Skip to main content

Thermochemical Conversion of Solid Biofuels: Processes and Techniques

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology
  • 268 Accesses

λ-value:

Relation between the supplied and the stoichiometric needed amount of oxygen.

Biomass:

Material from biological origin excluding material embedded in geological formations and transformed to fossil; this includes living matter and products resulting from it as well as by-products, residues, and wastes.

Combustion:

Complete oxidation of organic material under release of heat.

Gasification:

Reaction with an external fumigator to produce a gaseous energy carrier.

Pyrolytic decomposition:

Thermal destruction of macromolecules biomass consists of (mainly cellulose, hemicellulose, and lignin).

Residence time:

Time period within a certain conversion process to get the desired product from the used biofuel.

Thermochemical conversion :

Heat induced conversion of biomass into different secondary energy carriers and/or into useful energy.

Definition of the Subject

The renewable energy source biomass is used since the beginning of human culture. For the major time of human history, it was...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hoogwijk M, Faaij A, Eickhout B, de Vries B, Turkenburg W (2005) Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29:225–257

    Article  Google Scholar 

  2. Wilk V, Hofbauer H, Kaltschmitt M (2016) Thermo-chemische Umwandlungsprozesse. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse, 3rd edn. Springer, Berlin/Heidelberg, pp 646–683

    Google Scholar 

  3. Liu C, Wang H, Karim A, Sun J, Wang Y (2014) Catalytic fast pyrolysis of lignocellulosic biomass. Chem Soc Rev 43:7594–7623

    Article  CAS  Google Scholar 

  4. Hartmann H (2016) Brennstoffzusammensetzung und -eigenschaften. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse, 3rd edn. Springer, Berlin/Heidelberg, pp 580–606

    Google Scholar 

  5. E. r. C. o. t. Netherlands (2017) Phyllis2, database for biomass and waste [Online]. Available: https://www.ecn.nl/phyllis2. Accessed 21 June 2017

  6. Pérez J, Munoz-Dorado J, de la Rubia T, Martinez J (2002) Biodegradation and biological treatment of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  Google Scholar 

  7. Brebu M, Vasile C (2010) Thermal degradation of lignin – a review. Cellul Chem Technol 44:353–363

    CAS  Google Scholar 

  8. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177

    Article  CAS  Google Scholar 

  9. Kan T, Strezov V, Evans T (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140

    Article  CAS  Google Scholar 

  10. Branca C, Albano A, Di Blasi C (2005) Critical evaluation of global mechanisms of wood devolatilization. Thermochim Acta 429:133–141

    Article  CAS  Google Scholar 

  11. Kwapinski W, Byrne C, Kryachko E, Wolfram P, Adley C, Leahy J, Novotny E, Hayes M (2010) Biochar from biomass and waste. Waste and Biomass Valorization 1:177–189

    Article  CAS  Google Scholar 

  12. Townsend S, Abraham M, Huppert G, Klein M, Paspek S (1988) Solvent effects during reactions in supercritical water. Ind Eng Chem Res 27:143–149

    Article  CAS  Google Scholar 

  13. Libra J, Ro K, Kamman C, Funke A, Berge N, Neubauer Y, Titirici MM, Fühner C, Bens O, Kern J (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2:71–106

    Article  CAS  Google Scholar 

  14. Peterson A, Vogel F, Lachance R, Fröling M, Antal M, Tester J (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  CAS  Google Scholar 

  15. Kruse A (2008) Supercritical water gasification. Biofuels Bioprod Biorefin 2:415–437

    Article  CAS  Google Scholar 

  16. Lu Y, Guo L, Zhang X, Yan Q (2007) Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water. Chem Eng J 131:233–244

    Article  CAS  Google Scholar 

  17. Neuling U, Kaltschmitt M, Hofbauer H (2016) Einordnung der thermo-chemischen Verfahren. In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse, 3rd edn. Springer, Berin/Heidelberg, pp 684–697

    Google Scholar 

  18. Chew J, Doshi V (1991) Recent advances in biomass pretreatment – Torrefaction fundamentals and technology. Renew Sust Energ Rev 15:4212–4222

    Article  Google Scholar 

  19. Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28:435–440

    Article  CAS  Google Scholar 

  20. Bergmann PC, Kiel JH (2005) Torrefaction for biomass upgrading. 14th European Biomass Conference & Exhibition, Paris

    Google Scholar 

  21. Chen WH, Hsu HC, Lu KM, Lee WJ, Lin TC (2011) Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy 36:3012–3021

    Article  CAS  Google Scholar 

  22. Quicker P, Weber K (2016) Biokohle – Herstellung, Eigenschaften und Verwendung von Biomassekarbonisaten. Springer Vieweg, Wiesbaden

    Google Scholar 

  23. Sensöz S (2003) Slow pyrolysis of wood barks from Pinus brutia Ten. and product compositions. Bio/Technology 89:307–311

    Google Scholar 

  24. Lee Y, Park J, Ryu C, Gang K, Yang W, Park YK, Jung J, Hyun S (2013) Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bio/Technology 148:196–201

    CAS  Google Scholar 

  25. Bridgwater A (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94

    Article  CAS  Google Scholar 

  26. Osowski S, Neumann S, Fahlenkamp H (2005) Gasification of biogenic solid fuels. Chem Eng Technol 28:596–604

    Article  CAS  Google Scholar 

  27. Heidenreich S, Foscolo P (2015) New concepts in biomass gasification. Prog Energy Combust Sci 46:72–95

    Article  Google Scholar 

  28. Yan W, Hastings JT, Acharjee TC, Coronella CJ, Vasquez VR (2010) Mass and energy balances of wet Torrefaction of lignocellulosic biomass. Energy Fuel 24:4738–4742

    Article  CAS  Google Scholar 

  29. Reza M, Andert J, Wirth B, Busch D, Pielert J, Lynam J, Mumme J (2014) Hydrothermal carbonization of biomass for energy and crop production. Appl Bioenergy 1:11–29

    Article  Google Scholar 

  30. Hu B, Wang K, Wu L, Yu SH, Antonietti M, Tirici MM (2010) Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater 22:813–828

    Article  CAS  Google Scholar 

  31. Toor S, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342

    Article  CAS  Google Scholar 

  32. Akhtar J, Amin N (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sust Energ Rev 15:1615–1624

    Article  CAS  Google Scholar 

  33. Schmieder H, Abeln J, Boukis N, Dinjus E, Kruse A, Kluth M, Petrich G, Sadri E, Schacht M (2000) Hydrothermal gasification of biomass and organic wastes. J Supercrit Fluids 17:145–153

    Article  CAS  Google Scholar 

  34. Kruse A (2009) Hydrothermal biomass gasification. J Supercrit Fluids 47:391–399

    Article  CAS  Google Scholar 

  35. Elloitt D (2008) Catalytic hydrothermal gasification of biomass. Biofuels Bioprod Biorefin 2:254–265

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Christ .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Christ, D., Scherzinger, M., Neuling, U., Kaltschmitt, M. (2017). Thermochemical Conversion of Solid Biofuels: Processes and Techniques. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1042-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1042-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics