Skip to main content

Mathematical Methods in PET and SPECT Imaging

  • Reference work entry
Handbook of Mathematical Methods in Imaging

Abstract

In this chapter, we present the mathematical formulation of the inverse Radon transform and of the inverse attenuated Radon transform (IART), which are used in PET and SPECT image reconstruction, respectively. Using a new method for deriving transform pairs in one and two dimensions, we derive the inverse Radon transform and the IART. Furthermore, we discuss an alternative approach for computing the Hilbert transform using cubic splines. This new approach, which is referred to as spline reconstruction technique, is formulated in the physical space, in contrast to the well-known filtered backprojection (FBP) algorithm which is formulated in the Fourier space. Finally, we present the results of several rigorous studies comparing FBP with SRT for PET. These studies, which use both simulated and real data and which employ a variety of image quality measures including contrast and bias, indicate that SRT has certain advantages in comparison with FBP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,200.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U-King-Im, J.M., Young, V., Gillard, J.H.: Carotid-artery imaging in the diagnosis and management of patients at risk of stroke. Lancet Neurol. 8(6), 569–580 (2009)

    Article  Google Scholar 

  2. Hutchins, G.D., Miller, M.A., Soon, V.C., Receveur, T.: Small animal PET imaging. ILAR J. 49(1), 54–65 (2008)

    Article  Google Scholar 

  3. Cherry, S.R., Gambhir, S.S.: Use of positron emission tomography in animal research. ILAR J. 42(3), 219–232 (2001)

    Article  Google Scholar 

  4. Lucas, A.J., Hawkes, R.C., Ansorge, R.E., Williams, G.B., Nutt, R.E., Clark, J.C., Fryer, T.D., Carpenter, T.A.: Development of a combined microPET-MR system. Technol. Cancer Res. Treat. 5(4), 337–341 (2006)

    Article  Google Scholar 

  5. Cherry, S.R.: Fundamentals of positron emission tomography and applications in preclinical drug development. J. Clin. Pharmacol. 41(5), 482–491 (2001)

    Article  Google Scholar 

  6. Zaidi, H., Hasegawa, B.H.: The problem of photon attenuation in emission tomography. In: Zaidi, H. (ed.) Quantitative Analysis in Nuclear Medicine Imaging, p. 167. Springer, New York (2006)

    Chapter  Google Scholar 

  7. Kastis, G.A., Kyriakopoulou, D., Gaitanis, A., Fernandez, Y., Hutton, B.F., Fokas, A.S.: Evaluation of the spline reconstruction technique for PET. Med. Phys. 41, 042501 (2014). doi:http://dx.doi.org/10.1118/1.4867862

    Article  Google Scholar 

  8. Thielemans, K., Tsoumpas, C., Mustafovic, S., Beisel, T., Aguiar, P., Dikaios, N., Jacobson, M.W.: STIR: software for tomographic image reconstruction Release 2. Phys. Med. Biol. 57(4), 867–883 (2012)

    Article  Google Scholar 

  9. Kastis, G.A., Gaitanis, A., Skouras, T., Fokas, A.S.: Evaluation of a spline reconstruction technique for SPECT: comparison with FBP and OSEM. In: Conference Record of the 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference, Oct 2011

    Google Scholar 

  10. Fokas, A.S., Gelfand, I.M.: Integrability of linear and nonlinear evolution equations, and the associated nonlinear Fourier transforms. Lett. Math. Phys. 32(3), 189–210 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Pauwels, E.K., Ribeiro, M.J., Stoot, J.H., McCready, V.R., Bourguignon, M., Mazière, B.: FDG accumulation and tumor biology. Nucl. Med. Biol. 25(4), 317–322 (1998)

    Article  Google Scholar 

  12. Fischer, B., Lassen, U., et al.: Preoperative staging of lung cancer with combined PET-CT. N. Engl. J. Med. 361(1), 32–39 (2009)

    Article  Google Scholar 

  13. Armitage, J.O.: Early-stage Hodgkin’s lymphoma. N. Engl. J. Med. 363(7), 653–662 (2010)

    Article  Google Scholar 

  14. Baterman, R.J., Xiong, C., et al.: Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 367(9), 795–804 (2012)

    Article  Google Scholar 

  15. Abrams, J.: Clinical practice. Chronic stable angina. N. Engl. J. Med. 352(24), 2524–2533 (2005)

    Article  Google Scholar 

  16. Gershenwald, J.E., Ross, M.I.: Sentinel-lymph-node biopsy for cutaneous melanoma. N. Engl. J. Med. 364(18), 1738–1745 (2011)

    Article  Google Scholar 

  17. The Parkinson Study Group: Levodopa and the progression of Parkinson’s disease. N. Engl. J. Med. 351(24), 2498–2508 (2004)

    Article  Google Scholar 

  18. Fokas, A.S., Novikov, R.G.: Discrete analogues of the \(\overline{\partial }\) equation and of Radon transform. C. R. Acad. Sci. Paris 313(2), 75–80 (1991)

    MATH  MathSciNet  Google Scholar 

  19. Novikov, R.G.: An inversion formula for the attenuated X-ray transformation. Ark. Mat. 40(1), 145–167 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Miqueles, E.X., De Pierro, A.R.: Exact analytic reconstruction in x-ray fluorescence CT and approximated versions. Phys. Med. Biol. 55(4), 1007–1024 (2010)

    Article  Google Scholar 

  21. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer, Dordrecht/Heidelberg/London/New York (1980)

    MATH  Google Scholar 

  22. Natterer, F.: The Mathematics of Computerized Tomography. Wiley, New York (1986)

    MATH  Google Scholar 

  23. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  24. Parker, J.A.: Image Reconstruction in Radiology. CRC, Boca Raton (1990)

    Google Scholar 

  25. Epstein, C.L.: Introduction to the Mathematics of Medical Imaging. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  26. Kinahan, P.E., Defrise, M., Clackdoyle, R.: Analytic image reconstruction methods. In: Wernick, M.N., Aarsvold, J.N. (eds.) Emission Tomography: The Fundamentals of PET and SPECT, p. 421. Elsevier Academic, San Diego (2004)

    Chapter  Google Scholar 

  27. Tsui, B.M.W., Frey, E.C.: Analytic image reconstruction methods in emission computed tomography. In: Zaidi, H. (ed.) Quantitative Analysis in Nuclear Medicine Imaging, p. 82. Springer, New York (2006)

    Chapter  Google Scholar 

  28. Cherry, S.R., Dahlbom, M.: PET: physics, instrumentation, and scanners. In: Phelps, M.E. (ed.) Physics, Instrumentation, and Scanners, p. 76. Springer, New York (2010)

    Google Scholar 

  29. Hoffman, E.J., Cutler, P.D., Digby, W.M., Mazziotta, J.C.: 3D phantom to simulate cerebral blood flow and metabolic images for PET. IEEE Trans. Nucl. Sci. 37(2), 616–620 (1990)

    Article  Google Scholar 

  30. Bettinardi, V., Danna, M., Savi, A., Lecchi, M., Castiglioni, I., Gilardi, M.K., Bammer, H., Lucignani, G., Fazio, F.: Performance evaluation of the new whole-body PET/CT scanner: discovery ST. Eur. J. Nucl. Med. Mol. Imaging 31(6), 867–881 (2004)

    Article  Google Scholar 

  31. Wang, Y., Seidel, J., Tsui, B.M.W., Vaquero, J.J., Pomper, M.G.: Performance evaluation of the GE Healthcare eXplore VISTA dual-ring small-animal PET scanner. J. Nucl. Med. 47(11), 1891–1900 (2006)

    Google Scholar 

  32. NEMA: NEMA NU 4-2008: Performance Measurements of Small Animal Positron Emission Tomographs. National Electrical Manufacturers Association, Rosslyn (2008)

    Google Scholar 

  33. Fokas, A.S., Iserles, A., Marinakis, V.: Reconstruction algorithm for single photon emission computed tomography and its numerical implementation. J. R. Soc. Interface 3(6), 45–54 (2006)

    Article  Google Scholar 

  34. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–121 (1982)

    Article  Google Scholar 

  35. Hudson, M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

    Article  Google Scholar 

  36. Carson, R.E., Yan, Y., Chodkowski, B., Yap, T.K., Daube-Witherspoon, M.E.: Precision and accuracy of regional radioactivity quantitation using the maximum likelihood EM reconstruction algorithm. IEEE Trans. Med. Imag. 13(3), 526–537 (1994)

    Article  Google Scholar 

  37. Johnson, C.A., Yan, Y., Carson, R.E., Martino, R.L., Daube-Witherspoon, M.E.: A system for the 3D reconstruction of retracted-septa PET data using the EM algorithm. IEEE Trans. Nucl. Sci. 42(4), 1223–1227 (1995)

    Article  Google Scholar 

  38. De Jonge, F.A.A., Blokland, K.A.K.: Statistical tomographic reconstruction: How many more iterations to go? Eur. J. Nucl. Med. 26(10), 1247–1250 (1999)

    Article  Google Scholar 

  39. Bettinardi, V., Pagani, E., Gilardi, M., Alenius, S., Thielemans, K., Teras, M., Fazio, F.: Implementation and evaluation of a 3D one-step late reconstruction algorithm for 3D positron emission tomography brain studies using median root prior. Eur. J. Nucl. Med. Mol. Imaging 29(1), 7–18 (2002)

    Article  Google Scholar 

  40. Reilhac, A., Tomei, S., Buvat, I., Michel, C., Keheren, F., Costes, N.: Simulation-based evaluation of OSEM iterative reconstruction methods in dynamic brain PET studies. Neuroimage 39(1), 359–368 (2008)

    Article  Google Scholar 

  41. Verhaeghe, J., Reader, A.J.: AB-OSEM reconstruction for improved Patlak kinetic parameter estimation: a simulation study. Phys. Med. Biol. 55(22), 6739–6757 (2010)

    Article  Google Scholar 

  42. Bélanger, M.J., Mann, J.J., Parsey, R.V.: OS-EM and FBP reconstructions at low count rates: effect on 3D PET studies of [11C] WAY-100635. Neuroimage 21(1), 244–250 (2004)

    Article  Google Scholar 

  43. Brenner, D.J.: Medical imaging in the 21st century-getting the best bang for the rad. N. Engl. J. Med. 362(10), 943–945 (2010)

    Article  Google Scholar 

  44. Kovalchik, S.A., Tammemagi, M., Berg, C.D., Caporaso, N.E., Riley, T.L., Korch, M., Silvestri, G.A., Chaturvedi, A.K., Katki, H.A.: Targeting of low-dose CT screening according to the risk of lung-cancer death. N. Engl. J. Med. 369(3), 245–254 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios S. Fokas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Fokas, A.S., Kastis, G.A. (2015). Mathematical Methods in PET and SPECT Imaging. In: Scherzer, O. (eds) Handbook of Mathematical Methods in Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0790-8_45

Download citation

Publish with us

Policies and ethics