Skip to main content

Use of Ionic Liquids for the Biorefinery

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Biofuel:

Combustible fuel derived from biomass.

Biomass:

Nonfossil organic matter.

Biorefinery:

A collection of processes for the production of fuels and chemical products from biological sources.

Deep eutectic solvent:

A liquid composed by mixing a salt with a strong hydrogen bond donor molecule.

Ionic liquid:

A liquid composed of solely of ions when pure.

Lignocellulose:

A biological matrix consisting of the polymers cellulose, hemicellulose, and lignin.

Platform chemical:

A chemical that can be used as a precursor to many others as the basis of a chemicals industry.

Pretreatment:

The initial step in the deconstruction of lignocellulose biomass.

Definition of the Subject

A biorefinery is a refinery that produces chemicals, fuels, and materials to meet human needs for transportation, technology, etc., that uses renewable feedstocks such as lignocellulosic biomass to produce chemical compounds. It is thought to be an alternative to existing refineries based on fossil resources...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mikkola J, Sklavounos E, King AWT, Virtanen P (2015) Chemistry. The biorefinery and green chemistry. The Royal Society of Chemistry, Cambridge, pp 1–37

    Google Scholar 

  2. Future OC (1987) Our common future, Chapter 2: Towards sustainable development. http://www.un-documents.net/ocf-02.htm

  3. McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  CAS  Google Scholar 

  4. Dutta T, Shi J, Sun J, Zhang XIN, Cheng G, Simmons BA, Singh S (2015) Ionic liquid pretreatment of lignocellulosic biomass for biofuels and chemicals. Ionic liquids in the biorefinery concept, Royal Society of Chemistry, Cambridge, pp 65–94. https://doi.org/10.1039/9781849739764-00065

  5. van Eijck J, Batidzirai B, Faaij A (2014) Current and future economic performance of first and second generation biofuels in developing countries. Appl Energy 135:115–141

    Article  Google Scholar 

  6. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science (80-.) 315:804–807

    Article  CAS  Google Scholar 

  7. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  CAS  Google Scholar 

  8. Cheng H, Wang L (2013) Lignocelluloses feedstock biorefinery as petrorefinery substitutes. In: Biomass now – sustainable growth and use. Intech Open, London, pp 347–388

    Google Scholar 

  9. De Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. Industrial biorefineries and white biotechnology, Elsevier

    Google Scholar 

  10. Jungmeier G (Joanneum RF mbH), van Ree R, van Zeeland AUF and BR (2014) IEA Bioenergy Task 42 Biorefining: definition biorefining & classification biorefining

    Google Scholar 

  11. Kumar P, Barrett DM, Barrett DM, Delwiche MJ, Delwiche MJ, Stroeve P, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Anal Ed 48:3713–3729

    CAS  Google Scholar 

  12. Danner H, Braun R (1999) Biotechnology for the production of commodity chemicals from biomass. Chem Soc Rev 28:395–405

    Article  CAS  Google Scholar 

  13. Wu L, Moteki T, Gokhale AA, Flaherty DW, Toste FD (2016) Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1:32–58

    Article  CAS  Google Scholar 

  14. Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman CE (2014) Lignin valorization: improving lignin processing in the biorefinery. Science (80-) 344:709

    Article  CAS  Google Scholar 

  15. Winkler R (2005) Valuation of ecosystem goods and services Part 1: an integrated dynamic approach. Synthesis (Stuttg) 59:82–93

    Google Scholar 

  16. Biermann CJ (1996) Handbook of pulping and papermaking. Academic, San Diego

    Google Scholar 

  17. Pimentel D, Patzek T (2005) Ethanol production using corn, switchgrass, and ưood; Biodiesel production using soybean and sunflower. Nat Resour Res 14:65–76

    Article  CAS  Google Scholar 

  18. Axelsson L, Franzén M, Ostwald M, Berndes G, Lakshmi G, Ravindranath NH (2012) Perspective: Jatropha cultivation in southern India: assessing farmers’ experiences. Biofuels Bioprod Biorefin 6:246–256

    Article  CAS  Google Scholar 

  19. Bridgwater AV, Toft AJ, Brammer JG (2002) A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renew Sustain Energy Rev 6:181–248

    Article  CAS  Google Scholar 

  20. Prado R, Weber CC (2016) Applications of ionic liquids. In: Application, purification, and recovery of ionic liquids. Elsevier, pp 1–58

    Google Scholar 

  21. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  CAS  Google Scholar 

  22. Wasserscheid P, Welton T (2006) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  23. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  24. Stark A (2011) Ionic liquids in the biorefinery: a critical assessment of their potential. Energy Environ Sci 4:19–32

    Article  CAS  Google Scholar 

  25. Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583

    Article  CAS  Google Scholar 

  26. Xia S, Baker G, Li H, Ravula S, Zhao H (2014) Aqueous ionic liquids and deep eutectic solvents for cellulosic biomass pretreatment and saccharification. RSC Adv 4:10586–10596

    Article  CAS  Google Scholar 

  27. Fink H-P, Weigel P, Purz H, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  28. Zhang Y-HP, Cui J, Lynd LR, Kuang LR (2006) A transition from cellulose swelling to cellulose dissolution by o -phosphoric acid: evidence from enzymatic hydrolysis and supramolecular structure. Biomacromolecules 7:644–648

    Article  CAS  Google Scholar 

  29. Graenacher C (1934) Cellulose solution. US Patent 4,446,331, pp 1–4

    Google Scholar 

  30. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  31. Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  32. Gupta KM, Jiang J (2015) Cellulose dissolution and regeneration in ionic liquids: a computational perspective. Chem Eng Sci 121:180–189

    Article  CAS  Google Scholar 

  33. Cao Y, Zhang R, Cheng T, Guo J, Xian M, Liu H (2017) Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives. Appl Microbiol Biotechnol 101:521–532

    Article  CAS  Google Scholar 

  34. Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275

    Article  CAS  Google Scholar 

  35. Lu B, Xu A, Wang J (2014) Cation does matter: how cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem 16:1326–1335

    Article  CAS  Google Scholar 

  36. Liu Y-R, Thomsen K, Nie Y, Zhang S-J, Meyer AS (2016) Predictive screening of ionic liquids for dissolving cellulose and experimental verification. Green Chem 18:6246–6254

    Article  CAS  Google Scholar 

  37. Zhao Y, Liu X, Wang J, Zhang S (2012) Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. ChemPhysChem 13:3126–3133

    Article  CAS  Google Scholar 

  38. Liu D, Xia K, Cai W, Yang R, Wang L, Wang B (2012) Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids. Carbohydr Polym 87:1058–1064

    Article  CAS  Google Scholar 

  39. Payal RS, Balasubramanian S (2014) Dissolution of cellulose in ionic liquids: an ab initio molecular dynamics simulation study. Phys Chem Chem Phys 16:17458

    Article  CAS  Google Scholar 

  40. Payal RS, Bejagam KK, Mondal A, Balasubramanian S (2015) Dissolution of cellulose in room temperature ionic liquids: anion dependence. J Phys Chem B 119:1654–1659

    Article  CAS  Google Scholar 

  41. Gericke M, Liebert T, El SOA, Heinze T (2011) Tailored media for homogeneous cellulose chemistry: ionic liquid/co-solvent mixtures. Macromol Mater Eng 296:483–493

    Article  CAS  Google Scholar 

  42. Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8 – synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromol Biosci 9:343–353

    Article  CAS  Google Scholar 

  43. Xu A, Zhang Y, Zhao Y, Wang J (2013) Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr Polym 92:540–544

    Article  CAS  Google Scholar 

  44. Zhao Y, Liu X, Wang J, Zhang S (2013) Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems. J Phys Chem B 117:9042–9049

    Article  CAS  Google Scholar 

  45. Andanson J-M, Bordes E, Devémy J, Leroux F, Pádua AAH, Gomes MFC (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528

    Article  CAS  Google Scholar 

  46. Huo F, Liu Z, Wang W (2013) Cosolvent or antisolvent? A molecular view of the interface between ionic liquids and cellulose upon addition of another molecular solvent. J Phys Chem B 117:11780–11792

    Article  CAS  Google Scholar 

  47. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325

    Article  CAS  Google Scholar 

  48. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728

    Article  CAS  Google Scholar 

  49. Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  50. Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519

    Article  CAS  Google Scholar 

  51. Yuan X, Cheng G (2015) From cellulose fibrils to single chains: understanding cellulose dissolution in ionic liquids. Phys Chem Chem Phys 17:31592–31607

    Article  CAS  Google Scholar 

  52. Remsing RC, Swatloski RP, Rogers RD, Moyna G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun 12:1271

    Article  CAS  Google Scholar 

  53. Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301

    Article  CAS  Google Scholar 

  54. Zhang J, Zhang H, Wu J, Zhang J, He J, Xiang J (2010) NMR spectroscopic studies of cellobiose solvation in EmimAc aimed to understand the dissolution mechanism of cellulose in ionic liquids. Phys Chem Chem Phys 12:1941–1947

    Article  CAS  Google Scholar 

  55. Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142:1–5

    Article  CAS  Google Scholar 

  56. Rabideau BD, Agarwal A, Ismail AE (2013) Observed mechanism for the breakup of small bundles of cellulose Iα and Iβ in ionic liquids from molecular dynamics simulations. J Phys Chem B 117:3469–3479

    Article  CAS  Google Scholar 

  57. Mazza M, Catana DA, Vaca-Garcia C, Cecutti C (2009) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215

    Article  CAS  Google Scholar 

  58. Fort DA, Remsing RC, Swatloski RP, Moyna P, Moyna G, Rogers RD (2007) Can ionic liquids dissolve wood? Processing and analysis of lignocellulosic materials with 1-n-butyl-3-methylimidazolium chloride. Green Chem 9:63–69

    Article  CAS  Google Scholar 

  59. Kilpeläinen I, Xie H, King A, Granstrom M, Heikkinen S, Argyropoulos DS (2007) Dissolution of wood in ionic liquids. J Agric Food Chem 55:9142–9148

    Article  CAS  Google Scholar 

  60. Rosatella AA, Afonso CAM (2015) Chapter 2. The dissolution of biomass in ionic liquids towards pre-treatment approach. The Royal Society of Chemistry, Cambridge, pp 38–64

    Google Scholar 

  61. Sun N, Rahman M, Qin Y, Maxim ML, Rodríguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11:646

    Article  CAS  Google Scholar 

  62. Zhang J, Wang Y, Zhang L, Zhang R, Liu G, Cheng G (2014) Understanding changes in cellulose crystalline structure of lignocellulosic biomass during ionic liquid pretreatment by XRD. Bioresour Technol 151:402–405

    Article  CAS  Google Scholar 

  63. Cheng G, Varanasi P, Arora R, Stavila V, Simmons BA, Kent MS, Singh S (2012) Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate. J Phys Chem B 116:10049–10054

    Article  CAS  Google Scholar 

  64. Cheng G, Varanasi P, Li C, Liu H, Melnichenko YB, Simmons BA, Kent MS, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941

    Article  CAS  Google Scholar 

  65. Trinh LTP, Lee YJ, Lee J-W, Lee H-J (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenergy 81:1–8

    Article  CAS  Google Scholar 

  66. Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104:68–75

    Article  CAS  Google Scholar 

  67. Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12:1967

    Article  CAS  Google Scholar 

  68. da Costa Lopes AM, João KG, Morais ARC, Bogel-Łukasik E, Bogel-Łukasik R (2013) Ionic liquids as a tool for lignocellulosic biomass fractionation. Sustain Chem Process 1:3

    Article  CAS  Google Scholar 

  69. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587

    Article  CAS  Google Scholar 

  70. Weerachanchai P, Kwak SK, Lee J-M (2014) Effects of solubility properties of solvents and biomass on biomass pretreatment. Bioresour Technol 170:160–166

    Article  CAS  Google Scholar 

  71. Muhammad N, Man Z, Bustam Khalil MA (2012) Ionic liquid – a future solvent for the enhanced uses of wood biomass. Eur J Wood Wood Prod 70:125–133

    Article  CAS  Google Scholar 

  72. Domínguez de María P (2014) Recent trends in (ligno)cellulose dissolution using neoteric solvents: switchable, distillable and bio-based ionic liquids. J Chem Technol Biotechnol 89:11–18

    Article  CAS  Google Scholar 

  73. Miyafuji H (2015) Application of ionic liquids for effective use of woody biomass. J Wood Sci 61:343–350

    Article  CAS  Google Scholar 

  74. Hart WES, Harper JB, Aldous L (2015) The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem 17:214–218

    Article  CAS  Google Scholar 

  75. Wang Y, Wei L, Li K, Ma Y, Ma N, Ding S, Wang L, Zhao D, Yan B, Wan W, Zhang Q, Wang X, Wang J, Li H (2014) Lignin dissolution in dialkylimidazolium-based ionic liquid–water mixtures. Bioresour Technol 170:499–505

    Article  CAS  Google Scholar 

  76. Akiba T, Tsurumaki A, Ohno H (2017) Induction of lignin solubility for a series of polar ionic liquids by the addition of a small amount of water. Green Chem 19:2260–2265

    Article  CAS  Google Scholar 

  77. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids – a review. Ind Crop Prod 32:175–201

    Article  CAS  Google Scholar 

  78. Hossain MM, Aldous L (2012) Ionic liquids for lignin processing: dissolution, isolation, and conversion. Aust J Chem 65:1465

    Article  CAS  Google Scholar 

  79. Mai NL, Ha SH, Koo Y-M (2014) Efficient pretreatment of lignocellulose in ionic liquids/co-solvent for enzymatic hydrolysis enhancement into fermentable sugars. Process Biochem 49:1144–1151

    Article  CAS  Google Scholar 

  80. Lynam JG, Coronella CJ (2014) Glycerol as an ionic liquid co-solvent for pretreatment of rice hulls to enhance glucose and xylose yield. Bioresour Technol 166:471–478

    Article  CAS  Google Scholar 

  81. Shi J, Balamurugan K, Parthasarathi R, Sathitsuksanoh N, Zhang S, Stavila V, Subramanian V, Simmons B, Singh S (2014) Understanding the role of water during ionic liquid pretreatment of lignocellulose: co-solvent or anti-solvent? Green Chem 16:3830–3840

    Article  CAS  Google Scholar 

  82. Upfal J, MacFarlane DR, Forsyth SA (2005) Solvents for use in the treatment of lignin-containing materials. patent number EP1654415A1, pp 1–40

    Google Scholar 

  83. Varanasi S, Schall CA, Dadi AP, Anderson J, Rao K, Kumar G, Paripati P (2011) Biomass Pretreatment, US Patent 8,030,030 B2

    Google Scholar 

  84. George A, Brandt A, Tran K, Zahari SMSNS, Klein-Marcuschamer D, Sun N, Sathitsuksanoh N, Shi J, Stavila V, Parthasarathi R, Singh S, Holmes BM, Welton T, Simmons BA, Hallett JP (2015) Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem 17:1728–1734. https://doi.org/10.1039/C4GC01208A

    Article  CAS  Google Scholar 

  85. Konda N, Shi J, Singh S, Blanch HW, Simmons BA, Klein-Marcuschamer D (2014) Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnol Biofuels 7:86

    Article  Google Scholar 

  86. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  Google Scholar 

  87. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF, Pringle JM, Scott JL (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11:339. https://doi.org/10.1039/b815310h

    Article  CAS  Google Scholar 

  88. Arora R, Manisseri C, Li C, Ong MD, Scheller HV, Vogel K, Simmons BA, Singh S (2010) Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). BioEnergy Res 3:134–145. https://doi.org/10.1007/s12155-010-9087-1

    Article  Google Scholar 

  89. Ab Rani MA, Brant A, Crowhurst L, Dolan A, Lui M, Hassan NH, Hallett JP, Hunt PA, Niedermeyer H, Perez-Arlandis JM, Schrems M, Welton T, Wilding R (2011) Understanding the polarity of ionic liquids. Phys Chem Chem Phys 13:16831. https://doi.org/10.1039/c1cp21262a

    Article  CAS  Google Scholar 

  90. van Osch DJGP, Kollau LJBM, van den Bruinhorst A, Asikainen S, Rocha MAA, Kroon MC (2017) Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation. Phys Chem Chem Phys 19:2636–2665

    Article  CAS  Google Scholar 

  91. Achinivu EC, Howard RM, Li G, Gracz H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16:1114–1119

    Article  CAS  Google Scholar 

  92. Brandt A, Ray MJ, To TQ, Leak DJ, Murphy RJ, Welton T (2011) Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid-water mixtures. Green Chem 13:2489–2499

    Article  CAS  Google Scholar 

  93. Verdía P, Brandt A, Hallett JP, Ray MJ, Welton T (2014) Fractionation of lignocellulosic biomass with the ionic liquid 1-butylimidazolium hydrogen sulfate. Green Chem 16:1617

    Article  CAS  Google Scholar 

  94. Weigand L, Mostame S, Brandt-Talbot A, Welton T, Hallett JP (2017) Effect of pretreatment severity on the cellulose and lignin isolated from Salix using ionoSolv pretreatment. Faraday Discuss 0:1–19

    CAS  Google Scholar 

  95. Brandt-Talbot A, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102

    Article  CAS  Google Scholar 

  96. Chen L, Sharifzadeh M, Mac Dowell N, Welton T, Shah N, Hallett JP (2014) Inexpensive ionic liquids: [HSO4]−-based solvent production at bulk scale. Green Chem 16:3098–3106

    Article  CAS  Google Scholar 

  97. Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13:3124

    Article  CAS  Google Scholar 

  98. Yan P, Xu Z, Zhang C, Liu X, Xu W, Zhang ZC (2015) Fractionation of lignin from eucalyptus bark using amine-sulfonate functionalized ionic liquids. Green Chem 17:4913–4920

    Article  CAS  Google Scholar 

  99. Muhammad N, Man Z, Bustam MA, Mutalib MIA, Rafiq S (2013) Investigations of novel nitrile-based ionic liquids as pre-treatment solvent for extraction of lignin from bamboo biomass. J Ind Eng Chem 19:207–214

    Article  CAS  Google Scholar 

  100. Costa SPF, Azevedo AMO, Pinto PCAG, Saraiva MLMFS (2017) Environmental impact of ionic liquids: recent advances in (Eco)toxicology and (Bio)degradability. ChemSusChem 10:2321–2347

    Article  CAS  Google Scholar 

  101. Hou X-D, Smith TJ, Li N, Zong M-H (2012) Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin. Biotechnol Bioeng 109:2484–2493

    Article  CAS  Google Scholar 

  102. Hou X-D, Li N, Zong M-H (2013) Renewable bio ionic liquids-water mixtures-mediated selective removal of lignin from rice straw: visualization of changes in composition and cell wall structure. Biotechnol Bioeng 110:1895–1902

    Article  CAS  Google Scholar 

  103. Liu Q-P, Hou X-D, Li N, Zong M-H (2012) Ionic liquids from renewable biomaterials: synthesis, characterization and application in the pretreatment of biomass. Green Chem 14:304–307

    Article  CAS  Google Scholar 

  104. Ninomiya K, Yamauchi T, Kobayashi M, Ogino C, Shimizu N, Takahashi K (2013) Cholinium carboxylate ionic liquids for pretreatment of lignocellulosic materials to enhance subsequent enzymatic saccharification. Biochem Eng J 71:25–29

    Article  CAS  Google Scholar 

  105. Ninomiya K, Kohori A, Tatsumi M, Osawa K, Endo T, Kakuchi R, Ogino C, Shimizu N, Takahashi K (2015) Ionic liquid/ultrasound pretreatment and in situ enzymatic saccharification of bagasse using biocompatible cholinium ionic liquid. Bioresour Technol 176:169–174

    Article  CAS  Google Scholar 

  106. Hou XD, Li N, Zong MH (2013) Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures. Bioresour Technol 136:469–474

    Article  CAS  Google Scholar 

  107. Anugwom I, Mäki-Arvela P, Virtanen P, Willför S, Damlin P, Hedenström M, Mikkola J-P (2012) Treating birch wood with a switchable 1,8-diazabicyclo-[5.4.0]-undec-7-ene-glycerol carbonate ionic liquid. Holzforschung 66:809–815

    Article  CAS  Google Scholar 

  108. Eta V, Mikkola J-P (2016) Deconstruction of Nordic hardwood in switchable ionic liquids and acylation of the dissolved cellulose. Carbohydr Polym 136:459–465

    Article  CAS  Google Scholar 

  109. Anugwom I, Eta V, Virtanen P, Mäki-Arvela P, Hedenström M, Hummel M, Sixta H, Mikkola J-P (2014) Switchable ionic liquids as delignification solvents for lignocellulosic materials. ChemSusChem 7:1170–1176

    Article  CAS  Google Scholar 

  110. Brandt A, Chen L, van Dongen BE, Welton T, Hallett JP (2015) Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chem 17:5019–5034

    Article  CAS  Google Scholar 

  111. Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuels Bioprod Biorefin 5:562–569

    Article  CAS  Google Scholar 

  112. Li C, Zhao ZK (2007) Efficient acid-catalyzed hydrolysis of cellulose in ionic liquid. Adv Synth Catal 349:1847–1850

    Article  CAS  Google Scholar 

  113. Shill K, Miller K, Clark DS, Blanch HW (2012) A model for optimizing the enzymatic hydrolysis of ionic liquid-pretreated lignocellulose. Bioresour Technol 126:290–297. Elsevier Ltd

    Article  CAS  Google Scholar 

  114. Shi J, Gladden JM, Sathitsuksanoh N, Kambam P, Sandoval L, Mitra D, Zhang S, George A, Singer SW, Simmons BA, Singh S (2013) One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chem 15:2579

    Article  CAS  Google Scholar 

  115. Park JI, Steen EJ, Burd H, Evans SS, Redding-Johnson AM, Batth T, Benke PI, D’haeseleer P, Sun N, Sale KL, Keasling JD, Lee TS, Petzold CJ, Mukhopadhyay A, Singer SW, Simmons BA, Gladden JM (2012) A thermophilic ionic liquid-tolerant cellulase cocktail for the production of cellulosic biofuels. PLoS One 7:1–10

    Article  Google Scholar 

  116. Erbeldinger M, Mesiano AJ, Russell AJ (2000) Enzymatic catalysis of formation of Z -aspartame in ionic liquid – an alternative to enzymatic catalysis in organic solvents. Biotechnol Prog 16(6):1129–1131

    Article  CAS  Google Scholar 

  117. Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2:1096–1107

    Article  CAS  Google Scholar 

  118. Li C, Wang Q, Zhao ZK (2008) Acid in ionic liquid: an efficient system for hydrolysis of lignocellulose. Green Chem 10:177–182

    Article  CAS  Google Scholar 

  119. Zhou N, Zhang Y, Gong X, Wang Q, Ma Y (2012) Ionic liquids-based hydrolysis of Chlorella biomass for fermentable sugars. Bioresour Technol 118:512–517

    Article  CAS  Google Scholar 

  120. de HFN O, Fares C, Rinaldi R (2015) Beyond a solvent: the roles of 1-butyl-3-methylimidazolium chloride in the acid-catalysis for cellulose depolymerisation. Chem Sci 6:5215–5224

    Article  CAS  Google Scholar 

  121. Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci 107:4516–4521

    Article  CAS  Google Scholar 

  122. Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohydr Res 344:2069–2072

    Article  CAS  Google Scholar 

  123. Morales-delaRosa S, Campos-Martin JM, Fierro JLG (2012) High glucose yields from the hydrolysis of cellulose dissolved in ionic liquids. Chem Eng J 181–182:538–541

    Article  CAS  Google Scholar 

  124. Yang Q, Wei Z, Xing H, Ren Q (2008) Brönsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catal Commun 9:1307–1311

    Article  CAS  Google Scholar 

  125. Amarasekara AS, Wiredu B (2014) Sulfonic acid group functionalized ionic liquid catalyzed hydrolysis of cellulose in water: structure activity relationships. Sustain Energy 2:102–107

    Google Scholar 

  126. Hernoux-Villière A, Lévêque JM, Kärkkäinen J, Papaiconomou N, Lajunen M, Lassi U (2014) Task-specific ionic liquid for the depolymerisation of starch-based industrial waste into high reducing sugars. Catal Today 223:11–17. Elsevier B.V.

    Article  CAS  Google Scholar 

  127. Amarasekara AS, Owereh OS (2010) Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal Commun 11:1072–1075

    Article  CAS  Google Scholar 

  128. Hsu WH, Lee YY, Peng WH, Wu KCW (2011) Cellulosic conversion in ionic liquids (ILs): effects of H 2O/cellulose molar ratios, temperatures, times, and different ILs on the production of monosaccharides and 5-hydroxymethylfurfural (HMF). Catal Today 174:65–69. Elsevier B.V.

    Article  CAS  Google Scholar 

  129. Hu L, Sun Y, Lin L (2012) Efficient conversion of glucose into 5-hydroxymethylfurfural by chromium(III) chloride in inexpensive ionic liquid. Ind Eng Chem Res 51:1099–1104

    Article  CAS  Google Scholar 

  130. Li C, Zhao ZK, Wang A, Zheng M, Zhang T (2010) Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohydr Res 345:1846–1850

    Article  CAS  Google Scholar 

  131. Zhao H, Holladay JE, Brown H, Zhang ZC ((2007)) Metal chlorides in ionic liquid solvents convert sugar to 5-hydroxymethyfurfural. Science (80-) 316:1597–1600

    Article  CAS  Google Scholar 

  132. Tao F, Song H, Chou L (2011) Hydrolysis of cellulose in SO3H-functionalized ionic liquids. Bioresour Technol 102:9000–9006

    Article  CAS  Google Scholar 

  133. Zhang L, Yu H, Wang P (2013) Solid acids as catalysts for the conversion of d-xylose, xylan and lignocellulosics into furfural in ionic liquid. Bioresour Technol 136:515–521

    Article  CAS  Google Scholar 

  134. Zhou P, Zhang Z (2016) One-pot catalytic conversion of carbohydrates into furfural and 5-hydroxymethylfurfural. Catal Sci Technol 6:3694–3712

    Article  CAS  Google Scholar 

  135. Qu Y, Huang C, Zhang J, Chen B (2012) Efficient dehydration of fructose to 5-hydroxymethylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt. Bioresour Technol 106:170–172

    Article  CAS  Google Scholar 

  136. Peleteiro S, Da C, Lopes AM, Garrote G, Parajó JC, Bogel-Łukasik R (2015) Simple and efficient furfural production from xylose in media containing 1-butyl-3-methylimidazolium hydrogen sulfate. Ind Eng Chem Res 54:8368–8373

    Article  CAS  Google Scholar 

  137. Qu Y, Li L, Wei Q, Huang C, Oleskowicz-Popiel P, Xu J (2016) One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid. Sci Rep 6:1–7

    Article  CAS  Google Scholar 

  138. Ren H, Zhou Y, Liu L (2013) Selective conversion of cellulose to levulinic acid via microwave-assisted synthesis in ionic liquids. Bioresour Technol 129:616–619

    Article  CAS  Google Scholar 

  139. Ferreira AM, Morais ES, Leite AC, Mohamadou A, Holmbom B, Holmbom T, Neves BM, Coutinho JAP, Freire MG, Silvestre AJD, Paracchini S, Lecchini S (2017) Enhanced extraction and biological activity of 7-hydroxymatairesinol obtained from Norway spruce knots using aqueous solutions of ionic liquids. Green Chem 19:2626–2635

    Article  CAS  Google Scholar 

  140. Du FY, Xiao XH, Li GK (2007) Application of ionic liquids in the microwave-assisted extraction of trans-resveratrol from Rhizma Polygoni Cuspidati. J Chromatogr A 1140:56–62

    Article  CAS  Google Scholar 

  141. Zhang L, Geng Y, Duan W, Wang D, Fu M, Wang X (2009) Ionic liquid-based ultrasound-assisted extraction of fangchinoline and tetrandrine from Stephaniae tetrandrae. J Sep Sci 32:3550–3554

    Article  CAS  Google Scholar 

  142. Lu C, Wang H, Lv W, Ma C, Lou Z, Xie J, Liu B (2012) Ionic liquid-based ultrasonic/microwave-assisted extraction combined with UPLC-MS-MS for the determination of tannins in Galla chinensis. Nat Prod Res 26:1842–1847

    Article  CAS  Google Scholar 

  143. Cao X, Ye X, Lu Y, Yu Y, Mo W (2009) Ionic liquid-based ultrasonic-assisted extraction of piperine from white pepper. Anal Chim Acta 640:47–51

    Article  CAS  Google Scholar 

  144. Tian M, Yan H, Row KH (2009) Solid-phase extraction of tanshinones from Salvia Miltiorrhiza Bunge using ionic liquid-modified silica sorbents. J Chromatogr B Anal Technol Biomed Life Sci 877:738–742

    Article  CAS  Google Scholar 

  145. Tian M, Row KH (2011) SPE of tanshinones from salvia miltiorrhiza bunge by using imprinted functionalized ionic liquid-modified silica. Chromatographia 73:25–31

    Article  CAS  Google Scholar 

  146. Wang M, Wang J, Zhang Y, Xia Q, Bi W, Yang X, Chen DDY (2016) Fast environment-friendly ball mill-assisted deep eutectic solvent-based extraction of natural products. J Chromatogr A 1443:262–266

    Article  CAS  Google Scholar 

  147. Tian M, Bi W, Row KH (2009) Solid-phase extraction of liquiritin and glycyrrhizic acid from licorice using ionic liquid-based silica sorbent. J Sep Sci 32:4033–4039

    Article  CAS  Google Scholar 

  148. Bi W, Zhou J, Row KH (2012) Solid phase extraction of three phenolic acids from Saliconia Herbacel L. by different ionic liquids. J Liq Chromatogr Relat Technol 35:723–736

    Article  CAS  Google Scholar 

  149. Bi W, Tian M, Row KH (2012) Selective extraction and separation of oxymatrine from Sophora flavescens Ait. extract by silica-confined ionic liquid. J Chromatogr B Analyt Technol Biomed Life Sci 880:108–113

    Article  CAS  Google Scholar 

  150. Bi W, Tian M, Row KH (2010) Solid-phase extraction of matrine and oxymatrine from Sophora flavescens ait using amino-imidazolium polymer. J Sep Sci 33:1739–1745

    Article  CAS  Google Scholar 

  151. Tian M, Yan H, Row KH (2010) Solid-phase extraction of caffeine and theophylline from green tea by a new ionic liquid-modified functional polymer sorbent. Anal Lett 43:110–118

    Article  CAS  Google Scholar 

  152. Li S, He C, Liu H, Li K, Liu F (2005) Ionic liquid-based aqueous two-phase system, a sample pretreatment procedure prior to high-performance liquid chromatography of opium alkaloids. J Chromatogr B Analyt Technol Biomed Life Sci 826:58–62

    Article  CAS  Google Scholar 

  153. Freire MG, Neves CMSS, Marrucho IM, Canongia Lopes JN, Rebelo LPN, Coutinho JAP (2010) High-performance extraction of alkaloids using aqueous two-phase systems with ionic liquids. Green Chem 12:1715

    Article  CAS  Google Scholar 

  154. Cláudio AFM, Ferreira AM, Freire MG, Coutinho JAP (2013) Enhanced extraction of caffeine from guaraná seeds using aqueous solutions of ionic liquids. Green Chem 15:2002

    Article  CAS  Google Scholar 

  155. Tan Z j, Li F f, Xu X l, Xing J m (2012) Simultaneous extraction and purification of aloe polysaccharides and proteins using ionic liquid based aqueous two-phase system coupled with dialysis membrane. Desalination 286:389–393

    Article  CAS  Google Scholar 

  156. Chowdhury SA, Vijayaraghavan R, MacFarlane DR (2010) Distillable ionic liquid extraction of tannins from plant materials. Green Chem 12:1023–1028

    Article  CAS  Google Scholar 

  157. Vijayaraghavan R, Macfarlane DR (2014) CO2-based alkyl carbamate ionic liquids asdistillable extraction solvents. ACS Sustain Chem Eng 2:1724–1728

    Article  CAS  Google Scholar 

  158. Prado R, Erdocia X, De Gregorio GF, Labidi J, Welton T (2016) Willow lignin pxidation and depolymerization under low cost ionic liquid. ACS Sustain Chem Eng 4. https://doi.org/10.1021/acssuschemeng.6b00642

    Article  CAS  Google Scholar 

  159. George A, Tran K, Morgan TJ, Benke PI, Berrueco C, Lorente E, Wu BC, Keasling JD, Simmons BA, Holmes BM (2011) The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chem 13:3375

    Article  CAS  Google Scholar 

  160. Cox BJ, Ekerdt JG (2012) Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour Technol 118:584–588

    Article  CAS  Google Scholar 

  161. Hong S, Lian H, Pan M, Chen L (2017) Structural changes of lignin after ionic liquid pretreatment. Bioresources 12:3017–3029

    Article  CAS  Google Scholar 

  162. Wen J-L, Sun S-L, Xue B-L, Sun R-C (2013) Quantitative structures and thermal properties of birch lignins after ionic liquid pretreatment. J Agric Food Chem 61:635–645

    Article  CAS  Google Scholar 

  163. Prado R, Brandt A, Erdocia X, Hallet J, Welton T, Labidi J (2016) Lignin oxidation and depolymerisation in ionic liquids. Green Chem 18:834–841

    Article  CAS  Google Scholar 

  164. De Gregorio GF, Prado R, Vriamont C, Erdocia X, Labidi J, Hallett JPJP, Welton T (2016) Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system. ACS Sustain Chem Eng 4:6031–6036

    Article  CAS  Google Scholar 

  165. Sun N, Jiang X, Maxim ML, Metlen A, Rogers RD (2011) Use of polyoxometalate catalysts in ionic liquids to enhance the dissolution and delignification of woody biomass. ChemSusChem 4:65–73

    Article  CAS  Google Scholar 

  166. Yinghuai Z, Yuanting KT, Hosmane NS (2013) Applications of ionic liquids in lignin chemistry. In: Canning J, Bandyopadhyay S, Biswas P, Aslund M (eds) Ionic liquids – new aspects for the future. Intech Open, London

    Google Scholar 

  167. Zhu Y, Chuanzhao L, Sudarmadji M, Hui Min N, Biying AO, Maguire JA, Hosmane NS (2012) An efficient and recyclable catalytic system comprising Nanopalladium(0) and a Pyridinium salt of Iron Bis(dicarbollide) for Oxidation of substituted benzyl alcohol and lignin. ChemistryOpen 1:67–70

    Article  CAS  Google Scholar 

  168. Denicourt-Nowicki A, Léger B, Roucoux A (2011) N-Donor ligands based on bipyridine and ionic liquids: an efficient partnership to stabilize rhodium colloids. Focus on oxygen-containing compounds hydrogenation. Phys Chem Chem Phys 13:13510–13517

    Article  CAS  Google Scholar 

  169. Jiang N, Ragauskas AJ (2007) Selective aerobic oxidation of activated alcohols into acids or aldehydes in ionic liquids. J Org Chem 72:7030–7033

    Article  CAS  Google Scholar 

  170. Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem 12:1225

    Article  CAS  Google Scholar 

  171. Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar and halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 7:3295–3297

    Article  CAS  Google Scholar 

  172. Liu Q, Janssen MHA, van Rantwijk F, Sheldon RA (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 7:39

    Article  CAS  Google Scholar 

  173. Wu Y, Sasaki T, Irie S, Sakurai K (2008) A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer (Guildf) 49:2321–2327

    Article  CAS  Google Scholar 

  174. Idris A, Vijayaraghavan R, Patti AF, Macfarlane DR (2014) Distillable protic ionic liquids for keratin dissolution and recovery. ACS Sustain Chem Eng 2:1888–1894

    Article  CAS  Google Scholar 

  175. Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydr Polym 75:125–129

    Article  CAS  Google Scholar 

  176. Yamazaki S, Takegawa A, Kaneko Y, ichi KJ, Yamagata M, Ishikawa M (2009) An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double layer capacitor. Electrochem Commun 11:68–70

    Article  CAS  Google Scholar 

  177. Xie H, Zhang S, Li S (2006) Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem 8:630–633

    Article  CAS  Google Scholar 

  178. Zhang H, Wang Z, Zhang Z, Wu J, Zhang J, He J (2007) Regenerated-cellulose/multiwalled-carbon-nanotube composite fibers with enhanced mechanical properties prepared with the ionic liquid 1-allyl-3-methylimidazolium chloride. Adv Mater 19:698–704

    Article  CAS  Google Scholar 

  179. Wu RL, Wang XL, Li F, Li HZ, Wang YZ (2009) Green composite films prepared from cellulose, starch and lignin in room-temperature ionic liquid. Bioresour Technol 100:2569–2574

    Article  CAS  Google Scholar 

  180. Abdulkhani A, Hojati Marvast E, Ashori A, Karimi AN (2013) Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydr Polym 95:57–63

    Article  CAS  Google Scholar 

  181. Xia G, Wan J, Zhang J, Zhang X, Xu L, Wu J, He J, Zhang J (2016) Cellulose-based films prepared directly from waste newspapers via an ionic liquid. Carbohydr Polym 151:223–229

    Article  CAS  Google Scholar 

  182. Pang J, Wu M, Zhang Q, Tan X, Xu F, Zhang X, Sun R (2015) Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid. Carbohydr Polym 121:71–78

    Article  CAS  Google Scholar 

  183. Ma Y, Asaadi S, Johansson LS, Ahvenainen P, Reza M, Alekhina M, Rautkari L, Michud A, Hauru L, Hummel M, Sixta H (2015) High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solution. ChemSusChem 8:4030–4039

    Article  CAS  Google Scholar 

  184. Mu L, Shi Y, Guo X, Ji T, Chen L, Yuan R, Brisbin L, Wang H, Zhu J (2015) Non-corrosive green lubricants: strengthened lignin–[choline][amino acid] ionic liquids interaction via reciprocal hydrogen bonding. RSC Adv 5:66067–66072

    Article  CAS  Google Scholar 

  185. Younesi-Kordkheili H, Pizzi A (2016) A comparison between lignin modified by ionic liquids and glyoxalated lignin as modifiers of urea-formaldehyde resin. J Adhes 0:1–11

    Google Scholar 

  186. Wu J, Zhang J, Zhang H, He J, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268

    Article  CAS  Google Scholar 

  187. Clough MT (2017) Organic electrolyte solutions as versatile media for the dissolution and regeneration of cellulose. Green Chem 19:4754–4768

    Article  CAS  Google Scholar 

  188. Xu F, Sun J, Konda NVSNM, Shi J, Dutta T, Scown CD, Simmons BA, Singh S (2016) Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy Environ Sci 9:1042–1049

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Welton .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Prado, R., Weigand, L., Welton, T. (2018). Use of Ionic Liquids for the Biorefinery. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1003-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1003-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics