Skip to main content

Nanocatalysis for Green Chemistry

  • Living reference work entry
  • First Online:

Glossary

Catalysis:

Increase of the reaction rate by means of an additional organic/inorganic/hybrid substance called catalyst, which remains unaltered during the course of the reaction.

Green Chemistry:

Philosophy focused on the design, development, and implementation of environmentally friendly, harmless, and economical chemical processes.

Nanocatalysis:

Enhancement of the reaction rate by means of a solid substance of nanometer dimensions.

Nanoparticle:

Organic/inorganic/hybrid material of nanoscale dimensions.

Sustainability:

Ability to implement and perpetuate industrial and social practices with the protection of the environment as a focus.

Definition of the Subject

Nanocatalysis is a new Green Chemistry era. The continuous increase of recalcitrant pollutants in the environment calls for the sustainable development of the chemical industry. Nanocatalysis has the potential to improve substantially a variety of chemical processes by minimizing energy and feedstock requirements....

This is a preview of subscription content, log in via an institution.

References

  1. Landes DS (2003) The unbound Prometheus: technological change and industrial development in western Europe from 1750 to the present, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. (a) Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82; (b) Law KL, Thompson RC (2014) Microplastics in the seas. Science 345:144–145

    Article  CAS  Google Scholar 

  3. van Cauwenberghe L, Janssen C (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70

    Article  CAS  Google Scholar 

  4. NASA, climate.nasa.org. Accessed on 28 Nov 2017

    Google Scholar 

  5. Anastas PT, Beach ES (2009) Changing the course of chemistry. In: Anastas PT, Levy IJ, Parent KE (eds) Green chemistry education, vol 1011. American Chemical Society, Washington, DC, pp 1–18

    Chapter  Google Scholar 

  6. Solomon S, Ivy DJ, Mills MJ, Neely RR III, Schmidt A (2016) Emergence of healing in the Antarctic ozone layer. Science 353:269–274

    Article  CAS  Google Scholar 

  7. Anastas PT (1994) Benign by design chemistry. In: Anastas PT, Farris CA (eds) Benign by design: alternative synthetic design for pollution prevention, vol 577. American Chemical Society, Washington, DC, pp 2–22

    Chapter  Google Scholar 

  8. Cathcart C (1990) Green chemistry in the emerald isle. Chem Ind 5:684–687

    Google Scholar 

  9. Sheldon RA (1992) Organic synthesis. Past, present and future. Chem Ind 23:903–906

    Google Scholar 

  10. Trost BM (1991) The atom economy – a search for synthetic efficiency. Science 254:1471–1477

    Article  CAS  Google Scholar 

  11. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  12. Anastas P, Eghbali N (2009) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  Google Scholar 

  13. (a) Lindstrӧm B, Pettersson LJ (2003) A brief history of catalysts. CATTECH 7:130–138; (b) Berzelius JJ (1835) Årsberättelsen om framsteg i fysik och kemi. Royal Swedish Academy of Sciences

    Article  Google Scholar 

  14. Fürstner A (2000) Olefin metathesis and beyond. Angew Chem Int Ed 39:3012–3043

    Article  Google Scholar 

  15. de Vries JG, Jackson SD (2012) Homogeneous and heterogeneous catalysis in industry. Cat Sci Technol 2:2009

    Article  CAS  Google Scholar 

  16. (a) Moores A (2009) Atom economy – principles and some examples. In: Anastas PT, Crabtree RH (eds) Green catalysis: homogeneous catalysis, vol 1. Wiley-VCH Verlag GmbH, Weinheim, pp 1–13; (b) Rothenberg G (2008) Introduction. In: Catalysis: concepts and green applications. Wiley-VCH Verlag GmbH & Co., Weinheim, pp 1–38

    Google Scholar 

  17. Yoon NM, Gyoung YS (1985) Reaction of diisobutylaluminum hydride with selected organic compounds containing representative functional groups. J Org Chem 50:2443–2450

    Article  CAS  Google Scholar 

  18. Noyori R, Ohkuma T, Kitamura M, Takaya H, Sayo N, Kumobayashi H, Akutagawa S (1987) Asymmetric hydrogenation of β-keto carboxylic esters. A practical, purely chemical access to β-hydroxy esters in high enantiomeric purity. J Am Chem Soc 109:5856–5858

    Article  CAS  Google Scholar 

  19. Koskimies S, Haimala T (1989) Procedure for producing hydroquinone. US Patent US4801758 A, Neste Oy

    Google Scholar 

  20. Shelley S (2007) A renewable route to propylene glycol. Chem Eng Prog 103:6–9

    CAS  Google Scholar 

  21. (a) Martin AE, Murphy FH (2000) Glycols, propylene glycols. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York; (b) Ludwig S, Manfred E (1997) Preparation of 1, 2 propanediol. US Patent US5616817; (c) Casale B, Gomez AM (1994) Catalytic method of hydrogenating glycerol. US Patent US5276181; (d) Casale B, Gomez AM (1993) Method of hydrogenating glycerol. US Patent US5214219; (e) Tessie C (1987) Production of propanediols. US Patent US4642394

    Google Scholar 

  22. Dasari MA, Kiatsimkul P-P, Sutterlin WR, Supper GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A 281:225–231

    Article  CAS  Google Scholar 

  23. Chiu C-W, Tekeei A, Ronco JM, Banks M-L, Supper GJ (2008) Reducing byproduct formation during conversion of glycerol to propylene glycol. Ind Eng Chem Res 47:6878–6884

    Article  CAS  Google Scholar 

  24. Brahmachari G (2015) Room temperature organic synthesis. Elsevier, Amsterdam

    Google Scholar 

  25. (a) Dallinger D, Kappe CO (2017) Why flow means green – evaluating the merits of continuous processing in the context of sustainability. Curr Opin Green Sustain Chem 7:6–12; (b) Movsisyan M, Delbeke EIP, Berton JKET, Battilocchio C, Ley SV, Stevens CV (2016) Taming hazardous chemistry by continuous flow technology. Chem Soc Rev 45:4892–4928. (c) Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology–a tool for the safe manufacturing of active pharmaceutical ingredients 54:6688–6728. (d) Kockmann N, Roberge DM (2009) Harsh reaction conditions in continuous-flow microreactors for pharmaceutical production. Chem Eng Technol 32:1682–1694

    Article  Google Scholar 

  26. Krey U, Owen A (2007) The Clausius-Clayperon Equation. In: Basic Theoretical Physics. Springer, Berlin, Heidelberg, pp 369–370

    Google Scholar 

  27. Hone CA, O’Kearney-McMullan A, Munday R, Kappe CO (2017) A continuous-flow process for palladium-catalyzed olefin cleavage by using oxygen within the explosive regime. ChemCatChem 9:3298–3302

    Article  CAS  Google Scholar 

  28. (a) Glotz G, Lebl R, Dallinger D, Kappe CO (2017) Integration of bromine and cyanogen bromide generators for the continuous-flow synthesis of cyclic Guanidines. Angew Chem Int Ed 56:13786–13789; (b) Dallinger D, Kappe CO (2017) Lab-scale production of anhydrous diazomethane using membrane separation technology. Nat Protoc 12:2138–2147

    Article  CAS  Google Scholar 

  29. Chiranjeevi T, Pragya R, Gupta S, Gokak DT, Bhargava S (2016) Minimization of waste spent catalyst in refineries. Procedia Environ Sci 35:610–617

    Article  CAS  Google Scholar 

  30. Cornils B, Herrmann WA, Beller M, Paciello R (2017) Applied homogeneous catalysis with organometallic compounds, Part 3: recent developments in homogeneous catalysis. Wiley, Hoboken

    Book  Google Scholar 

  31. Gürsel IV, Noël T, Wang Q, Hessel V (2015) Separation/recycling methods for homogeneous transition metal catalysts in continuous flow. Green Chem 17:2012–2026

    Article  CAS  Google Scholar 

  32. (a) Mercer SM, Robert T, Dixon DV, Jessop PG (2012) Recycling of a homogeneous catalyst using switchable water. Cat Sci Technol 2:1315–1318; (b) Jessop PG (2003) Homogeneous catalysis and catalyst recovery using supercritical carbon dioxide and ionic liquids. J Synt Org Chem Jpn 61:484–488

    Article  CAS  Google Scholar 

  33. Gladysz JA (2002) Introduction: recoverable catalysts and reagents–perspective and prospective. Chem Rev 102:3215–3216

    Article  CAS  Google Scholar 

  34. Polshettiwar V, Len C, Fihri A (2009) Silica-supported palladium: sustainable catalysts for cross-coupling reactions. Coord Chem Rev 253:2599–2626

    Article  CAS  Google Scholar 

  35. Ragno D, Di Carmine G, Brandolese A, Bortolini O, Giovannini PP, Massi A (2017) Immobilization of privileged triazolium carbene catalyst for batch and flow stereoselective Umpolung processes. ACS Catal 7:6365–6375

    Article  CAS  Google Scholar 

  36. Grosso-Giordano NA, Yeh AJ, Okrut A, Xiao DJ, Grandjean F, Long GJ, Zones SI, Katz A (2017) Effect of defect site preorganization on Fe(III) grafting and stability: a comparative study of delaminated zeolite vs amorphous silica supports. Chem Mat 29:6480–6492

    Article  CAS  Google Scholar 

  37. Pelletier JDA, Basset J-M (2016) Catalysis by design: well-defined single-site heterogeneous catalysts. Acc Chem Res 49:664–677

    Article  CAS  Google Scholar 

  38. Hubner S, de Vries JG, Farina V (2016) Why does industry not use immobilized transition metal complexes as catalysts? Adv Synth Catal 358:3–25

    Article  CAS  Google Scholar 

  39. (a) Thomas JM (2010) The advantages of exploring the interface between heterogeneous and homogeneous catalysis. Chem Cat Chem 2:127–132; (b) Astruc D (2008) Nanoparticles and catalysis. Wiley-VCH Verlag GmbH & Co., Weinheim

    Google Scholar 

  40. Hager T (2008) The alchemy of air: a Jewish genius, a doomed tycoon, and the scientific discovery that fed the world but fueled the rise of Hitler, 1st edn. Harmony Books, New York

    Google Scholar 

  41. Leigh GJ (2004) The world’s greatest fix: a history of nitrogen and agriculture. Oxford University Press, New York

    Google Scholar 

  42. (a) Appl M (2011) Ammonia, 2. Production processes. In: Elvers B (ed) Ullmann’s encyclopedia of industrial chemistry. VCH Verlag GmbH & Co. KGaA, Weinheim; (b) Rodriguez M M, Bill E, Brennessel WW, Holland PL (2011) N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 334:780–783; (c) Smil V (1999) Detonator of the population explosion. Nature 400:415

    Google Scholar 

  43. Tanaka N (2017) Seeing nanometer-sized world. In: Electron nano-imaging. Springer, Tokyo, pp 3–15

    Chapter  Google Scholar 

  44. Boudart M, Aldag A, Benson JE, Doughart N, Harkins CG (1966) On specific activity of platinum catalysts. J Catal 6:92–99

    Article  CAS  Google Scholar 

  45. Schwank J (1985) Gold in bimetallic catalysts. Gold Bull 18:2–10; Schwank J (1983) Catalytic gold: applications of elemental gold in heterogeneous catalysis. Gold Bull 16:103–110

    Article  CAS  Google Scholar 

  46. (a) Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Tod 36:153–166; (b) Haruta M, Yamada N, Kobayashi T, Iijima S (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309

    Article  Google Scholar 

  47. Klabunde KJ (2001) Introduction to nanotechnology. In: Klabunde KJ (ed) Nanoscale materials and chemistry. Wiley, Hoboken, pp 1–13

    Chapter  Google Scholar 

  48. Caldorera-Moore M, Guimard N, Shi L, Roy K (2010) Designer nanoparticles: incorporating size, shape, and triggered release into nanoscale drug carriers. Expert Opin Drug Deliv 7:479–495

    Article  CAS  Google Scholar 

  49. (a) Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406; (b) Somorjai GA, Frei H, Park JY (2009) Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc 131:16589–16605

    Google Scholar 

  50. Schmid G (2001) Metals. In: Klabunde KJ (ed) Nanoscale materials in chemistry. Wiley, Hoboken, pp 15–59

    Chapter  Google Scholar 

  51. Zhuang H, Tkalych AJ, Carter EA (2016) Surface energy as a descriptor of catalytic activity. J Phys Chem C 120:23698–23706

    Article  CAS  Google Scholar 

  52. Liu B, Wang P, Lopes A, Jin L, Zhong W, Pei Y, Suib SL, He J (2017) Au-carbon electronic interaction mediated selective oxidation of styrene. ACS Catal 7:3483–3488

    Article  CAS  Google Scholar 

  53. Sreeprasad TS, Pradeep T (2013) Noble metal nanoparticles. In: Vajtai R (ed) Springer handbook of nanomaterials. Springer, Berlin/Heidelberg

    Google Scholar 

  54. (a) Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724; (b) Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. 104:293–346

    Article  CAS  Google Scholar 

  55. Arena F, Di Chio R, Filiciotto L, Trunfio G, Espro C, Palella A, Patti A, Spadaro L (2017) Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation: Part II. Reaction mechanism and kinetic modeling. Appl Catal B 218:803–809

    Article  CAS  Google Scholar 

  56. Kalidindi SB, Jagirdar BR (2012) Nanocatalysis and prospects of green chemistry. ChemSusChem 5:65–75

    Article  CAS  Google Scholar 

  57. Falsig H, Hvolbæk B, Kristensen IS, Jiang T, Bligaard T, Christensen CH, Nørskov JK (2008) Trends in the catalytic CO oxidation activity of nanoparticles. Angew Chem Int Ed 47:4835–4839

    Article  CAS  Google Scholar 

  58. Hvolbæk B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nanoparticles. NanoToday 2:14–18

    Article  Google Scholar 

  59. Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131

    Article  CAS  Google Scholar 

  60. Polshettiwar V, Varma RS (2010) Green chemistry by nano-catalysis. Green Chem 12:743–754

    Article  CAS  Google Scholar 

  61. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321:1331–1335

    Article  CAS  Google Scholar 

  62. (a) Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight W, Hutchings GJ (2006) Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts. Science 311:362–365; (b) Hughes MD, Xu T-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 437:1132–1135

    Article  CAS  Google Scholar 

  63. Corma A, Serna P (2006) Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313:332–334

    Article  CAS  Google Scholar 

  64. Grirrane A, Corma A, Garcia H (2008) Gold-catalyzed synthesis of aromatic Azo compounds from anilines and Nitroaromatics. Science 322:1661–1664

    Article  CAS  Google Scholar 

  65. Centi G, Perathoner S (2003) Catalysis and sustainable (green) chemistry. Catal Today 77:287–297

    Article  CAS  Google Scholar 

  66. Edwards JK, Hutchings GJ (2008) Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide. Angew Chem Int Ed 47:9192–9198

    Article  CAS  Google Scholar 

  67. Arrigo R, Schuster ME, Abate S, Giorgianni G, Centi G, Perathoner S, Wrabetz S, Pfeifer V, Antonietti M, Schlӧgl R (2016) Pd supported on carbon nitride boosts the direct hydrogen peroxide synthesis. ACS Catal 6:6959–6966

    Article  CAS  Google Scholar 

  68. Liu Q, Lun JH (2006) The roles of chloride ions in the direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst in a H2SO4/ethanol system. J Catal 239:237–243

    Article  CAS  Google Scholar 

  69. Lee JW, Kim JK, Kang TH, Lee EJ, Song IK (2017) Direct synthesis of hydrogen peroxide from hydrogen and oxygen over palladium catalyst supported on heteropolyacid-containing ordered mesoporous carbon. Catal Tod 293–294:49–55

    Article  CAS  Google Scholar 

  70. Seo M, Lee D-W, Han SS, Lee K-Y (2017) Direct synthesis of hydrogen peroxide from hydrogen and oxygen over mesoporous silica-shell-coated, palladium-nanocrystal-grafted SiO2 nanobeads. ACS Catal 7:3039–3048

    Article  CAS  Google Scholar 

  71. Lari GM, Puertolas B, Shahrokhi M, Lopez N, Perez-Ramirez J (2016) Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis: the key role of the ligand. Angew Chem Int Ed 56:1775–1779

    Article  CAS  Google Scholar 

  72. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst. Chem Commun 0:2058–2059

    Article  CAS  Google Scholar 

  73. Okumura M, Kitagawa Y, Yagamuchi K, Akita T, Tsubota S, Haruta M (2003) Direct production of hydrogen peroxide from H2 and O2 over highly dispersed au catalysts. Chem Lett 32:822–823

    Article  CAS  Google Scholar 

  74. Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts. Phys Chem Chem Phys 5:1917–1923

    Article  CAS  Google Scholar 

  75. Choudhary VR, Samanta C, Choudhary TV (2006) Direct oxidation of H2 to H2O2 over Pd-based catalysts: influence of oxidation state, support and metal additives. Appl Catal A 308:128–133

    Article  CAS  Google Scholar 

  76. Rodriguez-Gomez A, Platero F, Caballero A, Colon G (2018) Improving the direct synthesis of hydrogen peroxide from hydrogen and oxygen over Au-Pd/SBA-15 catalysts by selective functionalization. Mol Catal 445:142–151

    Article  CAS  Google Scholar 

  77. Yook S, Kwon HC, Kim YG, Choi W, Choi M (2017) Significant roles of carbon pore and surface structure in AuPd/C catalyst for achieving high chemoselectivity in direct hydrogen peroxide synthesis. ACS Sustain Chem Eng 5:1208–1216

    Article  CAS  Google Scholar 

  78. Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126

    Article  CAS  Google Scholar 

  79. Suzuki K, Yamaguchi T, Matsushita K, Iitsuka C, Miura J, Akaogi T, Ishida H (2013) Aerobic oxidative esterification of aldehydes with alcohols by gold–nickel oxide nanoparticle catalysts with a core–shell structure. ACS Catal 3:1845–1849

    Article  CAS  Google Scholar 

  80. Freakley SJ, He Q, Kiely CJ, Hutchings GJ (2015) Gold catalysis: a reflection on where we are now. Catal Lett 145:71–79

    Article  CAS  Google Scholar 

  81. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1:482–501

    Article  CAS  Google Scholar 

  82. Enthaler S, Junge K, Beller M (2008) Sustainable metal catalysis with iron: from rust to a rising star? Angew Chem Int Ed 47:3317–3321

    Article  CAS  Google Scholar 

  83. Phua P-H, Lefort L, Boogers JAF, Tristany M, de Vries JG (2009) Soluble iron nanoparticles as cheap and environmentally benign alkene and alkyne hydrogenation catalysts. Chem Commun 0:3747–3749

    Article  CAS  Google Scholar 

  84. Stein M, Wieland J, Steurer P, Tӧlle F, Mülhaupt R (2011) Iron nanoparticles supported on chemically-derived graphene: catalytic hydrogenation with magnetic catalyst separation. Adv Synth Catal 353:523–527

    Article  CAS  Google Scholar 

  85. Kelsen V, Wendt B, Wekmeister S, Junge K, Beller M, Chaudret B (2013) The use of ultrasmall iron(0) nanoparticles as catalysts for the selective hydrogenation of unsaturated C–C bonds. Chem Commun 49:3416–3418

    Article  CAS  Google Scholar 

  86. Dinç M, Metin Ö, Özkar S (2012) Water soluble polymer stabilized Iron(0) nanoclusters: a cost-effective and magnetically recoverable catalyst for hydrogen generation from the hydrolysis of sodium borohydride and ammonia borane. Catal Today 183:10–16

    Article  CAS  Google Scholar 

  87. Hudson R, Hamasaka G, Osako T, Yamada YMA, Li C-J, Uozumi Y, Moores A (2013) Highly efficient iron(0) nanoparticle catalyzed hydrogenation in water in flow. Green Chem 15:2141–2148

    Article  CAS  Google Scholar 

  88. Hudson R, Rivière A, Cirtiu CM, Luska KL, Moores A (2012) Iron-iron oxide core–shell nanoparticles are active and magnetically recyclable olefin and alkyne hydrogenation catalysts in protic and aqueous media. Chem Commun 48:3360–3362

    Article  CAS  Google Scholar 

  89. (a) Roberts SM (2007) Catalysts for fine chemical synthesis. Wiley– VCH Verlag GmbH & Co. KGaA, Weinheim; (b) Bäckvall JE (2004) Modern oxidation methods. Wiley– VCH Verlag GmbH & Co. KGaA, Weinheim; (c) Jorgensen KA (1989) Transition-metal-catalysed epoxidations. Chem Rev 89:431–458; (d) Sheldon RA, Kochi JK (1981) Metal catalyzed oxidation of organic compounds. Academic Press, New York

    Google Scholar 

  90. (a) Pineda A, Balu AM, Campelo JM, Romero AA, Carmona D, Balas F, Santamaria F, Luque R (2011) A dry milling approach for the synthesis of highly active nanoparticles supported on porous materials. ChemSusChem 4:1561–1565; (b) Abate S, Centi G, Perathoner S, Melada S, Pinna G, Strukul G (2006) The issue of selectivity in the direct synthesis of H2O2 from H2 and O2: the role of the catalyst in relation to the kinetics of reaction 33:207–224

    Article  CAS  Google Scholar 

  91. Shi F, Tse MK, Pohl M-M, Brückner A, Zhang S, Beller M (2007) Tuning catalytic activity between homogeneous and heterogeneous catalysis: improved activity and selectivity of free nano- Fe2O3 in selective oxidations. Angew Chem Int Ed 46:8866–8868

    Article  CAS  Google Scholar 

  92. Rajabi F, Naresian S, Primo A, Luque R (2011) Efficient and highly selective aqueous oxidation of sulfides to sulfoxides at room temperature catalysed by supported iron oxide nanoparticles on SBA-15. Adv Synth Catal 353:2060–2066

    Article  CAS  Google Scholar 

  93. Rak MJ, Lerro M, Moores A (2014) Hollow iron oxide nanoshells are active and selective catalysts for the partial oxidation of styrene with molecular oxygen. Chem Commun 50:12482–12485

    Article  CAS  Google Scholar 

  94. Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) Catalytic efficiency of Iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129:10929–10936

    Article  CAS  Google Scholar 

  95. Filiciotto L, Balu AM, Romero AA, Rodríguez-Castellón E, van der Waal JC, Luque R (2017) Benign-by-design preparation of humin-based iron oxide catalytic nanocomposites. Green Chem 19:4423–4434

    Article  CAS  Google Scholar 

  96. Filiciotto L, Balu AM, van der Waal JC, Luque R (2018) Catalytic insights into the production of biomass-derived side products methyl levulinate, furfural and humins. Catal Today 302C:2–15

    Article  CAS  Google Scholar 

  97. Choudhary VR, Sansare SD, Gaikwad AG (2002) Direct oxidation of H2 to H2O2 and decomposition of H2O2 over oxidized and reduced Pd-containing zeolite catalysts in acidi medium. Catal Lett 84:81–87

    Article  CAS  Google Scholar 

  98. (a) Rodriguez JA, Fernandez-Garcia M (2007) Synthesis, properties, and applications of oxide nanomaterials. Wiley, Hoboken, pp 287–378; (b) Samsonov VM., Bazulev AN, Sdobnyakov NY (2003) On applicability of Gibbs thermodynamics to nanoparticles. Centr Eur J Phys 1:474–484

    Book  Google Scholar 

  99. Campbell CT, Parker SC, Starr DE (2002) The effect of size dependent nanoparticle energetic on catalyst sintering. Science 298:811–814

    Article  CAS  Google Scholar 

  100. Xie X, Li Y, Liu Z-Q, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749

    Article  CAS  Google Scholar 

  101. Arena F, Gatti G, Martra G, Coluccia S, Stievano L, Spadaro L, Famulari P, Parmaliana A (2005) Structure and reactivity in the selective oxidation of methane to formaldehyde of low-loaded FeOx/SiO2 catalysts. J Catal 231:365–380

    Article  CAS  Google Scholar 

  102. Arena F, Di Chio R, Fazio B, Espro C, Spiccia L, Palella A, Spadato L (2017) Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation: Part I. Influence of cerium addition on structure and CO oxidation activity. Appl Catal B 210:14–22

    Article  CAS  Google Scholar 

  103. Arena F, Trunfio G, Negro J, Spadaro L (2007) Synthesis of highly dispersed MnCeOx catalysts via a nover “redox-precipitation” route. Mat Res Bull 43:530–545

    Google Scholar 

  104. Arena F (2014) Multipurpose composite MnCeOx catalysts for environmental applications. Cat Sci Technol 4:1890–1898

    Article  CAS  Google Scholar 

  105. Kong F-D, Zhang S, Yin G-P, Zhang N, Wang Z-B, Du C-Y (2012) Pt/porous-IrO2 nanocomposite as promising electrocatalyst for unitized regenerative fuel cell. Electrochem Commun 14:63–66

    Article  CAS  Google Scholar 

  106. Jӧrissen L (2006) Bifunctional oxygen/air electrodes. J Power Sources 155:23–32

    Article  CAS  Google Scholar 

  107. Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614

    Article  CAS  Google Scholar 

  108. Meng Y, Song W, Huang H, Ren Z, Chen R-Y, Suib SL (2014) Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136:11452–11464

    Article  CAS  Google Scholar 

  109. Osgood H, Devaguptapu SV, Xu H, Cho J, Wu G (2016) Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. NanoToday 11:601–625

    Article  CAS  Google Scholar 

  110. Croswell K (1996) Alchemy of the heavens, 1st edn. Anchor Doubleday, Broadway, New York

    Google Scholar 

  111. Inagaki M, Feiyu K (2006) Carbon materials science and engineering: from fundamental to applications. Tsinghua University Press, Beijing

    Google Scholar 

  112. Serp P, Machado B (2015) Carbon (nano)materials for catalysis. In: Nanostructured carbon materials for catalysis. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  113. (a) Machado BF, Serp P (2012) Graphene-based materials for catalysis. Cat Sci Technol 2:54–75; (b) Dreyer R, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  114. Ennaert T, van Aelst J, Dijkmans J, De Clercq R, Schutyser W, Dusselier M, Verboekend D, Sels BF (2016) Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem Soc Rev 45:584–611

    Article  CAS  Google Scholar 

  115. Haddon RC, Palmer RE, Kroto HW, Sermon PA (1993) The fullerenes: powerful carbon-based electron acceptors. Philos Transact A Math Phys Eng 343:53–62

    Article  CAS  Google Scholar 

  116. White RJ (2015) The search for functional porous carbons from sustainable precursors. In: White R (ed) Porous carbon materials from sustainable precursors. The Royal Society of Chemistry, Cambridge, pp 3–49

    Chapter  Google Scholar 

  117. Serp P (2009) Carbon nanotubes and nanofibers in catalysis. In: Serp P, Figueiredo JL (eds) Carbon materials for catalysis. Wiley, Hobokem, pp 309–372

    Google Scholar 

  118. (a) Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132–145; (b) Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136

    Article  CAS  Google Scholar 

  119. Philippot K, Serp P (2013) Concepts in nanocatalysis. In: Serp P, Philippot K (eds) Nanomaterials in catalysis, 1st edn. VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  120. Garrido E, Aymonier C, Roiban L, Ersen O, Labrugere C, Gaillard P, Lamirand-Majimel MJ (2015) Noble metals supported on carbon nanotubes using supercritical fluids for the preparation of composite materials: a look at the interface. Supercrit Fluids 101:110–116

    Article  CAS  Google Scholar 

  121. Chen Y, Haddon RC, Fang S, Rao AM, Eklund PC, Lee WH, Dickey EC, Grulke EA, Pendergrass JC, Chavan A, Haley BE, Smalley RE (1998) Chemical attachment of organic functional groups to single-walled carbon nanotube material. J Mater Res 13:2423–4231

    Article  CAS  Google Scholar 

  122. (a) Mattevi C, Kima H, Chhowalla M (2011) A review of chemical vapour deposition of graphene on copper. J Mater Chem 21:3324–3334; (b) Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RR (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314; (c) Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669; (d) Rodriguez-Reinoso F (1998) The role of carbon materials in heterogeneous catalysis. Carbon 36:159–175

    Article  Google Scholar 

  123. Ghosh P, Afre RA, Soga T, Jimbo T (2007) A simple method of producing single-walled carbon nanotubes from a natural precursor: eucalyptus oil. Mat Lett 61:3768–3770

    Article  CAS  Google Scholar 

  124. (a) Zhao MQ, Zhang Q, Huang JQ, Nie JQ, Wei F (2010) Advanced materials from natural materials: synthesis of aligned carbon nanotubes on wollastonites. ChemSusChem 3:453–459; (b) Su DS (2009) The use of natural materials in nanocarbon synthesis. ChemSusChem 2:1009–1020

    Article  CAS  Google Scholar 

  125. (a) Mao S, Pu H, Chen J (2012) Graphene oxide and its reduction: modeling and experimental progress. RSC Adv 2:2643–2662; (b) Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  126. (a) Navalon S, Dhakshinamoorthy A, Alvaro M, Antonietti M, Garcia H (2017) Active sites on graphene-based materials as metal-free catalysts. Chem Soc Rev 46:4501–4529. (b) Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2014) Carbocatalysis by graphene-based materials. Chem Rev 114:6179–6212; (c) Peng W, Liu S, Sun H, Yao Y, Zhi L, Wang S (2013) Synthesis of porous reduced graphene oxide as metal-free carbon for adsorption and catalytic oxidation of organics in water. J Mater Chem A 1:5854–5859; (d) Frank B, Zhang J, Blume R, Schlӧgl R, Su DS (2009) Heteroatoms increase the selectivity in oxidative dehydrogenation reactions on nanocarbons. Angew Chem Int Ed 48:6913–6917

    Article  Google Scholar 

  127. (a) Joo Y, Ahmed MS, Han HS, Jeon S (2017) Electrochemically reduced graphene-oxide supported bimetallic nanoparticles highly efficient for oxygen reduction reaction with excellent methanol tolerance. Int J Hydrog Energy 42:21751–21761; (b) Bohre A, Gupta D, Alam I, Sharma RK, Saha B (2017) Aerobic oxidation of isoeugenol to vanillin with copper oxide doped reduced graphene oxide. Chem Sel 2:3129–3136; (c) Fan W, Yu X, Lu HC, Bai H, Zhang C, Shi W (2016) Fabrication of TiO2/RGO/Cu2O heterostructure for photoelectrochemical hydrogen production. Appl Catal B 181:7–15

    Article  CAS  Google Scholar 

  128. (a) Guo C, Book-Newell B, Irudayaraj J (2011) Protein-directed reduction of graphene oxide and intracellular imaging. Chem Commun 47:12658–12660; (b) Kim YK, Kim MH, Min DH (2011) Biocompatible reduced graphene oxide prepared by using dextran as a multifunctional reducing agent. Chem Commun 47:3195–3197; (c) Bose S, Kuila T, Mishra AK, Kim NH, Lee JH (2012) Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J Mater Chem 22:9696–9703

    Article  CAS  Google Scholar 

  129. Li B, Su D (2014) The Nucleophilicity of the oxygen functional groups on carbon materials: a DFT analysis. Chem Eur J 20:7890–7894

    Article  CAS  Google Scholar 

  130. (a) Tang WW, Zeng GM, Gong JL, Liang J, Xu P, Zhang C, Huang BB (2014) Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review. Sci Total Environ 468–468:1014–1027; (b) Klavins M, Dipane J, Babre K (2011) Humic substances as catalysts in condensation reactions. Chemosphere 44:737–742

    Google Scholar 

  131. (a) Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 1:356–361; (b) Sevilla M, Fuertes AB. Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mat 1:356–361

    Article  CAS  Google Scholar 

  132. Baccile N, Laurent G, Babonneau F, Fayon F, Titirici M-M, Antonietti MJ (2009) Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS 13C NMR investigations. Phys Chem C 113:9644–9654

    Article  CAS  Google Scholar 

  133. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Chem Eur J 15:4195–4203

    Article  CAS  Google Scholar 

  134. Zhang F, Li G-D, Chen S-L (2008) Effects of raw material texture and activation manner on surface area of porous carbons derived from biomass resources. J Colloid Interface Sci 327:108–114

    Article  CAS  Google Scholar 

  135. Guiotoku M, Rambo CR, Hansel FA, Magalhaes WLE, Hotza D (2009) Microwave-assisted hydrothermal carbonization of lignocellulosic materials. Mater Lett 63:2707–2709

    Article  CAS  Google Scholar 

  136. Demir-Cakan R, Bacille N, Antonietti M, Titirici MM (2009) Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chem Mater 21:484–490

    Article  CAS  Google Scholar 

  137. (a) Han B, Zhang E, Cheng G, Zhang L, Wang D, Wang X (2018) Hydrothermal carbon superstructures enriched with carboxyl groups for highly efficient uranium removal. Chem Eng J 338:734–744; (b) Bai C-X, Shen F, Qi X-H (2017) Preparation of porous carbon directly from hydrothermal carbonization of fructose and phloroglucinol for adsorption of tetracycline. Chin Chem Lett 28:960–962

    Article  CAS  Google Scholar 

  138. Huang B, Peng L, Yang F, Liu Y, Xie Z (2017) Improving ORR activity of carbon nanotubes by hydrothermal carbon deposition method. J Energy Chem 26:712–718

    Article  Google Scholar 

  139. (a) Qi X, Lian Y, Yan L, Smith RL Jr (2014) One-step preparation of carbonaceous solid acid catalysts by hydrothermal carbonization of glucose for cellulose hydrolysis. Catal Commun 57:50–54; (b) Wataniyakul P, Boonnoun P, Quitain AT, Sasaki M, Kida T, Laosiripojana N, Shotipruk A (2018) Preparation of hydrothermal carbon as cataltyst support for conversion of biomass to 5-hydroxymethylfurfural. Catal Commun 104:41–47

    Article  CAS  Google Scholar 

  140. Titirici M-M, Thomas A, Antonietti M (2007) Replication and coating of silica templates by hydrothermal carbonization. Adv Funct Mater 17:1010–1018

    Article  CAS  Google Scholar 

  141. Zhou X, Liu C-J (2018) Three-dimensional printing of porous carbon structures with tailorable pore sizes. Catal Today (in press)

    Google Scholar 

  142. Huang C-H, Doong R-A (2012) Three-dimensional hierarchically ordered porous carbons with partially graphitic nanostructures for electrochemical capacitive energy storage. Microporous Mesoporous Mater 147:47–52

    Article  CAS  Google Scholar 

  143. Miao L, Zhu D, Zhao Y, Liu M, Duan H, Xiong W, Zhu Q, Li L, Lv Y, Gan L (2017) Design of carbon materials with ultramicro-, supermicro- and mesopores using solvent- and self-template strategy for supercapacitors. Microporous Mesoporous Mater 253:1–9

    Article  CAS  Google Scholar 

  144. Luque R, Budarin V, Clark JH, Shuttleworth PS, White RJ (2011) Starbon® acids in alkylation and acetylation reactions: effect of the Brönsted-Lewis acidity. Catal Commun 12:1471–1476

    Article  CAS  Google Scholar 

  145. Zuin VG, Budarin V, De bruyn M, Shuttleworth PS, Hunt AJ, Pluciennik C, Borisova A, Dodson J, Parker HL, Clark JH (2017) Polysaccharide-derived mesoporous materials (Starbon®) for sustainable separation of complex mixtures. Faraday Discuss 202:451–464

    Article  CAS  Google Scholar 

  146. Clark JH, Budarin V, Dugmore T, Luque R, Macquarrie DJ, Strelko V (2008) Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catal Commun 9:1709–1714

    Article  CAS  Google Scholar 

  147. Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IKO (2010) Thermostable enzymes as biocatalysts in the biofuels industry. In: Laskin AI, Sariaslani S, Gadd GM (eds) Advances in applied microbiology, vol 70. Elsevier, Burlington, pp 1–55

    Google Scholar 

  148. Chen D, Holmen A, Sui Z, Zhou X (2014) Carbon mediated catalysis: a review on oxidative dehydrogenation. Chin J Catal 35:824–841

    Article  CAS  Google Scholar 

  149. (a) De S, Balu AM, van der Waal JC, Luque R (2015) Biomass-derived porous carbon materials: synthesis and catalytic applications. ChemCatChem 7:1608–1629; (b) Matos I, Bernardo M, Fonseca I (2017) Porous carbon: a versatile material for catalysis. Catal Today 285:194–203; (c) Filiciotto L, Luque R (2018) Biomass promises: a bumpy road to a renewable economy. Curr Green Chem 1:47–59

    Article  CAS  Google Scholar 

  150. Yao Y (2018) Visible-light photocatalysis of carbon-based materials. IntechOpen Limited, London

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layla Filiciotto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Filiciotto, L., Luque, R. (2018). Nanocatalysis for Green Chemistry. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1007-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1007-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics