodes of solid oxide fuel cells. Solid State Ionics 158:55–65

    Article  CAS  Google Scholar 

  203. Ishihara T, Honda M, Shibayama T, Nishiguchi H, Takita Y (1998) Intermediate temperature solid oxide fuel cells using a New LaGaO3 based oxide ion conductor. J Electrochem Soc 145:3177–3183

    Article  CAS  Google Scholar 

  204. Ishihara T, Fukui S, Nishiguchi H, Takita Y (2002) Mixed electronic-oxide ionic conductor of BaCoO3 doped with La for cathode of intermediate-temperature-operating solid oxide fuel cell. Solid State Ionics 152–153:609–613

    Article  Google Scholar 

  205. Shao ZP, Haile SM (2004) A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431:170–173

    Article  CAS  Google Scholar 

  206. Li S, Lu Z, Wei B, Huang X, Miao J, Cao G, Zhu R, Su W (2006) A study of (Ba0.5Sr0.5)1−xSmxCo0.8Fe0.2O3−δ as a cathode material for IT-SOFCs. J Alloys Comp 426:408–414

    Article  CAS  Google Scholar 

  207. Kotomin EA, Mastrikov YA, Kuklja MM, Merkle R, Roytburd A, Maier J (2011) First principles calculations of oxygen vacancy formation and migration in mixed conducting Ba0.5Sr0.5Co1−yFeyO3−δ perovskites. Solid State Ionics 188:1–5

    Article  CAS  Google Scholar 

  208. Yan A, Cheng M, Dong Y, Yang W, Maragou V, Song S, Tsiakaras P (2006) Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode IT-SOFC I. The effect of CO2 on the cell performance. Appl Catal B Environ 66:64–71

    Article  CAS  Google Scholar 

  209. Yan A, Yang M, Hou Z, Dong Y, Cheng M (2008) Investigation of Ba1−xSrxCo0.8Fe0.2O3−δ as cathodes for low-temperature solid oxide fuel cells both in the absence and presence of CO2. J Power Sources 185:76–84

    Article  CAS  Google Scholar 

  210. Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y, Saitoh T (1995) Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator. J Power Sources 55:73–79

    Article  CAS  Google Scholar 

  211. Taniguchi S, Kadowaki M, Yasuo T, Akiyama Y, Itoh Y, Miyake Y, Nishio K (1996) Suppression of chromium diffusion to an SOFC cathode from an alloy separator by a cathode second layer. Denki Kagaku 64(6):568–574

    CAS  Google Scholar 

  212. Matsuzaki Y, Yasuda I (2001) Dependence of SOFC cathode degradation by chromium-containing alloy on compositions of electrodes and electrolytes. J Electrochem Soc 148(2):A126–A131

    Article  CAS  Google Scholar 

  213. Chiba R, Yoshimura F, Sakurai Y (1999) An investigation of LaNi1−xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ionics 124:281–288

    Article  CAS  Google Scholar 

  214. Komatsu T, Chiba R, Arai H, Sato K (2008) Chemical compatibility and electrochemical property of intermediate-temperature SOFC cathodes under Cr poisoning condition. J Power Sources 176:132–137

    Article  CAS  Google Scholar 

  215. Jiang SP, Zhen Y (2008) Mechanism of Cr deposition and its application in the development of Cr-tolerant cathodes of solid oxide fuel cells. Solid State Ionics 179:1459–1464

    Article  CAS  Google Scholar 

  216. Lee S, Bevilacqua M, Fornasiero P, Vohs JM, Gorte RJ (2009) Solid oxide fuel cell cathodes prepared by infiltration of LaNi0.6Fe0.4O3 and La0.91Sr0.09Ni0.6Fe0.4O3 in porous yttria-stabilized zirconia. J Power Sources 193:747–753

    Article  CAS  Google Scholar 

  217. Skinner S, Kilner J (2000) Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ. Solid State Ionics 135:709–712

    Article  CAS  Google Scholar 

  218. Mauvy F, Bassat J, Boehm E, Manaud J, Dordor P, Grenier J (2003) Oxygen electrode reaction on Nd2NiO4+δcathode materials: impedance spectroscopy study. Solid State Ionics 158:17–28

    Article  CAS  Google Scholar 

  219. Lalanne C, Prosperi G, Bassat J, Mauvy F, Fourcade S, Stevens P, Zahid M, Diethelm S, van Herle J, Grenier J (2008) Neodymium-deficient nickelate oxide Nd1.95NiO4+δ as cathode material for anode-supported intermediate temperature solid oxide fuel cells. J Power Sources 185:1218–1224

    Article  CAS  Google Scholar 

  220. Nie H, Wen T, Wang S, Wang Y, Guth U, Vashook V (2006) Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−αA′αMO4 (A = Pr, Sm; A′ = Sr; M = Mn, Ni; α = 0.3, 0.6) as a new cathode for SOFC. Solid State Ionics 177:1929–1932

    Article  CAS  Google Scholar 

  221. Wang Y, Nie H, Wang S, Wen T, Guth U, Valshook V (2006) A2−αA′αBO4-type oxides as cathode materials for IT-SOFCs (A = Pr, Sm; A′ = Sr; B = Fe, Co). Mater Lett 60:1174–1178

    Article  CAS  Google Scholar 

  222. Haanappel V, Rutenbeck D, Mai A, Uhlenbruck S, Sebold D, Wesemeyer H, Röwekamp B, Tropartz C, Tietz F (2004) The influence of noble-metal-containing cathodes on the electrochemical performance of anode-supported SOFCs. J Power Sources 130:119–128

    Article  CAS  Google Scholar 

  223. Wang S, Kato T, Nagata S, Honda T, Kaneko T, Iwashita N, Dokiya M (2002) Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag cathode for ceria electrolyte SOFCs. Solid State Ionics 146:203–210

    Article  CAS  Google Scholar 

  224. Zhang J, Ji Y, Gao H, He T, Liu J (2005) Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells. J Alloys Compounds 395:322–325

    Article  CAS  Google Scholar 

  225. Simner S, Anderson MJ, Coleman JS (2006) Performance of a novel La(Sr)Fe(Co)O3-Ag SOFC cathode. J Power Sources 161:115–122

    Article  CAS  Google Scholar 

  226. Mogensen M, Lindegaard T, Hansen TU, Mogensen G (1994) Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2. J Electrochem Soc 141(8):2122–2128

    Article  CAS  Google Scholar 

  227. Setoguchi T, Okamoto K, Eguchi K, Arai H (1992) Effects of anode material and fuel on anodic reaction of solid oxide fuel cells. J Electrochem Soc 139:2875–2880

    Article  CAS  Google Scholar 

  228. Sasaki H, Otoshi S, Suzuki M, Sogi T, Kajimura A, Sugiura N, Ippommatsu M (1994) Fabrication of high power density tabular type solid oxide fuel cells. Solid State Ionics 72:253–256

    Article  CAS  Google Scholar 

  229. Lide DR (2008) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  230. Tao SW, Irvine JTS (2003) A redox-stable efficient anode for solid-oxide fuel cells. Nat Mater 2:320–323

    Article  CAS  Google Scholar 

  231. Zha SW, Tsang P, Cheng Z, Liu ML (2005) Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−xMnxO3 under anodic conditions. J Solid State Chem 178:1844–1850

    Article  CAS  Google Scholar 

  232. Huang YH, Dass RI, Denyszyn JC, Goodenough JB (2006) Synthesis and characterization of Sr2MgMoO6−δ an anode material for the solid oxide fuel cell. J Electrochem Soc 153:A1266–A1272

    Article  CAS  Google Scholar 

  233. Vernoux P, Guillodo M, Foulrtier J, Hammou A (2000) Alternative anode material for gradual methane reforming in solid oxide fuel cells. Solid State Ionics 135:425–431

    Article  CAS  Google Scholar 

  234. Ruiz-morales JC, Canales-Vázquez J, Peña-Martínez J, López DM, Núñez P (2006) On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochim Acta 52:278–284

    Article  CAS  Google Scholar 

  235. Sauvet AL, Fouletier J (2001) Electrochemical properties of a new type of anode material La1−xSrxCr1−yRuyO3−δ for SOFC under hydrogen and methane at intermediate temperatures. Electrochim Acta 47:987–995

    Article  CAS  Google Scholar 

  236. Sauvet AL, Fouletier J, Gaillard F, Primet M (2002) Surface properties and physicochemical characterizations of a New type of anode material, La1−xSrxCr1−yRuyO3−δ, for a solid oxide fuel cell under methane at intermediate temperature. J Catal 209:25–34

    Article  CAS  Google Scholar 

  237. Sauvet AL, Irvine JTS (2004) Catalytic activity for steam methane reforming and physical characterisation of La1−xSrxCr1−yNiyO3−δ. Solid State Ionics 167:1–8

    Article  CAS  Google Scholar 

  238. Sin A, Kopnin E, Dubitsky Y, Zaopo A, Aricô AS, Gullo LR, Rosa DL, Antonucci V (2005) Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. J Power Sources 145:68–73

    Article  CAS  Google Scholar 

  239. Lepe FJ, Fernández-Urbán J, Mestres L, Martínez-Sarrión ML (2005) Synthesis and electrical properties of new rare-earth titanium perovskites for SOFC anode applications. J Power Sources 151:74–78

    Article  CAS  Google Scholar 

  240. Fagg DP, Kharton VV, Kovalevsky AV, Viskup AP, Naumovich EN, Frade JR (2001) The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials. J Eur Ceram Soc 21:1831–1835

    Article  CAS  Google Scholar 

  241. Hui S, Petric A (2002) Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells. J Eur Ceram Soc 22:1673–1681

    Article  CAS  Google Scholar 

  242. Moos R, Härdtl KH (1997) Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400°C. J Am Ceram Soc 80(10):2549–2562

    Article  CAS  Google Scholar 

  243. Hui SQ, Petric A (2001) Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures. Solid State Ionics 143:275–283

    Article  CAS  Google Scholar 

  244. Bieger T, Waser MJ, Waser R (1992) Optical investigation of oxygen incorporation in SrTiO3. Solid State Ionics 53–56:578–582

    Article  Google Scholar 

  245. Sasaki K, Claus J, Maier J (1999) Defect chemistry of oxides in partially frozen-in states: case studies for ZrO2(Y2O3), SrZrO3(Y2O3), and SrTiO3. Solid State Ionics 121:51–60

    Article  CAS  Google Scholar 

  246. Park S, Gorte RJ, Vohs JM (2000) Applications of heterogeneous catalysis in the direct oxidation of hydrocarbons in a solid-oxide fuel cell. Appl Catal A Gen 200:55–61

    Article  CAS  Google Scholar 

  247. Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–267

    Article  CAS  Google Scholar 

  248. Zhou ZF, Kumar R, Thakur ST, Rudnick LR, Schobert H, Lvov SN (2007) Direct oxidation of waste vegetable oil in solid-oxide fuel cells. J Power Sources 171:856–860

    Article  CAS  Google Scholar 

  249. Craciun R, Park S, Gorte RJ, Vohs JM, Wang C, Worrell WL (1999) A novel method for preparing anode cermets for solid oxide fuel cells. J Electrochem Soc 146:4019–4022

    Article  CAS  Google Scholar 

  250. Larminie J, Dicks A (2000) Fuel cell systems explained. Wiley, Chichester

    Google Scholar 

  251. Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases I. equilibrium compositions and reforming conditions. J Electrochem Soc 150(7):A878–A884

    Article  CAS  Google Scholar 

  252. Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases II. the C─H─O ternary diagrams. J Electrochem Soc 150(7):A885–A888

    Article  CAS  Google Scholar 

  253. Sasaki K, Teraoka Y (2003) Equilibria in fuel cell gases. In: Proceedings of the 8th international symposium on solid oxide fuel cells, vol 2003–2007. Electrochemical Society, Pennington, pp 1225–1239

    Google Scholar 

  254. Sasaki K, Kojo H, Hori Y, Kikuchi R, Eguchi K (2002) Direct-alcohol/hydrocarbon SOFCs: comparison of power generation characteristics for various fuels. Electrochemistry 70(1):18–22

    CAS  Google Scholar 

  255. Eguchi K, Kojo H, Takeguchi T, Kikuchi R, Sasaki K (2002) Fuel flexibility in power generation by solid oxide fuel cells. Solid State Ionics 152:411–416

    Article  Google Scholar 

  256. Sasaki K, Hori Y, Kikuchi R, Eguchi K, Ueno A, Takeuchi H, Aizawa M, Tsujimoto K, Tajiri H, Nishikawa H, Uchida Y (2002) Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H2 and CO gases. J Electrochem Soc 149(3):A227–A233

    Article  CAS  Google Scholar 

  257. Sasaki K, Watanabe K, Teraoka Y (2004) Direct-alcohol solid oxide fuel cells: current-voltage characteristics and fuel gas compositions. J Electrochem Soc 151(7):A965–A970

    Article  CAS  Google Scholar 

  258. Sasaki K, Watanabe K, Shiosaki K, Susuki K, Teraoka Y (2003) Power generation characteristics of SOFCs for alcohols and hydrocarbons. In: Proceedings of the 8th international symposium on solid oxide fuel cells, vol 2003–2007. Electrochemical Society, Pennington, pp 1295–1304

    Google Scholar 

  259. Kishimoto H, Horita T, Yamaji K, Xiong Y, Sakai N, Brito ME, Yokokawa H (2005) Feasibility of n-Dodecane fuel for solid oxide fuel cell with Ni-ScSZ anode. J Electrochem Soc 152(3):A532–A538

    Article  CAS  Google Scholar 

  260. Sasaki K, Watanabe K, Shiosaki K, Susuki K, Teraoka Y (2004) Multi-fuel capability of solid oxide fuel cells. J Electroceram 13(1–3):669–675

    Article  CAS  Google Scholar 

  261. Haga K (2010) Chemical degradation of Ni-based anode materials in solid oxide fuel cells. Dissertation, Kyushu University, Fukuoka

    Google Scholar 

  262. Sasaki K, Haga K, Yoshizumi T, Minematsu D, Yuki E, Liu RR, Uryu C, Oshima T, Ogura T, Shiratori Y, Ito K, Koyama M, Yokomoto K (2011) Chemical durability of SOFCs: influence of impurities on long-term performance. J Power Sources 196(22):9130–9140

    Article  CAS  Google Scholar 

  263. Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2006) H2S poisoning of solid oxide fuel cells. J Electrochem Soc 153:A2023–A2029

    Article  CAS  Google Scholar 

  264. Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2005) Sulfur tolerance of solid oxide fuel cells. In: Proceedings of the 9th international symposium on solid oxide fuel cells, vol 2005–2007. Electrochemical Society, Pennington, pp 1267–1274

    Google Scholar 

  265. Sasaki K, Adachi S, Haga K, Uchikawa M, Yamamoto J, Iyoshi A, Chou J-T, Shiratori Y, Itoh K (2007) Fuel impurity tolerance of solid oxide fuel cells. Solid oxide fuel cells 10 (SOFC-10). ECS Trans 7(1):1675–1683

    Article  CAS  Google Scholar 

  266. Haga K, Adachi S, Shiratori Y, Ito K, Sasaki K (2008) Poisoning of SOFC anodes by various fuel impurities. Solid State Ionics 179(27–32):1427–1431

    Article  CAS  Google Scholar 

  267. Haga K, Shiratori Y, Ito K, Sasaki K (2008) Chlorine poisoning of SOFC Ni-cermet anodes. J Electrochem Soc 155(12):B1233–B1239

    Article  CAS  Google Scholar 

  268. Haga K, Shiratori Y, Nojiri Y, Ito K, Sasaki K (2010) Phosphorus poisoning of Ni-cermet anodes in solid oxide fuel cells. J Electrochem Soc 157(11):B1693–B1700

    Article  CAS  Google Scholar 

  269. Park S, Cracium R, Vohs JM, Gorte RJ (1999) Direct oxidation of hydrocarbons in a solid oxide fuel cell: I. Methane oxidation. J Electrochem Soc 146:3603–3605

    Article  CAS  Google Scholar 

  270. Shiratori Y, Oshima T, Sasaki K (2008) Feasibility of direct-biogas SOFC. Int J Hydrogen Energ 33:6316–6321

    Article  CAS  Google Scholar 

  271. Gorte RJ, Kim H, Vohs JM (2002) Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon. J Power Sources 106:10–15

    Article  CAS  Google Scholar 

  272. Kim H, Park S, Vohs JM, Gorte RJ (2001) Direct oxidation of liquid fuels in a solid oxide fuel cell. J Electrochem Soc 148:A693–A695

    Article  CAS  Google Scholar 

  273. Zhou ZF, Gallo C, Pague MB, Schobert H, Lvov SN (2004) Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuel cell. J Power Sources 133:181–187

    Article  CAS  Google Scholar 

  274. Shiratori Y, Tran TQ, Takahashi Y, Sasaki K (2011) Application of biofuels to solid oxide fuel cell. ECS Trans 35:2641–2651

    Article  CAS  Google Scholar 

  275. van Herle J, Maréchal F, Leuenberger S, Membrez Y, Bucheli O, Favrat D (2004) Process flow model of solid oxide fuel cell system supplied with sewage biogas. J Power Sources 131:127–141

    Article  CAS  Google Scholar 

  276. Girona K, Laurencin J, Petitjean M, Fouletier J, Lefebvre-Joud F (2009) SOFC running on biogas: identification and experimental validation of “safe” operating conditions. ECS Trans 25(2):1041–1050

    Article  CAS  Google Scholar 

  277. Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Internal reforming SOFC running on biogas. Int J Hydrog Energy 35:7905–7912

    Article  CAS  Google Scholar 

  278. Shiratori Y, Ijichi T, Oshima T, Sasaki K (2010) Performance of internal reforming SOFC running on biogas. In: Proceedings of 9th European SOFC Forum, Luzern, pp 4-77–4-87

    Google Scholar 

  279. Swaine DJ (1990) Trace elements in coal. Butterworths, London

    Google Scholar 

  280. Lobachyov K, Richter HJ (1996) Combined cycle gas turbine power plant with coal gasification and solid oxide fuel cell. J Energy Resour Technol 118:285–292

    Article  Google Scholar 

  281. Iritani J, Kougami K, Komiyama N, Nagata K, Ikeda K, Tomida K (2001) Pressurized 10kW class module of SOFC. In: Yokokawa H, Singhal SC (eds) Proceedings of the 7th international symposium on solid oxide fuel cells, vol 2001–2016. Pennington, Electrochemical Society, pp 63–71

    Google Scholar 

  282. Doctor RD, Molburg JC, Thimmapuram PR (1997) Oxygen-blown gasification combined cycle: carbon dioxide recovery, transport, and disposal. Energy Convers Manag 38:S575–S580

    Article  CAS  Google Scholar 

  283. Timpe RC, Kulas RW, Hauserman WB, Sharma RK, Olson ES, Willson WG (1997) Catalytic gasification of coal for the production of fuel cell feedstock. Int J Hydrog Energy 22:487–492

    Article  CAS  Google Scholar 

  284. Sjunnesson L (1998) Utilities and their investments in fuel cells. J Power Sources 71:41–44

    Article  CAS  Google Scholar 

  285. Cayan FN, Zhi M, Pakalapati SR, Celik I, Wu N, Gemmen RS (2008) Effects of coal syngas impurities on anodes of solid oxide fuel cells. J Power Sources 185:595–602

    Article  CAS  Google Scholar 

  286. Marina OA, Pederson LR, Coyle CA, Thomsen EC, Coffey GW (2005) Ni/YSZ anode interactions with impurities in coal gas. ECS Trans 25(2):2125–2130

    Google Scholar 

  287. Bao JE, Krishnan GN, Jayaweera P, Perez-Mariano J, Sanjurjo A (2009) Effect of various coal contaminants on the performance of solid oxide fuel cells: part I. accelerated testing. J Power Sources 193:607–616

    Article  CAS  Google Scholar 

  288. Bao JE, Krishnan GN, Jayaweera P, Lau KH, Sanjurjo A (2009) Effect of various coal contaminants on the performance of solid oxide fuel cells: part II. ppm and sub-ppm level testing. J Power Sources 193:617–624

    Article  CAS  Google Scholar 

  289. Bao JE, Krishnan GN, Jayaweera P, Sanjurjo A (2010) Effect of various coal gas contaminants on the performance of solid oxide fuel cells: part III. synergistic effects. J Power Sources 195:1316–1324

    Article  CAS  Google Scholar 

  290. Trembly JP, Gemmen RS, Bayless DJ (2007) The effect of IGFC warm gas cleanup system conditions on the gas-solid partitioning and form of trace species in coal syngas and their interactions with SOFC anodes. J Power Sources 163:986–996

    Article  CAS  Google Scholar 

  291. Yoshida S, Kabata T, Nishiura M, Koga S, Tomida K, Miyamoto K, Teramoto Y, Matake N, Tsukuda H, Suemori S, Ando Y, Kobayashi Y (2011) Development of the SOFC-GT combined cycle system with tubular type cell stack. ECS Trans 35(1):105–111

    Article  CAS  Google Scholar 

  292. Ishihara T (2009) Perovskite oxide for solid oxide fuel cells. Springer, New York

    Book  Google Scholar 

  293. Tsuchiya M, Lai BK, Ramanathan S (2011) Scalable nanostructured membranes for solid oxide fuel cells. Nat Nanotechnol 6:282–286

    Article  CAS  Google Scholar 

  294. Karageorgakis NI, Heel A, Rupp JLM, Aguirre MH, Graule T, Gauckler LJ (2011) Properties of flame sprayed Ce0.8Gd0.2O1.9−δ electrolyte thin films. Adv Funct Mater 21(3):532–539

    Article  CAS  Google Scholar 

  295. Bonderer LJ, Chen PW, Kocher P, Gauckler LJ (2010) Free-standing ultrathin ceramic foils. J Am Ceram Soc 93(11):3624–3631

    Article  CAS  Google Scholar 

  296. Ryll T, Galinski H, Schlagenhauf L, Elser P, Rupp JLM, Bieberle-Hutter A, Gauckler LJ (2011) Microscopic and nanoscopic three-phase-boundaries of platinum thin-film electrodes on YSZ electrolyte. Adv Funct Mater 21(3):565–572

    Article  CAS  Google Scholar 

  297. Tuller HL, Litzelman SJ, Jung WC (2009) Micro-ionics: next generation power sources. Phys Chem Chem Phys 11:3023–3034

    Article  CAS  Google Scholar 

  298. Tuller HL, Bishop SR (2011) Point defects in oxides: tailoring materials through defect engineering. Annu Rev Mater Res 41:369–398

    Article  CAS  Google Scholar 

  299. Sasaki K, Maier J (1999) Low temperature defect chemistry of oxides: I. general aspects and numerical calculations. J Appl Phys 86(10):5422–5433

    Article  CAS  Google Scholar 

  300. Sasaki K, Maier J (1999) Low temperature defect chemistry of oxides: II. analytical relations. J Appl Phys 86(10):5434–5443

    Article  CAS  Google Scholar 

  301. Matsumoto K, Fujigaya T, Sasaki K, Nakashima N (2011) Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells. J Mater Chem 21(4):1187–1190

    Article  CAS  Google Scholar 

  302. Masao A, Noda Z, Takasaki F, Ito K, Sasaki K (2009) Carbon-free Pt electrocatalysts supported on SnO2 for polymer electrolyte fuel cells. Electrochem Solid-State Lett 12(9):B119–B122

    Article  CAS  Google Scholar 

  303. Sasaki K, Takasaki F, Noda Z, Hayashi S, Shiratori Y, Ito K (2010) Alternative electrocatalyst support materials for polymer electrolyte fuel cells. ECS Trans 33(1):473–482

    Article  CAS  Google Scholar 

  304. Hayashi A, Notsu H, Kimijima K, Miyamoto J, Yagi I (2008) Preparation of Pt/mesoporous carbon (MC) electrode catalyst and its reactivity toward oxygen reduction. Electrochim Acta 53(21):6117–6125

    Article  CAS  Google Scholar 

  305. Masuda H, Yamamoto A, Sasaki K, Lee S, Ito K (2011) A visualization study on relationship between water-droplet behavior and cell voltage appeared in straight, parallel and serpentine channel pattern cells. J Power Sources 196:5377–5385

    Article  CAS  Google Scholar 

  306. Sasaki K, Li HW, Hayashi A, Yamabe J, Ogura T, Lyth SM (2016) Hydrogen Energy Engineering: A Japanese Perspective. Springer, Tokyo, Japan

    Google Scholar 

Download references

Acknowledgments

Financial support by the NEDO project “Development of System and Elemental Technology on Solid Oxide Fuel Cells (SOFC)” is gratefully acknowledged. We thank Prof. A. Hayashi and Associate Profs. S. Lyth and Dr. S. Bishop in Kyushu University for carefully reading the manuscript and Ms. A. Zaitsu in Kyushu University for her editorial work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Sasaki, K., Nojiri, Y., Shiratori, Y., Taniguchi, S. (2017). Fuel Cells (SOFC): Alternative Approaches (Electroytes, Electrodes, Fuels). In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_138-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_138-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics