Skip to main content

Chemical Modification of Cellulose in Solvents for Functional Materials

  • Living reference work entry
  • First Online:
Book cover Encyclopedia of Sustainability Science and Technology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Irimia-Vladu M (2014) “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chem Soc Rev 43:588–610

    Article  CAS  Google Scholar 

  2. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  CAS  Google Scholar 

  3. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  4. Nasatto PL, Pignon F, Silveira JLM, Duarte MER, Noseda MD, Rinaudo M (2015) Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7:777–803

    Article  CAS  Google Scholar 

  5. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  6. Zhang JM, Xu L, Yu J, Wu J, Zhang X, He J, Zhang J (2016) Understanding cellulose dissolution: effect of the cation and anion structure of ionic liquids on the solubility of cellulose. Sci China Chem 59:1421–1429

    Article  CAS  Google Scholar 

  7. Cunha I, Barras R, Grey P, Gaspar D, Fortunato E, Martins R, Pereira L (2017) Reusable cellulose-based hydrogel sticker film applied as gate dielectric in paper electrolyte-gated transistors. Adv Funct Mater 27:1606755

    Article  CAS  Google Scholar 

  8. Cross CF, Bevan EJ, Beadle C (1894) US Patent 520,770

    Google Scholar 

  9. Hill JW, Jacobson RA (1938) Method for manufacturing cellulose carbamate. US Patent 2,134,825

    Google Scholar 

  10. Fu F, Zhou J, Zhou X, Zhang L, Li D, Kondo T (2014) Green method for production of cellulose multifilament from cellulose carbamate on a pilot scale. ACS Sustain Chem Eng 2:2363–2370

    Article  CAS  Google Scholar 

  11. Fu F, Xu M, Wang H, Wang Y, Ge H, Zhou J (2015) Improved synthesis of cellulose carbamates with minimum urea based on an easy scale-up method. ACS Sustain Chem Eng 3:1510–1517

    Article  CAS  Google Scholar 

  12. Philipp B, Nehls I, Wagenknecht W, Schnabelrauch M (1987) 13C-N.M.R. spectroscopic study of the homogeneous sulphation of cellulose and xylan in the N2O4-DMF system. Carbohydr Res 164:107–116

    Article  CAS  Google Scholar 

  13. Williamson LS, McCormick LC (1998) Cellulose derivatives synthesized via isocyanate and activated ester pathways in homogeneous solutions of lithium chloride/N,N-dimethylacetamide. J Macromol Sci A Pure Appl Chem 12:1915–1927

    Article  Google Scholar 

  14. Fink H-P, Weigel P, Purz H, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  15. Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548

    Article  CAS  Google Scholar 

  16. Chen X, Burger C, Fang D (2006) X-ray studies of regenerated cellulose fibers wet spun from cotton linter pulp in NaOH/thiourea aqueous solutions. Polymer 47:2839–2848

    Article  CAS  Google Scholar 

  17. Kohler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7:307–314

    Article  CAS  Google Scholar 

  18. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  19. El Seoud OA, Nawaz H, Areas EPG (2013) Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: an overview. Molecules 18:1270–1313

    Article  CAS  Google Scholar 

  20. Nawaz H, Casarano R, El Seoud OA (2012) First report on the kinetics of the uncatalyzed esterification of cellulose under homogeneous reaction conditions: a rationale for the effect of carboxylic acid anhydride chain-length on the degree of biopolymer substitution. Cellulose 19:199–207

    Article  CAS  Google Scholar 

  21. El Seoud OA, Heinze T (2005) Organic esters of cellulose: new perspectives for old polymers. Adv Polym Sci 186:103–149

    Article  CAS  Google Scholar 

  22. Tian W, Zhang JM, Yu J, Wu J, Nawaz H, Zhang J, He J, Wang F (2016) Cellulose-based solid fluorescent materials. Adv Opt Mater 4:2044–2050

    Article  CAS  Google Scholar 

  23. Nawaz H, Tian W, Zhang J, Jia R, Chen Z, Jun Zhang J (2018) Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes. ACS Appl Mater Interfaces 10:2114–2121

    Article  CAS  Google Scholar 

  24. McCormick CL, Callais PA, Hutchinson BH (1985) Solution studies of cellulose in lithium chloride and N,N-dimethylacetamide. Macromolecules 18:2394–2401

    Article  CAS  Google Scholar 

  25. Xiong B, Zhao P, Cai P, Zhang L, Hu K, Cheng G (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20:613–621

    Article  CAS  Google Scholar 

  26. Zhang C, Liu R, Xiang J, Kang H, Liu Z, Huang Y (2014) Dissolution mechanism of cellulose in N,N-dimethylacetamide/lithium chloride: revisiting through molecular interactions. J Phys Chem B 118:9507–9514

    Article  CAS  Google Scholar 

  27. Chang SC, Condon B, Edwards JV (2010) Preparation and characterization of aminobenzyl cellulose by two step synthesis from native cellulose. Fiber Polym 11:1101–1105

    Article  CAS  Google Scholar 

  28. Chadlia A, Farouk MM (2011) Rapid homogeneous esterification of cellulose extracted from posidonia induced by microwave irradiation. J Appl Polym Sci 119:3372–3381

    Article  CAS  Google Scholar 

  29. Casarano R, Fidalea LC, Luchetia CM, Heinze T, El Seoud OA (2011) Expedient, accurate methods for the determination of the degree of substitution of cellulose carboxylic esters: application of UV–vis spectroscopy (dye solvatochromism) and FTIR. Carbohydr Polym 83:1285–1292

    Article  CAS  Google Scholar 

  30. Ramos LA, Morgado DL, El Seoud OA, da Silva VC, Frollini E (2011) Acetylation of cellulose in LiCl-N,N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392

    Article  CAS  Google Scholar 

  31. Guo Y, Wang X, Li D, Du H, Wang X, Sun R (2012) Synthesis and characterization of hydrophobic long-chain fatty acylated cellulose and its self-assembled nanoparticles. Polym Bull 69:389–403

    Article  CAS  Google Scholar 

  32. Ratanakamnuana U, Atong D, Aht-Onga D (2012) Cellulose esters from waste cotton fabric via conventional and microwave heating. Carbohydr Polym 87:84–94

    Article  CAS  Google Scholar 

  33. Liu H, Kar N, Edgar KJ (2012) Direct synthesis of cellulose adipate derivatives using adipic anhydride. Cellulose 19:1279–1293

    Article  CAS  Google Scholar 

  34. Nawaz H, Pires PAR, El Seoud OA (2013) Kinetics and mechanism of imidazole catalyzed acylation of cellulose in LiCl/N,N dimethylacetamide. Carbohydr Polym 92:997–1005

    Article  CAS  Google Scholar 

  35. Almeida EVR, Morgado DL, Ramos LA, Frollini E (2013) Sisal cellulose and its acetates: generation of films and reinforcement in a one-pot process. Cellulose 20:453–465

    Article  CAS  Google Scholar 

  36. Rodrigues BVM, Heikkila E, Frollini E, Fardim P (2014) Multi-technique surface characterization of bio-based films from sisal cellulose and its esters: a FE-SEM, μ-XPS and ToF-SIMS approach. Cellulose 21:1289–1303

    Article  CAS  Google Scholar 

  37. Zheng X, Xu D, Edgar KJ (2015) Cellulose levulinate: a protecting group for cellulose that can be selectively removed in the presence of other ester groups. Cellulose 22:301–311

    Article  CAS  Google Scholar 

  38. Zheng Y, Song J, Cheng B, Fang X, Yuan Y (2015) Preparation and flame retardancy of 3-(hydroxyphenylphosphinyl)-propanoic acid esters of cellulose and their fibers. Cellulose 22:229–244

    Article  CAS  Google Scholar 

  39. Demircan D, Zhang B (2017) Facile synthesis of novel soluble cellulose-grafted hyper-branched polymers as potential natural antimicrobial materials. Carbohydr Polym 157:1913–1921

    Article  CAS  Google Scholar 

  40. Graenacher C (1934) US Patent 1,943,176

    Google Scholar 

  41. Zhang J, Ren JQ, He JS (2002) CN Patent ZL02155945

    Google Scholar 

  42. Zhao H, Baker GA, Song ZY, Olubajo O, Crittle T, Peters D (2008) Designing enzyme-compatible ionic liquids that can dissolve carbohydrate. Green Chem 10:696–705

    Article  CAS  Google Scholar 

  43. Ohno H, Fukaya Y (2009) Task specific ionic liquids for cellulose technology. Chem Lett 38:2–7

    Article  CAS  Google Scholar 

  44. Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46

    Article  CAS  Google Scholar 

  45. Fukaya Y, Tsukamoto A, Kuroda K, Ohno H (2011) High performance “ionic liquid” chromatography. Chem Commun 47:1994–1996

    Article  CAS  Google Scholar 

  46. Xu AR, Wang JJ, Wang HY (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275

    Article  CAS  Google Scholar 

  47. Hummel M, Froschauer C, Laus G, Roder T, Kopacka H, Hauru LKJ, Weber HK, Sixta H, Schottenberger H (2011) Dimethyl phosphorothioate and phosphoroselenoate ionic liquids as solvent media for cellulosic materials. Green Chem 13:2507–2517

    Article  CAS  Google Scholar 

  48. Zhao B, Greiner L, Leitner W (2012) Cellulose solubilities in carboxylate-based ionic liquids. RSC Adv 2:2476–2479

    Article  CAS  Google Scholar 

  49. Zhang YJ, Xu AR, Lu BL, Li ZY, Wang JJ (2015) Dissolution of cellulose in 1-allyl-3-methylimizodalium carboxylates at room temperature: a structure–property relationship study. Carbohydr Polym 117:666–672

    Article  CAS  Google Scholar 

  50. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful non-derivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  51. Zhang JM, Zhang H, Wu J, Zhang J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947

    Article  CAS  Google Scholar 

  52. Lu B, Xu A, Wang J (2014) Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem 16:1326–1335

    Article  CAS  Google Scholar 

  53. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  54. Zhang JM, Wu J, Yu J, Zhang X, He J, Zhang J (2017) Application of ionic liquids for dissolving cellulose and fabricating cellulose-based materials: state of the art and future trends. Mater Chem Front 1:1273–1290

    Article  CAS  Google Scholar 

  55. Rinaldi R (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun 47:511–513

    Article  CAS  Google Scholar 

  56. Lin L, Yamaguchi H, Suzuki A (2013) Dissolution of cellulose in the mixed solvent of [bmim]Cl–DMAc and its application. RSC Adv 3:14379–14384

    Article  CAS  Google Scholar 

  57. Velioglu S, Yao X, Devémy J, Ahunbay MG, Tantekin-Ersolmaz SB, Dequidt A, Gomes MFC, Pádua AAH (2014) Solvation of a cellulose microfibril in imidazolium acetate ionic liquids: effect of a cosolvent. J Phys Chem B 118:14860–14869

    CAS  Google Scholar 

  58. Nawaz H, Pires PAR, Bioni TA, Arêas EPG, El Seoud OA (2014) Mixed solvents for cellulose derivatization under homogeneous conditions: kinetic, spectroscopic, and theoretical studies on the acetylation of the biopolymer in binary mixtures of an ionic liquid and molecular solvents. Cellulose 21:1193–1204

    Article  CAS  Google Scholar 

  59. Nawaz H, Pires PA, Arêas EPG, Malek NI, El Seoud OA (2015) Probing cellulose acetylation in mixtures of ionic liquid with dimethylsulfoxide and sulfolane by chemical kinetics, viscometry, spectroscopy, and molecular dynamics simulations. Macromol Chem Phys 216:2368–2376

    Article  CAS  Google Scholar 

  60. Andanson JM, Bordes E, Devémy J, Leroux F, Pádua AAH, Gomes MFC (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528–2538

    Article  CAS  Google Scholar 

  61. Andanson JM, Padua AAH, Gomes MFC (2015) Thermodynamics of cellulose dissolution in an imidazolium acetate ionic liquid. Chem Commun 51:4485–4487

    Article  CAS  Google Scholar 

  62. Pires PAR, Malek NI, Teixeira TC, Bioni TA, Nawaz H, El Seoud OA (2015) Imidazole-catalyzed esterification of cellulose in ionic liquid/molecular solvents: a multi-technique approach to probe effects of the medium. Ind Crop Prod 77:180–189

    Article  CAS  Google Scholar 

  63. Xu A, Cao L, Wang B, Ma J (2015) Dissolution behavior of cellulose in IL + DMSO solvent: effect of alkyl length in imidazolium cation on cellulose dissolution. Adv Mater Sci Eng 2015:406470

    Article  CAS  Google Scholar 

  64. Xu A, Cao L, Wang B (2015) Facile cellulose dissolution without heating in [C4mim][CH3COO]/DMF solvent. Carbohydr Polym 125:249–254

    Article  CAS  Google Scholar 

  65. Xu A, Guo X, Xu R (2015) Understanding the dissolution of cellulose in 1-butyl-3-methylimidazolium acetate + DMAc solvent. Int J Biol Macromol 81:1000–1004

    Article  CAS  Google Scholar 

  66. Xu A, Zhang Y (2015) Insight into dissolution mechanism of cellulose in [C4mim][CH3COO]/DMSO solvent by 13C NMR spectra. J Mol Struct 1088:101–104

    Article  CAS  Google Scholar 

  67. Possidonio S, Fidale LC, El Seoud OA (2009) Microwave-assisted derivatization of cellulose in an ionic liquid: an efficient, expedient synthesis of simple and mixed carboxylic esters. J Polym Sci Part A Polym Chem 48:134–143

    Article  CAS  Google Scholar 

  68. Kono H, Oka C, Kishimoto R, Fujita S (2017) NMR characterization of cellulose acetate: mole fraction of monomers in cellulose acetate determined from carbonyl carbon resonances. Carbohydr Polym 170:23–32

    Article  CAS  Google Scholar 

  69. Kakko T, King AWT, Kilpelainen I (2017) Homogenous esterification of cellulose pulp in [DBNH][OAc]. Cellulose 24:5341–5354

    Article  CAS  Google Scholar 

  70. Luan Y, Zhang J, Zhan M, Wu J, Zhang J, He J (2013) Highly efficient propionylation and butyralation of cellulose in an ionic liquid catalyzed by 4-dimethylminopyridine. Carbohydr Polym 92:307–311

    Article  CAS  Google Scholar 

  71. Schobitz M, Meister F, Heinze T (2009) Unconventional reactivity of cellulose dissolved in ionic liquids. Macromol Symp 280:102–111

    Article  CAS  Google Scholar 

  72. Hinner LP, Wissner JL, Beurer A, Nebel BA, Hauer B (2016) Homogeneous vinyl ester based synthesis of different cellulose derivatives in 1-ethyl-3-methylimidazolium acetate. Green Chem 18:6099–6107

    Article  CAS  Google Scholar 

  73. Wang H, Chen W, Zhang X, Liu C, Sun R (2017) Esterification mechanism of bagasse modified with glutaric anhydride in 1-allyl-3-methylimidazolium chloride. Materials 10:966

    Article  Google Scholar 

  74. Singh RK, Gupta P, Sharma OP, Siddharth S (2015) Homogeneous synthesis of cellulose fatty esters in ionic liquid (1-butyl-3-methylimidazolium chloride) and study of their comparative antifriction property. J Ind Eng Chem 24:14–19

    Article  CAS  Google Scholar 

  75. Zhang JM, Wu J, Cao Y, Sang S, Zhang J, He J (2009) Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 16:299–308

    Article  CAS  Google Scholar 

  76. Chen W, Feng Y, Zhang M, Wu J, Zhang J, Gao X, He J, Zhang J (2015) Homogeneous benzoylation of cellulose in 1-allyl-3-methylimidazolium chloride: Hammett correlation, mechanism and regioselectivity. RSC Adv 5:58536–58542

    Article  CAS  Google Scholar 

  77. Fidale LC, Possidonio S, El Seoud OA (2009) Application of 1-Allyl-3-(1-butyl)imidazolium chloride in the synthesis of cellulose esters: properties of the ionic liquid, and comparison with other solvents. Macromol Biosci 9:813–821

    Article  CAS  Google Scholar 

  78. Huang K, Wang B, Cao Y, Li H, Wang J, Lin W, Mu C, Liao D (2011) Homogeneous preparation of cellulose acetate propionate (CAP) and cellulose acetate butyrate (CAB) from sugarcane bagasse cellulose in ionic liquid. J Agric Food Chem 59:5376–5381

    Article  CAS  Google Scholar 

  79. Cao Y, Li H, Zhang J (2011) Homogeneous synthesis and characterization of cellulose acetate butyrate (CAB) in 1-allyl-3-methylimidazolium chloride (AmimCl) ionic liquid. Ind Eng Chem Res 50:7808–7814

    Article  CAS  Google Scholar 

  80. Chen J, Zhang J, Feng Y, Wu J, He J, Zhang J (2014) Synthesis, characterization, and gas permeabilities of cellulose derivatives containing adamantane groups. J Membr Sci 469:507–514

    Article  CAS  Google Scholar 

  81. Chen W, Zhang M, Feng Y, Wu J, Gao X, Zhang J, He J, Zhang J (2015) Homogeneous synthesis of partially substituted cellulose phenylcarbamates aiming at chiral recognition. Polym Int 64:1037–1044

    Article  CAS  Google Scholar 

  82. Xiao P, Zhang JM, Feng Y, Wu J, He J, Zhang J (2014) Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus: cellulose diphenyl phosphate and its mixed esters. Cellulose 21:2369–2378

    Article  CAS  Google Scholar 

  83. Yan C, Zhang JM, Lv Y, Yu J, Wu J, Zhang J, He J (2009) Thermoplastic cellulose-graft-poly(l-lactide) copolymers homogeneously synthesized in an ionic liquid with 4-dimethylaminopyridine catalyst. Biomacromolecules 10:2013–2018

    Article  CAS  Google Scholar 

  84. Yan C, Wu J, Zhang JM, He J, Zhang J (2015) Hydrolytic degradation of cellulose-graft-poly(l-lactide) copolymers. Polym Degrad Stab 118:130–136

    Article  CAS  Google Scholar 

  85. Luan Y, Wu J, Zhan M, Zhang J, Zhang J, He J (2013) “One pot” homogeneous synthesis of thermoplastic cellulose acetate-graft-poly(l-lactide) copolymers from unmodified cellulose. Cellulose 20:327–337

    Article  CAS  Google Scholar 

  86. Yang L, Zhang J, He J, Zhang J, Gan Z (2016) Fabrication, hydrolysis and cell cultivation of microspheres from cellulose-graft-poly(l-lactide) copolymers. RSC Adv 6:17617–17623

    Article  CAS  Google Scholar 

  87. Ge W, Guo Y, Zhong H, Wang X, Sun R (2015) Synthesis, characterization, and micellar behaviors of hydroxyethyl cellulose-graft-poly(lactide/ε-caprolactone/p-dioxanone). Cellulose 22:2365–2374

    Article  CAS  Google Scholar 

  88. Li Y, Zhang J, Guo Y, Chen M, Wang L, Sun R, Wang X (2016) Cellulosic micelles as nanocapsules of liposoluble CdSe/ZnS quantum dots for bioimaging. J Mater Chem B 4:6454–6461

    Article  CAS  Google Scholar 

  89. Zhong H, Zhang J, Guo Y, Wang L, Ge W, Chen M, Sun R, Wang X (2017) Multi-color light-emitting amphiphilic cellulose/conjugated polymers nanomicelles for tumor cell imaging. Cellulose 24:889–902

    Article  CAS  Google Scholar 

  90. Hufendiek A, Trouillet V, Meier MAR, Barner-Kowollik C (2014) Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT polymerization. Biomacromolecules 15:2563–2572

    Article  CAS  Google Scholar 

  91. Yang L, Zhang J, He J, Zhang J, Gan Z (2015) Synthesis and characterization of temperature-sensitive cellulose-graft-poly(N-isopropylacrylamide) copolymers. Chin J Polym Sci 33:1640–1649

    Article  CAS  Google Scholar 

  92. Gericke M, Liebert T, El Seoud OA, Heinze T (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng 296:483–493

    Article  CAS  Google Scholar 

  93. Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8 – Synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353

    Article  CAS  Google Scholar 

  94. Kohler S, Liebert T, Heinze T, Vollmer A, Mischnick P, Mollmann E, Becker W (2010) Interactions of ionic liquids with polysaccharides 9. Hydroxyalkylation of cellulose without additional inorganic bases. Cellulose 17:437–448

    Article  CAS  Google Scholar 

  95. Wang H, Wen X, Zhang X, Liu C (2017) Acetylation of microcrystalline cellulose by trans-esterification in AmimCl/DMSO Cosolvent system. Molecules 22:1419

    Article  CAS  Google Scholar 

  96. Gericke M, Schaller J, Liebert T, Fardim P, Meister F, Heinze T (2012) Studies on the tosylation of cellulose in mixtures of ionic liquids and a co-solvent. Carbohydr Polym 89:526–536

    Article  CAS  Google Scholar 

  97. Casarano R, El Seoud OA (2015) Successful application of an ionic liquid carrying the fluoride counter-ion in biomacromolecular chemistry: microwave-assisted acylation of cellulose in the presence of 1-allyl-3-methylimidazolium fluoride/DMSO mixtures. Macromol Biosci 13:191–202

    Article  CAS  Google Scholar 

  98. Kostag M, Liebert T, El Seoud OA, Heinze T (2013) Efficient cellulose solvent: quaternary ammonium chlorides. Macromol Rapid Commun 34:1580–1584

    Article  CAS  Google Scholar 

  99. Heinze T, Dicke R, Koschella A, Kull AH, Klohr EA, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631

    Article  CAS  Google Scholar 

  100. Ass BAP, Frollini E, Heinze T (2004) Studies on the homogeneous acetylation of cellulose in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride trihydrate. Macromol Biosci 4:1008–1013

    Article  CAS  Google Scholar 

  101. Sun H, DiMagno SG (2005) Anhydrous tetrabutylammonium fluoride. J Am Chem Soc 127:2050–2051

    Article  CAS  Google Scholar 

  102. Eliza MY, Shahruddin M, Noormaziah J, Wan Rosli WD (2015) Carboxymethyl cellulose (CMC) from oil palm empty fruit bunch (OPEFB) in the new solvent dimethyl sulfoxide (DMSO)/tetrabutylammonium fluoride (TBAF). J Phys Conf Ser 622:012026

    Article  CAS  Google Scholar 

  103. Rebière J, Heuls M, Castignolles P, Gaborieau M, Rouilly A, Violleau F, Durrieu V (2016) Structural modifications of cellulose samples after dissolution into various solvent systems. Anal Bioanal Chem 408:8403–8414

    Article  CAS  Google Scholar 

  104. Kono H, Fujita S, Oeda I (2013) Comparative study of homogeneous solvents for the esterification crosslinking of cellulose with 1,2,3,4-butanetetracarboxylic dianhydride and water absorbency of the reaction products. J Appl Polym Sci 127:478–486

    Article  CAS  Google Scholar 

  105. Chen J, Su M, Zhang X, Chen R, Hong J, Yang L, Yang Z (2014) The role of cations in homogeneous succinoylation of mulberry wood cellulose in salt-containing solvents under mild conditions. Cellulose 21:4081–4091

    Article  CAS  Google Scholar 

  106. Casarano R, Nawaz H, Possidonio S, da Silva VC, El Seoud OA (2011) A convenient solvent system for cellulose dissolution and derivatization: mechanistic aspects of the acylation of the biopolymer in tetraallylammonium fluoride/dimethyl sulfoxide. Carbohydr Polym 86:1395–1402

    Article  CAS  Google Scholar 

  107. Zheng X, Gandour RD, Edgar KJ (2013) Probing the mechanism of TBAF catalyzed deacylation of cellulose esters. Biomacromolecules 14:1388–1394

    Article  CAS  Google Scholar 

  108. Casarano R, Pires PAR, El Seoud OA (2014) Acylation of cellulose in a novel solvent system: solution of dibenzyldimethylammonium fluoride in DMSO. Carbohydr Polym 101:444–450

    Article  CAS  Google Scholar 

  109. Chen J, Xu J, Wang K, Cao X, Sun R (2016) Cellulose acetate fibers prepared from different raw materials with rapid synthesis method. Carbohydr Polym 137:685–692

    Article  CAS  Google Scholar 

  110. Söyler Z, Onwukamike KN, Grelier S, Grau E, Cramail H, Meier MAR (2018) Sustainable succinylation of cellulose in a CO2-based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification. Green Chem 20:214–224

    Article  Google Scholar 

  111. Davidson GF (1934) The dissolution of chemically modified cotton cellulose in alkaline solutions. Part I; in solutions of sodium hydroxide, particularly at temperatures below the normal. J Text Inst Trans 25:T174–T196

    Article  CAS  Google Scholar 

  112. Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci Part B Polym Phys 40:1521–1529

    Article  CAS  Google Scholar 

  113. Shi X, Hu Y, Fu F, Zhou J, Wang Y, Chen L, Zhang H, Li J, Wang X, Zhang L (2014) Construction of PANI–cellulose composite fibers with good antistatic properties. J Mater Chem A 2:7669–7673

    Article  CAS  Google Scholar 

  114. Huang H-D, Liu C-Y, Zhou D, Jiang X, Zhong G-J, Yan D-X, Li Z-M (2015) Cellulose composite aerogel for highly efficient electromagnetic interference shielding. J Mater Chem A 3:4983–4991

    Article  CAS  Google Scholar 

  115. Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J, Zhang L (2016) Micro-nanostructured polyaniline assembled in cellulose matrix via interfacial polymerization for applications in nerve regeneration. ACS Appl Mater Interfaces 8:17090–17097

    Article  CAS  Google Scholar 

  116. Xu D, Chen C, Xie J, Zhang B, Miao L, Cai J, Huang Y, Zhang L (2016) A hierarchical N/S-Codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv Energy Mater 6:1501929

    Article  CAS  Google Scholar 

  117. Zhao D, Huang J, Zhong Y, Li K, Zhang L, Cai J (2016) High-strength and high toughness double-cross-linked cellulose hydrogels: a new strategy using sequential chemical and physical cross-linking. Adv Funct Mater 26:6279–6287

    Article  CAS  Google Scholar 

  118. Wang Q, Cai J, Chen K, Liu X, Zhang L (2016) Construction of fluorescent cellulose biobased plastics and their potential application in anti-counterfeiting banknotes. Macromol Mater Eng 301:377–382

    Article  CAS  Google Scholar 

  119. Lue A, Zhang L (2010) Advances in aqueous cellulose solvents. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification. ACS symposium series, vol 133. American Chemical Society, Washington, DC, pp 67–89

    Chapter  Google Scholar 

  120. Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solutionat low temperature. ChemPhysChem 8:1572–1579

    Article  CAS  Google Scholar 

  121. Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  122. Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L (2014) Intermolecular interactions and 3D structure in cellulose-NaOH-urea aqueous system. J Phys Chem B 118:10250–10257

    Article  CAS  Google Scholar 

  123. Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192

    Article  CAS  Google Scholar 

  124. Qi H, Chang C, Zhang L (2008) Effects of temperature and molecular weight on dissolution of cellulose in NaOH/urea aqueous solution. Cellulose 15:779–787

    Article  CAS  Google Scholar 

  125. Jiang Z, Fang Y, Ma Y, Liu M, Liu R, Guo H, Lu A, Zhang L (2017) Dissolution and metastable solution of cellulose in NaOH/Thiourea at 8 °C for construction of nanofibers. J Phys Chem B 121:1793–1801

    Article  CAS  Google Scholar 

  126. Fang Y, Duan B, Lu A, Liu M, Liu H, Xu X, Zhang L (2015) Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromolecules 16:1410–1417

    Article  CAS  Google Scholar 

  127. Duan B, Zheng X, Xia Z, Fan X, Guo L, Liu J, Wang Y, Ye Q, Zhang L (2015) Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers. Angew Chem Int Ed 54:5152–5156

    Article  CAS  Google Scholar 

  128. Yang Y, Zhang Y, Dawelbeit A, Deng Y, Lang Y, Yu M (2017) Structure and properties of regenerated cellulose fibers from aqueous NaOH/thiourea/urea solution. Cellulose 24:4123–4137

    Article  CAS  Google Scholar 

  129. Li R, Du J, Zheng Y, Wen Y, Zhang X, Yang W, Lu A, Zhang L (2017) Ultra-lightweight cellulose foam material: preparation and properties. Cellulose 24:1417–1426

    Article  CAS  Google Scholar 

  130. Piltonen P, Hildebrandt NC, Westerlind B, Valkama JP, Tervahartiala T, Illikainen M (2016) Green and efficient method for preparing all-cellulose composites with NaOH/urea solvent. Compos Sci Technol 135:153–158

    Article  CAS  Google Scholar 

  131. Zhang JM, Luo N, Zhang X, Xu L, Wu J, Yu J, He J, Zhang J (2016) All-cellulose nanocomposites reinforced with in situ retained cellulose nanocrystals during selective dissolution of cellulose in an ionic liquid. ACS Sustain Chem Eng 4:4417–4423

    Article  CAS  Google Scholar 

  132. Li W, Liu R, Kang H, Sun Y, Dong F, Huang Y (2013) Synthesis of amidoxime functionalized cellulose derivatives as a reducing agent and stabilizer for preparing gold nanoparticles. Polym Chem 4:2556–2563

    Article  CAS  Google Scholar 

  133. Heinze T, Koschella A (2005) Solvents applied in the field of cellulose chemistry a mini review. Polímeros 15:84–90

    Article  CAS  Google Scholar 

  134. Ferreira DC, Bastos GS, Pfeifer A, Heinze T, El Seoud OA (2016) Cellulose carboxylate/tosylate mixed esters: synthesis, properties and shaping into microspheres. Carbohydr Polym 152:79–86

    Article  CAS  Google Scholar 

  135. Jilal I, El Barkany S, Bahari Z, Sundman O, El Idrissi A, Abou-Salama M, Romane A, Zannagui C, Amhamdi H (2018) New quaternized cellulose based on hydroxyethyl cellulose (HEC) grafted EDTA: synthesis, characterization and application for Pb (II) and Cu (II) removal. Carbohydr Polym 180:156–167

    Article  CAS  Google Scholar 

  136. Zhang J, Wu Q, Li M-C, Song K, Sun X, Lee S-Y, Lei T (2017) Thermoresponsive copolymer poly(N-Vinylcaprolactam) grafted cellulose nanocrystals: synthesis, structure, and properties. ACS Sustain Chem Eng 5:7439–7447

    Article  CAS  Google Scholar 

  137. Maatar W, Boufi S (2017) Microporous cationic nanofibrillar cellulose aerogel as promising adsorbent of acid dyes. Cellulose 24:1001–1015

    Article  CAS  Google Scholar 

  138. Zhang H, Wang Z, Zhang Z, Wu J, Zhang J, He J (2007) Regenerated-cellulose/multi walled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 7:698–704

    Article  CAS  Google Scholar 

  139. Jiang G, Yuan Y, Wang B, Yin X, Mukuze KS, Huang W, Zhang Y, Wang H (2012) Analysis of regenerated cellulose fibers with ionic liquids as a solvent as spinning speed is increased. Cellulose 19:1075–1083

    Article  CAS  Google Scholar 

  140. Hauru LKJ, Hummel M, Michud A, Sixta H (2014) Dry jet-wet spinning of strong cellulose filaments from ionic liquid solution. Cellulose 21:4471–4481

    Article  CAS  Google Scholar 

  141. Mi QY, Ma SR, Yu J, He JS, Zhang J (2016) Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process. ACS Sustain Chem Eng 4:656–660

    Article  CAS  Google Scholar 

  142. Wan J, Zhang J, Yu J, Zhang J (2017) Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer Lithium-ion batteries. ACS Appl Mater Interfaces 9:24591–24599

    Article  CAS  Google Scholar 

  143. Yuan B, Zhang JM, Mi Q, Yu J, Song R, Zhang J (2017) Transparent cellulose–silica composite aerogels with excellent flame retardancy via an in situ sol–gel process. ACS Sustain Chem Eng 5:11117–11123

    Article  CAS  Google Scholar 

  144. Zhang H, Guo H, Wang B, Shi S, Xiong L, Chen X (2016) Synthesis and characterization of quaternized bacterial cellulose prepared in homogeneous aqueous solution. Carbohydr Polym 136:171–176

    Article  CAS  Google Scholar 

  145. Zhang JM, Luo N, Wan J, Xia G, Yu J, He J, Zhang J (2017) Directly converting agricultural straw into all-biomass nanocomposite films reinforced with additional in situ-retained cellulose nanocrystals. ACS Sustain Chem Eng 5:5127–5133

    Article  CAS  Google Scholar 

  146. Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multi-filament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  147. Wu W, Gu J, Zhou G, Zhang L, Gong M, Dai H (2014) Fabrication of natural cellulose microspheres via electrospraying from NaOH/urea aqueous system. J Appl Polym Sci 131. https://doi.org/10.1002/app.40656

    Article  CAS  Google Scholar 

  148. Lv P, Yao Y, Li D, Zhou H, Naeem MA, Feng Q, Huang J, Cai Y, Wei Q (2017) Self-assembly of nitrogen-doped carbon dots anchored on bacterial cellulose and their application in iron ion detection. Carbohydr Polym 172:93–101

    Article  CAS  Google Scholar 

  149. Song K, Xu H, Xie K, Yang Y (2017) Keratin-based biocomposites reinforced and cross-linked with dual-functional cellulose nanocrystals. ACS Sustain Chem Eng 5:5669–5678

    Article  CAS  Google Scholar 

  150. Tian W, Zhang JM, Yu J, Wu J, Zhang J, He J, Wang F (2018) Phototunable full-color emission of cellulose-based dynamic fluorescent materials. Adv Funct Mater 28:1703548

    Article  CAS  Google Scholar 

  151. Song Y, Sun Y, Zhang X, Zhou J, Zhang L (2008) Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 9:2259–2264

    Article  CAS  Google Scholar 

  152. Song Y, Wang H, Zeng X, Sun Y, Zhang X, Zhou J, Zhang L (2010) Effect of molecular weight and degree of substitution of quaternized cellulose on the efficiency of gene transfection. Bioconjug Chem 21:1271–1279

    Article  CAS  Google Scholar 

  153. Jia B, Zhou J, Zhang L (2011) Electrospun nano-fiber mats containing cationic cellulose derivatives and poly (vinyl alcohol) with antibacterial activity. Carbohydr Res 346:1337–1341

    Article  CAS  Google Scholar 

  154. You J, Zhao L, Wang G, Zhou H, Zhou J, Zhang L (2014) Quaternized cellulose-supported gold nanoparticles as capillary coatings to enhance protein separation by capillary electrophoresis. J Chromatogr A 1343:160–166

    Article  CAS  Google Scholar 

  155. You J, Zhao C, Cao J, Zhou J, Zhang L (2014) Fabrication of high-density silver nanoparticles on the surface of alginate microspheres for application in catalytic reaction. J Mater Chem A 2:8491–8499

    Article  CAS  Google Scholar 

  156. Yang P, You J, Li F, Fei J, Feng B, He X, Zhou J (2013) Electrochemical biosensing platform based on a hemocyanin–Au@QC NP–carbon black hybrid nano-composite film. Anal Methods 5:3168–3171

    Article  CAS  Google Scholar 

  157. Wang Z, Tammela P, Strømme M, Nyholm L (2017) Cellulose-based supercapacitors: material and performance considerations. Adv Energy Mater 7:1700130

    Article  CAS  Google Scholar 

  158. Chen CJ, Zhang Y, Li YJ, Dai JQ, Song JW, Yao YG, Gong YH, Kierzewski I, Xie J, Hu LB (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10:538–545

    Article  CAS  Google Scholar 

  159. Ko Y, Kim D, Kim U-J, You J (2017) Vacuum-assisted bilayer PEDOT:PSS/cellulose nanofiber compositefilm for self-standing, flexible, conductive electrodes. Carbohydr Polym 173:383–391

    Article  CAS  Google Scholar 

  160. Jiang F, Li T, Li Y, Zhang Y, Gong A, Dai J, Hitz E, Luo W, Hu L (2018) Wood-based nanotechnologies toward sustainability. Adv Mater 30:1703453

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Nawaz, H., Zhang, J., Tian, W., Wu, J., Zhang, J. (2018). Chemical Modification of Cellulose in Solvents for Functional Materials. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1014-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1014-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics