Skip to main content

Designing and Synthesizing Materials with Appropriate Lifetimes

  • Living reference work entry
  • First Online:
  • 247 Accesses

Glossary

Biobased:

Composed of or derived from a biological resource, specifically in this context a polymer or material that is either a polymer produced in nature or a polymer or material that is prepared from monomers derived from a bioresource

Biodegradable:

A material or substance that can be degraded by enzymes present in the environment as a consequence of the existence of living organisms

Biopolymer:

A polymer produced by plants or animals in nature, usually, but not specifically naturally occurring

Circular economy:

An economic model built on the concept of cycles where the earth is considered to be a as a closed and circular system with limited capacity to assimilate wastes or pollutants; in this context wastes are a resource and manufacturing loops should be as small as possible, i.e., should require the least energy input and retain the highest value; resources cycle in closed loops, including in biological and technical “nutrient” loops

End-of-life fate:

The fate of a...

This is a preview of subscription content, log in via an institution.

Bibliography

  1. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782

    Article  CAS  Google Scholar 

  2. Medhaug I, Stolpe MB, Fischer EM, Knutti R (2017) Reconciling controversies about the ‘global warming hiatus’. Nature 545:41–47

    Article  CAS  Google Scholar 

  3. Maqbool F, Mostafalou S, Bahadar H, Abdollahi M (2016) Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci 145:265–273

    Article  CAS  Google Scholar 

  4. Jenna R, Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    Article  CAS  Google Scholar 

  5. Wilcox C, Van Sebille E, Hardesty BD (2015) Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proc Natl Acad Sci USA 112:11899–11904

    Article  CAS  Google Scholar 

  6. Cesa FS, Turra A, Baruque-Ramos J (2017) Synthetic fibers as microplastics in the marine environment: a review from textile perspective with a focus on domestic washings. Sci Total Environ 598:1116–1129

    Article  CAS  Google Scholar 

  7. Cozar A, Echevarria F, Gonzalez-Gordillo JI, Irigoien X, Ubeda B, Hernandez-Leon S, Palma AT, Navarro S, Garcia-de-Lomas J, Ruiz A, Fernandez-de-Puelles ML, Duarte CM (2014) Plastic debris in the open ocean. Proc Natl Acad Sci USA 111:10239–10244

    Article  CAS  Google Scholar 

  8. Navajas A, Uriarte L, Gandia LM (2017) Application of eco-design and life cycle assessment standards for environmental impact reduction of an industrial product. Sustainability 9:Article Number: 1724 17

    Google Scholar 

  9. Nessi S, Rigamonti L, Grosso M (2012) LCA of waste prevention activities: a case study for drinking water in Italy. J Environ Manag 108:73–83

    Article  CAS  Google Scholar 

  10. Stahel WR (2016) Circular economy. Nat News 531:435–438

    Article  CAS  Google Scholar 

  11. Su B, Heshmati A, Geng Y, Yu X (2013) A review of the circular economy in China: moving from rhetoric to implementation. J Clean Prod 42:215–227

    Article  Google Scholar 

  12. Urbinati A, Chiaroni D, Chiesa V (2017) Towards a new taxonomy of circular economy business models. J Clean Prod 168:487–498

    Article  Google Scholar 

  13. Boulding KE (1966) The economics of the coming spaceship earth. In: Jarrett H (ed) Environmental quality in a growing economy. Resources for the Future/Johns Hopkins University Press, Baltimore, pp 3–14

    Google Scholar 

  14. Jackson T, Senker P (2011) Prosperity without growth: economics for a finite planet. Energy Environ 22:1013–1016

    Article  Google Scholar 

  15. Schwager P, Decker N, Kaltenegger I (2016) Exploring green chemistry, sustainable chemistry and innovative business models such as chemical leasing in the context of international policy discussions. Curr Opin Green Sustain Chem 1:18–21

    Article  Google Scholar 

  16. Ongondo IFO, Williams D, Cherrett TJ (2011) How are WEEE doing? A global review of the management of electrical and electronic wastes. Waste Manag 31:714–730

    Article  CAS  Google Scholar 

  17. Chiodo JD, Jones N, Billett EH, Harrison DJ (2002) Shape memory alloy actuators for active disassembly using ‘smart’ materials of consumer electronic products. Mat Des 23:471–478

    Article  CAS  Google Scholar 

  18. Bridgens B, Hobson K, Lilley D, Lee J, Scott JL, Wilson G (2017) Closing the loop on E-waste: a multidisciplinary perspective. J Ind Ecology. https://doi.org/10.1111/jiec.12645

  19. Hahladakis JN, Velis CA, Weber R, Iacovidou E, Purnell P (2017) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Haz Mat 344:179–199

    Article  CAS  Google Scholar 

  20. Zhou L, Li G, An T, Fu J, Sheng G (2008) Recent patents on immobilized microorganism technology and its engineering application in wastewater treatment. Recent Pat Eng 2:28–35

    Article  CAS  Google Scholar 

  21. (2006) plastic, n. and adj. In: Simpson J (ed) Oxford English Dictionary. 3rd edn. Oxford University Press, Kettering

    Google Scholar 

  22. Franklin Associates (2014) Impact of plastics packaging on life cycle energy consumption & greenhouse gas emissions in the United States and Canada: substitution analysis. Franklin Associates, A Division of Eastern Research Group (ERG), Prairie Village

    Google Scholar 

  23. PlasticsEurope (2016) Plastics – the facts 2016: an analysis of European plastics production, demand and waste data. Plastics Europe, Brussels

    Google Scholar 

  24. SPI: The Plastics Industry Trade Association (2016) 2015 sustainability progress report. SPI: The Plastics Industry Trade Association, Washington, DC

    Google Scholar 

  25. Braskem (2017) I’m green™ poly(ethylene): innovation and differentiation for your product. Braskem, São Paulo

    Google Scholar 

  26. Braskem (2017) I’m green™ PE life cycle assessment. Braskem, São Paulo

    Google Scholar 

  27. The Freedonia Group (2014) World poly(ethylene): industry study with forecasts for 2018 & 2023. The Freedonia Group, Cleveland

    Google Scholar 

  28. Nexant Inc. (2009) Green propylene: report abstract. Nexant Inc., New York

    Google Scholar 

  29. Matthews G (1997) PVC: production, properties and uses/Book 587, 1st edn. Institute of Materials, London

    Google Scholar 

  30. Pang J, Zheng M, Sun R, Wang A, Wang X, Zhang T (2016) Synthesis of ethylene glycol and terephthalic acid from biomass for producing PET. Green Chem 18:342–359

    Article  CAS  Google Scholar 

  31. (2010) Braskem Launches Project for Green Propylene Industrial Unit. Braskem, São Paulo. Accessed: 05/11/17. http://www.braskem-ri.com.br/detail-notices-and-material-facts/braskem-launches-project-for-green-propylene-industrial-unit

  32. Braskem (2017) 2016 Annual Report. Braskem, São Paulo

    Google Scholar 

  33. Beresford M (2013) Braskem freezes green plastics plans, focuses elsewhere. BNamericas, Las Condes. [Accessed: 05/11/17] http://www.bnamericas.com/news/petrochemicals/braskem-freezes-green-plastics-plans-focuses-elsewhere

    Google Scholar 

  34. Coady D, Parry I, Sears L, Shang BP (2017) How large are global fossil fuel subsidies? World Dev 91:11–27

    Article  Google Scholar 

  35. Environmental Accounting for Sustainable Development – A UNEP-World Bank Symposium, Eds: Yusuf J, El Serafy AS, Lutz E (1989) The International Bank for reconstruction and development. The World Bank, Washington, DC. Downloaded from http://documents.worldbank.org/curated/en/156521468767069279/pdf/multi-page.pdf

    Google Scholar 

  36. Dutta A (2014) An overview of impacting factors on environment cost in the area of environment accounting. Int J Bus Man 2:66–72

    Google Scholar 

  37. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643

    Article  CAS  Google Scholar 

  38. Parfitt J, WRAP (2002) Analysis of household waste composition and factors driving waste increases. Waste & Resources Action Programme (WRAP), Banbury

    Google Scholar 

  39. PlasticsEurope (2016) The unknown life of plastics – January 2016. Plastics Europe, Brussels

    Google Scholar 

  40. European Union: European Commission (2014) Towards a circular economy: a zero waste programme for Europe. European Union: European Commission, Brussels

    Google Scholar 

  41. Sandford K, King C, Graff S, Adler M, Babits R, Coddington B, Grimm E, Johnson A, Madden B, Radiwon M, Timpane M, Resource Recycling Systems (2016) Flexible packaging sortation at materials recovery facilities: research report. Resource Recycling Systems, Ann Arbor

    Google Scholar 

  42. PlasticsEurope (2015) Plastics – the facts 2014/2015: an analysis of European plastics production, demand and waste data. PlasticsEurope, Brussels

    Google Scholar 

  43. DECISION No 1386/2013/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 November 2013 on a General Union Environment Action Programme to 2020 ‘Living well, within the limits of our planet’. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32013D1386

  44. McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13:544–554

    Article  CAS  Google Scholar 

  45. (2015) Thermo-oxidative degradation of polymers. Chemical Data Retrieval on the Web (CROW). Accessed: 13/11/17. http://polymerdatabase.com/polymer%20chemistry/Thermal%20Degradation.html

  46. McKinlay R, Morrish L, Axion Consulting (2016) REFLEX PROJECT: a summary report on the results and findings from the REFLEX project. Axion Consulting, Bramhall

    Google Scholar 

  47. Jin H, Gonzalez-Gutierrez J, Oblak P, Zupančič B, Emri I (2012) The effect of extensive mechanical recycling on the properties of low density poly(ethylene). Polym Degrad Stab 97:2262–2272

    Article  CAS  Google Scholar 

  48. Oblak P, Gonzalez-Gutierrez J, Zupančič B, Aulova A, Emri I (2015) Processability and mechanical properties of extensively recycled high density poly(ethylene). Polym Degrad Stab 114:133–145

    Article  CAS  Google Scholar 

  49. Aurrekoetxea J, Sarrionandia MA, Urrutibeascoa I, Maspoch ML (2001) Effects of recycling on the microstructure and the mechanical properties of isotactic polypropylene. J Mater Sci 36:2607–2613

    Article  CAS  Google Scholar 

  50. McKinlay R, Morrish L, Omboke S, Ripper B, Wilkinson S, WRAP (2013) Processing trials for household film waste: summary report for demonstration trials assessing novel near-infrared sorting of household plastic film waste. Waste & Resources Action Programme (WRAP), Banbury

    Google Scholar 

  51. The Closed Loop Foundation (2017) Film recycling investment report. The Closed Loop Foundation, New York City

    Google Scholar 

  52. MacKerron CB, Natural Resources Defense Council and As You Sow (2015) Waste and opportunity 2015: environmental progress and challenges in food, beverage, and consumer goods packaging. Natural Resources Defense Council, New York

    Google Scholar 

  53. (2017) TerraCycle. TerraCycle, Trenton. Accessed: 22 Nov 2017. www.terracycle.com

  54. (2017) Saperatec. Saperatec GmbH, Bielefeld. Accessed: 21/11/17. http://www.saperatec.de

  55. Rodrigues Vieira D, Vieira RK, Chain MC (2017) Strategy and management for the recycling of carbon fiber-reinforced polymers (CFRPs) in the aircraft industry: a critical review. Int J Sust Dev World 24:214–223

    Article  Google Scholar 

  56. Yang Y, Boom R, Irion B, Heerden D-J, Kuiper P, de Wit H (2012) Recycling of composite materials. Chem Eng Process 51:53–68

    Article  CAS  Google Scholar 

  57. Pimenta S, Pinho ST (2011) Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manage 31:378–392

    Article  CAS  Google Scholar 

  58. Achilias DS, Andriotis L, Koutsidis IA, Louka DA, Nianias NP, Siafaka P, Tsagkalias I, Tsintzou G (2012) Recent advances in the chemical recycling of polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA). In: Achilias DS (ed) Material recycling – trends and perspectives, edn. InTech, London

    Chapter  Google Scholar 

  59. Guddeti RR, Knight R, Grossmann ED (2000) Depolymerization of polypropylene in an induction- coupled plasma (ICP) reactor. Ind Eng Chem Res 39:1171–1176

    Article  CAS  Google Scholar 

  60. World Economic Forum, Ellen MacArthur Foundation and McKinsey & Company (2016) The new plastics economy: rethinking the future of plastics. Ellen MacArthur Foundation, Cowes

    Google Scholar 

  61. Rahimi A, García JM (2017) Chemical recycling of waste plastics for new materials production. Nature Rev Chem 1:Article number 0046

    Article  CAS  Google Scholar 

  62. Montaudo G, Puglisi C, Samperi F (1993) Primary thermal degradation mechanisms of PET and PBT. Polym Degrad Stab 42:13–28

    Article  CAS  Google Scholar 

  63. Fukushima K, Coulembier O, Lecuyer JM, Almegren HA, Alabdulrahman AM, Alsewailem FD, Mcneil MA, Dubois P, Waymouth RM, Horn HW, Rice JE, Hedrick JL (2011) Organocatalytic depolymerization of poly(ethylene terephthalate). J Polym Sci A 49:1273–1281

    Article  CAS  Google Scholar 

  64. Fukushima K, Lecuyer JM, Wei DS, Horn HW, Jones GO, Al-Megren HA, Alabdulrahman AM, Alsewailem FD, McNeil MA, Rice JE, Hedrick JL (2013) Advanced chemical recycling of poly(ethylene terephthalate) through organocatalytic aminolysis. Polym Chem 4:1610–1616

    Article  CAS  Google Scholar 

  65. Jamdar V, Kathalewar M, Dubey KA, Sabnis A (2017) Recycling of PET wastes using electron beam radiations and preparation of poly(urethane) coatings using recycled material. Prog Org Coat 107:54–63

    Article  CAS  Google Scholar 

  66. Kurokawa H, Ohshima M, Sugiyama K, Miura H (2003) Methanolysis of poly(ethylene) terephthalate (PET) in the presence of aluminium triisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol. Polym Degrad Stab 79:529–533

    Article  CAS  Google Scholar 

  67. Guclu G, Yalcinyuva T, Ozgumus S, Orbay M (2003) Simultaneous glycolysis and hydrolysis of poly(ethylene) terephthalate and characterization of products by differential scanning calorimetry. Polymer 44:7609–7616

    Article  CAS  Google Scholar 

  68. Wang Q, Yao X, Geng Y, Zhou Q, Lu X, Zhang S (2015) Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate)(PET). Green Chem 17:2473–2479

    Article  CAS  Google Scholar 

  69. Goto M, Koyamoto H, Kodama A, Hirose T, Nagaoka S (2002) Depolymerization of poly(ethylene) terephthalate in supercritical methanol. J Phys Condens Matter 14:11427–11430

    Article  CAS  Google Scholar 

  70. Quartinello F, Vajnhandl S, Valh JV, Farmer TJ, Voncina B, Lobnik A, Acero EH, Pellis A, Guebitz GM (2017) Synergistic chemo-enzymatic hydrolysis of poly(ethylene terephthalate) from textile waste. Microb Biotechnol 10:1376–1383

    Article  CAS  Google Scholar 

  71. Gardea F, Garcia JM, Boday DJ, Bajjuri KM, Naraghi M, Hedrick JL (2014) Hybrid poly(aryl ether sulfone amide)s for advanced thermoplastic composites. Macromol Chem Phys 215:2260–2267

    Article  CAS  Google Scholar 

  72. Anuar Sharuddin SD, Abnisa F, Wan Daud WMA, Aroua MK (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326

    Article  CAS  Google Scholar 

  73. Miranda R, Yang J, Roy C, Vasile C (1999) Vacuum pyrolysis of PVC I. Kinetic study. Polym Degrad Stab 64:127–144

    Article  CAS  Google Scholar 

  74. Fakhr Hoseini SM, Dastanian M (2013) Predicting pyrolysis products of PE, PP, and PET using NRTL activity coefficient model. J Chem 2013:5

    Google Scholar 

  75. (2017) Enval | Plastic aluminium laminate recycling. Enval Ltd., Luton. Accessed: 23/11/17. http://www.enval.com/

  76. Slater S, Crichton T, WRAP (2011) Recycling of laminated packaging: trials to optimise pilot plant for recycling of laminated packaging wastes. Waste & Resources Action Programme (WRAP), Banbury

    Google Scholar 

  77. (2017) Belland: product overview. BellandTechnology AG, Pottenstein. Accessed: 23/11/17. http://www.belland.de/cms/en/belland_functionals_anwendungen__produktuebersicht.htm

  78. García JM, Jones GO, Virwani K, McCloskey BD, Boday DJ, ter Huurne GM, Horn HW, Coady DJ, Bintaleb AM, Alabdulrahman AMS, Alsewailem F, Almegren HAA, Hedrick JL (2014) Recyclable, strong thermosets and Organogels via paraformaldehyde condensation with diamines. Science 344:732–735

    Article  CAS  Google Scholar 

  79. Kazemi Najafi S (2013) Use of recycled plastics in wood plastic composites – a review. Waste Manag 33:1898–1905

    Article  Google Scholar 

  80. Gu L, Ozbakkaloglu T (2016) Use of recycled plastics in concrete: a critical review. Waste Manag 51:19–42

    Article  Google Scholar 

  81. Zhuo C, Levendis YA (2014) Upcycling waste plastics into carbon nanomaterials: a review. J Appl Polym Sci 131:n/a

    Article  CAS  Google Scholar 

  82. Bolin CA, Smith S (2011) Life cycle assessment of ACQ-treated lumber with comparison to wood plastic composite decking. J Clean Prod 19:620–629

    Article  CAS  Google Scholar 

  83. Department for Business, Energy & Industrial Strategy (2016) Electricity generation costs. Department for Business, Energy & Industrial Strategy, London

    Google Scholar 

  84. Azapagic A (2011) Municipal solid waste management: recovering energy from waste. In: Azapagic A, Perdan S (eds) Sustainable development in practice: case studies for engineers and scientists, 2nd edn. Wiley, Chichester, pp 261–325

    Google Scholar 

  85. Department for Environment, Food & Rural Affairs (2013) Incineration of municipal solid waste. Department for Environment, Food & Rural Affairs, London

    Google Scholar 

  86. Nixon JD, Wright DG, Dey PK, Ghosh SK, Davies PA (2013) A comparative assessment of waste incinerators in the UK. Waste Manag 33:2234–2244

    Article  CAS  Google Scholar 

  87. Zactruba J (2009) Burning coal in power plants – calorific value and moisture. Bright Hub Inc., New York. Accessed: 27/10/17. http://www.brighthubengineering.com/power-plants/22202-burning-coal-in-power-plants-calorific-value-and-moisture/

    Google Scholar 

  88. East P, RECOUP (2017) Plastic packaging: recyclability by design. Recycling of Used Plastics Limited (RECOUP), Peterborough

    Google Scholar 

  89. Schneiderman DK, Hillmyer MA (2017) 50th anniversary perspective: there is a great future in sustainable polymers. Macromolecules 50:3733–3750

    Article  CAS  Google Scholar 

  90. Gandini A, Lacerda TM (2015) From monomers to polymers from renewable resources: recent advances. Prog Polym Sci 48:1–39

    Article  CAS  Google Scholar 

  91. Mulhaupt R (2013) Green polymer chemistry and biobased plastics: dreams and reality. Macromol Chem Phys 214:159–174

    Article  CAS  Google Scholar 

  92. Takeshima H, Satoh K, Kamigaito M (2017) Biobased functional styrene monomers derived from naturally occurring Ferulic acid for poly(vinylcatechol) and poly(vinylguaiacol) via controlled radical polymerization. Macromolecules 50:4206–4216

    Article  CAS  Google Scholar 

  93. Lian J, McKenna R, Rover MR, Nielsen DR, Wen Z, Jarboe LR (2016) Production of biorenewable styrene: utilization of biomass-derived sugars and insights into toxicity. J Ind Microbiol Biotechnol 43:595–604

    Article  CAS  Google Scholar 

  94. Lligadas G, Ronda JC, Galià M, Cádiz V (2006) Novel silicon-containing poly(urethane)s from vegetable oils as renewable resources. Synthesis and Properties. Biomacromolecules 7:2420–2426

    Article  CAS  Google Scholar 

  95. Samanta S, Selvakumar S, Bahr J, Wickramaratne DS, Sibi M, Chisholm BJ (2016) Synthesis and characterization of poly(urethane) networks derived from soybean-oil-based cyclic carbonates and bioderivable diamines. ACS Sustain Chem Eng 4:6551–6561

    Article  CAS  Google Scholar 

  96. Zhang C, Wu H, Kessler MR (2015) High bio-content poly(urethane) composites with urethane modified lignin as filler. Polymer 69:52–57

    Article  CAS  Google Scholar 

  97. Bernardini J, Cinelli P, Anguillesi I, Coltelli M-B, Lazzeri A (2015) Flexible poly(urethane) foams green production employing lignin or oxypropylated lignin. Eur Polym J 64:147–156

    Article  CAS  Google Scholar 

  98. (2017) Lactic Acid Market Size Worth $9.8Bn By 2025 & PLA To Reach $6.5Bn. Grand View Research

    Google Scholar 

  99. Zhao N, Ren C, Li H, Li Y, Liu S, Li Z (2017) Selective ring-opening polymerization of non-strained gamma-Butyrolactone catalyzed by a cyclic trimeric Phosphazene Base. Angew Chem Int Ed 56:12987–12990

    Article  CAS  Google Scholar 

  100. Hong M, Chen EYX (2016) Towards truly sustainable polymers: a metal-free recyclable polyester from biorenewable non-strained-Butyrolactone. Angew Chem Int Ed 55:4188–4193

    Article  CAS  Google Scholar 

  101. Hong M, Chen EYX (2016) Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of gamma-butyrolactone. Nature Chem 8:42–49

    Article  CAS  Google Scholar 

  102. Tang X, Hong M, Falivene L, Caporaso L, Cavallo L, Chen EYX (2016) The quest for converting biorenewable bifunctional alpha-methylene-gamma-butyrolactone into degradable and recyclable polyester: controlling vinyl-addition/ring-opening/cross-linking pathways. J Am Chem Soc 138:14326–14337

    Article  CAS  Google Scholar 

  103. Brutman JP, De Hoe GX, Schneiderman DK, Le TN, Hillmyer MA (2016) Renewable, degradable, and chemically recyclable cross-linked elastomers. Ind Eng Chem Res 55:11097–11106

    Article  CAS  Google Scholar 

  104. Huang YF, Chang RX, Han LL, Shan GR, Bao YZ, Pan PJ (2016) ABA-type thermoplastic elastomers composed of poly(epsilon-caprolactone-co-delta-valerolactone) soft midblock and polymorphic poly(lactic acid) hard end blocks. ACS Sustain Chem Eng 16:121–128

    Article  CAS  Google Scholar 

  105. Watts A, Kurokawa N, Hillmyer MA (2017) Strong, resilient, and sustainable aliphatic polyester thermoplastic elastomers. Biomacromolecules 18:1845–1854

    Article  CAS  Google Scholar 

  106. Hillmyer MA, Tolman WB (2014) Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc Chem Res 47:2390–2396

    Article  CAS  Google Scholar 

  107. Gandini A, Silvestre AJD, Neto CP, Sousa AF, Gomes M (2008) The furan counterpart of poly(ethylene terephthalate): an alternative material based on renewable resources. J Polym Sci A Chem 47:95–298. https://doi.org/10.1002/pola.23130

    Article  CAS  Google Scholar 

  108. Sanford MJ, Carrodeguas LP, Van Zee NJ, Kleij AW, Coates GW (2016) Semiaromatic polyesters derived from renewable terpene oxides with high glass transitions. Macromolecules 50:5337–5345

    Google Scholar 

  109. Gregory GL, Lopez-Vidal EM, Buchard A (2017) Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications. Chem Commun 53:2198–2217

    Article  CAS  Google Scholar 

  110. Gandini A, Lacerda TM, Carvalho AJF, Trovatti E (2016) Progress of polymers from renewable resources: furans, vegetable oils, and polysaccharides. Chem Rev 116:1637–1669

    Article  CAS  Google Scholar 

  111. Mahmood N, Yuan ZS, Schmidt J, Xu C (2016) Depolymerization of lignins and their applications for the preparation of polyols and rigid poly(urethane) foams: a review. Renew Sust Energ Rev 60:317–329

    Article  CAS  Google Scholar 

  112. Winnacker M, Rieger B (2015) Recent progress in sustainable polymers obtained from cyclic terpenes: synthesis, properties, and application potential. ChemSusChem 8:2455–2471

    Article  CAS  Google Scholar 

  113. Thomsett MR, Storr TE, Monaghan OR, Stockman RA, Howdle SM (2016) Progress in the synthesis of sustainable polymers from terpenes and terpenoids. Green Mat 4:115–134

    Article  Google Scholar 

  114. Buono P, Duval A, Averous L, Habibi Y (2017) Thermally healable and remendable lignin-based materials through Diels – Alder click polymerization. Polymer 133:78–88

    Article  CAS  Google Scholar 

  115. Carrodeguas LP, Martin C, Kleij AW (2017) Semiaromatic polyesters derived from renewable terpene oxides with high glass transitions. Macromolecules 50:5337–5345

    Article  CAS  Google Scholar 

  116. Stempfle F, Schemmer B, Oechsle AL, Mecking S (2015) Thermoplastic polyester elastomers based on long-chain crystallizable aliphatic hard segments. Polym Chem 6:7133–7137

    Article  CAS  Google Scholar 

  117. Mottiar Y, Vanholme R, Boerjan W, Ralph J, Mansfield SD (2016) Designer lignins: harnessing the plasticity of lignification. Curr Opinion Biotechnol 37:190–200

    Article  CAS  Google Scholar 

  118. Delidovich I, Hausoul PJC, Deng L, Pfützenreuter R, Rose M, Palkovits R (2016) Alternative monomers based on lignocellulose and their use for polymer production. Chem Rev 116:1540–1599

    Article  CAS  Google Scholar 

  119. Gustini L, Lavilla C, Martínez de Ilarduya A, Muñoz-Guerra S, Koning CE (2016) Isohexide and sorbitol-derived, enzymatically synthesized renewable polyesters with enhanced Tg. Biomacromolecules 17:3404–3416

    Article  CAS  Google Scholar 

  120. Badia JD, Ribes-Greus A (2016) Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques. Europ Polym J 84:22–39

    Article  CAS  Google Scholar 

  121. Vink ETH, Rabago KR, Glassner DA, Springs B, O’Connor RP, Kolstad J, Gruber PR (2004) The sustainability of nature works™ Polylactide polymers and Ingeo™ Polylactide fibers: an update of the future. Macromol Biosci 4:551–564

    Article  CAS  Google Scholar 

  122. Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies – a review. J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  123. Phomphrai K, Pracha S, Phonjanthueka P, Pohmakotra M (2008) Facile alcoholysis of L-lactide catalysed by Group 1 and 2 metal complexes. Dalton Trans 0:3048–3050

    Article  CAS  Google Scholar 

  124. Petrus R, Bykowski D, Sobota P (2016) Solvothermal Alcoholysis routes for recycling Polylactide waste as lactic acid esters. ACS Catal 6:5222–5235

    Article  CAS  Google Scholar 

  125. Leibfarth FA, Moreno N, Hawker AP, Shand JD (2012) Transforming Polylactide into value-added materials. J Polym Sci A Polym Chem 50:4814–4822

    Article  CAS  Google Scholar 

  126. Hirao K, Nakatsuchi Y, Ohara H (2010) Alcoholysis of poly(l-lactic acid) under microwave irradiation. Polym Degrad Stab 95:925–928

    Article  CAS  Google Scholar 

  127. Whitelaw EL, Davidson MG, Jones MD (2011) Group 4 salalen complexes for the production and degradation of polylactide. Chem Commun 47:10004–10006

    Article  CAS  Google Scholar 

  128. de Andrade MFC, Marina F, Souza PMS, Cavalett O, Morales AR (2016) Life cycle assessment of poly(lactic acid) (PLA): comparison between chemical recycling, mechanical recycling and composting. J Polym Env 24:372–384

    Article  CAS  Google Scholar 

  129. Wei R, Zimmermann W (2017) Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol 10:1308–1322

    Article  CAS  Google Scholar 

  130. Wilkes RA, Aristilde L (2017) Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. J Appl Microbiol 123:582–593

    Article  CAS  Google Scholar 

  131. Rossi V, Cleeve-Edwards N, Lundquist L, Schenker U, Dubois C, Humbert S, Jolliet O (2015) Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. J Clean Prod 86:132e145

    Article  Google Scholar 

  132. Razza F, Innocenti FD (2012) Bioplastics from renewable resources: the benefits of biodegradability. Asia Pac J Chem Eng 7:301e309

    Article  CAS  Google Scholar 

  133. Sudhakar M, Priyadarshinia C, Doble M, Murthy PS, Venkatesan R (2007) Marine bacteria mediated degradation of nylon 66 and 6. Int Biodeterior Biodegrad 60:144–151

    Article  CAS  Google Scholar 

  134. Yang J, Yang Y, Wu W-M, Zhao J, Jiang L (2014) Evidence of poly(ethylene) biodegradation by bacterial strains from the guts of plastic-eating waxworms. Env Sci Tech 48:13776–13784

    Article  CAS  Google Scholar 

  135. Ebata H, Toshima K, Matsumura S (2000) Lipase-catalyzed transformation of poly(epsilon-caprolactone) into cyclic dicaprolactone. Biomacromolecules 1:511–514

    Article  CAS  Google Scholar 

  136. Kondo R, Toshima K, Matsumura S (2002) Lipase-catalyzed selective transformation of polycaprolactone into cyclic dicaprolactone and its repolymerization in supercritical carbon dioxide. Macromol Biosci 2:267–271

    Article  CAS  Google Scholar 

  137. Hayashi H, Yanagishita Y, Matsumura S (2011) Chemoenzymatic synthesis and chemical recycling of poly(ester-urethane)s. Int J Mol Sci 12:5490–5507

    Article  CAS  Google Scholar 

  138. Yanagishita Y, Kato M, Toshima K, Matsumura S (2008) Chemoenzymatic synthesis and chemical recycling of sustainable poly(urethane)s. ChemSusChem 1:133–114

    Article  CAS  Google Scholar 

  139. Matsumura S, Harai S, Toshima K (2001) Lipase-catalyzed transformation of poly(trimethylene carbonate) into cyclic monomer, trimethylene carbonate: a new strategy for sustainable polymer recycling using an enzyme. Macromol Rapid Commun 22:215–218

    Article  CAS  Google Scholar 

  140. Hunt RG, Franklin WE (1996) LCA – how it came about. Int J Life Cycle Assess 1:4–7

    Article  Google Scholar 

  141. Klöpffer W (1997) Life cycle assessment. Environ Sci Pollut Res 4:223–228

    Article  Google Scholar 

  142. Huff M, Molen AM, Sauer B, Franklin Associates (2009) Life cycle inventory of three single-serving soft drink containers. Franklin Associates, Prairie Village

    Google Scholar 

  143. Shonfield P, PE International (2013) LCA of paper and polymer Bank notes: final study report. PE International, Sheffield

    Google Scholar 

  144. Hardwick A, PE International (2015) LCA of management options for polymer Waste from Bank notes: final study report. PE International, Sheffield

    Google Scholar 

  145. Bank of England (2017) The future composition of polymer banknotes – decision document. Bank of England, London

    Google Scholar 

  146. Amaral WAN, Marinho JP, Tarasantchi R, Beber A, Giuliani E (2008) Environmental sustainability of sugarcane ethanol in Brazil. In: Zuurbier P, van der Vooren J (eds) Sugarcane ethanol: contributions to climate change mitigation and the environment, 1st edn. Wageningen Academic, Wageningen, pp 113–138

    Google Scholar 

  147. Braskem (2017) Green poly(ethylene): from the field to the consumer’s house. Braskem, São Paulo

    Google Scholar 

  148. Muñoz I, Flury K, Jungbluth N, Rigarlsford G, i Canals LM, King H (2014) Life cycle assessment of biobased ethanol produced from different agricultural feedstocks. Int J Life Cycle Assess 19:109–119

    Article  CAS  Google Scholar 

  149. Hocking MB (1994) Reusable and disposable cups: an energy-based evaluation. Environ Manag 18:889–899

    Article  Google Scholar 

  150. Vaes R, Schoenmakere MD, Ulburghs W, Sarlee W, OVAM (2006) Comparative LCA of 4 types of drinking cups used at events. Public Waste Agency of Flanders (OVAM), Mechelen

    Google Scholar 

  151. Ligthart TN, Ansems AMM, TNO (2007) Single use cups or reusable (coffee) drinking systems: an environmental comparison. Netherlands Organisation for Applied Scientific Research (TNO), Apeldoorn

    Google Scholar 

  152. Pladerer C, Meissner M, Dinkel F, Zschokke M, Dehoust G, Schüler D, Austrian Institute of Ecology (2008) Comparative life cycle assessment of various cup Systems for the Selling of drinks at events: focussing on major events such as the European football championships UEFA EURO 2008™ in Austria and Switzerland as well as the German “Bundesliga”. Austrian Institute of Ecology, Vienna

    Google Scholar 

  153. Bruyn SD, Korteland M, Markowska A, Davidson M, Jong FD, Bles M, Sevenster M, CE Delft (2010) Shadow prices handbook: valuation and weighting of emissions and environmental impacts. CE Delft, Delft

    Google Scholar 

  154. WRAP (2017) Recycling tracking survey 2017 Behaviours, attitudes and awareness around recycling. Waste & Resources Action Programme (WRAP), Banbury

    Google Scholar 

  155. Franklin Associates (2011) Life cycle inventory of foam poly(styrene), paper-based, and PLA foodservice products. Franklin Associates, Prairie Village

    Google Scholar 

  156. Detzel A, Kauertz B, Derreza-Greeven C, Federal Environment Agency (2013) Study of the environmental impacts of Packagings made of biodegradable plastics. Federal Environment Agency (Germany), Dessau-Roßlau

    Google Scholar 

  157. Napper IE, Bakir A, Rowland SJ, Thompson RC (2015) Characterisation, quantity and Sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99:178–185

    Article  CAS  Google Scholar 

  158. (2015) Microbead-Free Waters Act of 2015. Public Law 114–114 – 28 Dec 2015. https://www.congress.gov/bill/114th-congress/house-bill/1321/text

  159. Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70

    Article  CAS  Google Scholar 

  160. Coombs OBrien J, Torrente-Murciano L, Mattia D, Scott JL (2017) Continuous production of cellulose microbeads via membrane emulsification. ACS Sustain Chem Eng 5:5931–5939

    Article  CAS  Google Scholar 

  161. King CA, Shamshina JL, Zavgorodnya O, Cutfield T, Block LE, Rogers RD (2017) Porous chitin microbeads for more sustainable cosmetics. ACS Sustain Chem Eng 5:1660–11667

    Google Scholar 

  162. Crawford RJ, Edler KJ, Lindhoud S, Scott JL, Unali G (2012) Formation of shear thinning gels from partially oxidised cellulose nanofibrils. Green Chem 14:300–303

    Article  CAS  Google Scholar 

  163. Courtenay JC, Ramalhete SM, Skuze WJ, Soni R, Khimyak YZ, Edler KJ, Scott JL (2017) Unravelling cationic cellulose nanofibril hydrogel structure: NMR spectroscopy and small angle neutron scattering analyses. Soft Matter 14:255. https://doi.org/10.1039/c7sm02113e. [Epub ahead of print]

    Article  CAS  Google Scholar 

  164. Dickinson E (2017) Biopolymer-based particles as stabilizing agents for emulsions and foams. Food Hydrocoll 68:219–231

    Article  CAS  Google Scholar 

  165. Dickinson E (2011) Double emulsions stabilized by Food Biopolymers. Food Biophys 6:1–11

    Article  Google Scholar 

  166. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    Article  CAS  Google Scholar 

  167. Scheirs J, Rapra Technology Limited (2001) Fluoropolymers – technology, markets and trends. Rapra Technology Limited, Shrewsbury

    Google Scholar 

  168. Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and Natural Radiative Forcing. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, edn. Cambridge University Press, Cambridge, UK, pp 659–740

    Google Scholar 

  169. Lakshmanan A, Chakraborty SK (2015) Recycling of polytetrafluoroethylene (PTFE) scrap materials. In: Lakshmanan A (ed) Sintering techniques of materials, 1st edn. InTech, London, pp 169–190

    Chapter  Google Scholar 

  170. Hintzer K, Kaempf GJ, Kolbeck T, Zipplies TC, Willert-Porada MA, Gerdes T, Schmidt-Rodenkirchen A Process of making fluoroolefins by thermal decomposition of fluorinated materials. CN000102216246A, 2009

    Google Scholar 

  171. Vrancken I, Schöttle T (2017) Up-Cycling von vollfluorierten Polymeren. CHEManager International, Weinheim. Accessed: 23/11/17. http://www.chemanager-online.com/themen/forschung-labor/cycling-von-vollfluorierten-polymeren

    Google Scholar 

  172. Kotthoff M, Müller J, Jürling H, Schlummer M, Fiedler D (2015) Perfluoroalkyl and polyfluoroalkyl substances in consumer product. Environ Sci Pollut Res 22:14546–14559

    Article  CAS  Google Scholar 

Books and Reviews

  • Andrady AL (2015) Plastics and environmental sustainability. Wiley, Hoboken

    Google Scholar 

  • Chiellini E (2008) Environmentally compatible food packaging. Elsevier, Amsterdam

    Book  Google Scholar 

  • Lacy P, Rutqvist J (2015) Waste to wealth: the circular economy advantage. Palgrave Macmillan, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet L. Scott .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Scott, J.L., Johns, M.A. (2018). Designing and Synthesizing Materials with Appropriate Lifetimes. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1016-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1016-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics