Skip to main content

Drug Resistance in Leishmania

  • Reference work entry
  • First Online:
Book cover Handbook of Antimicrobial Resistance

Abstract

Protozoan parasites of the genus Leishmania cause a wide range of diseases affecting 12 million people worldwide with 1.5–2 million new cases each year. With no vaccine available yet, the control of these parasites relies solely on chemotherapy. Low-cost antimony-derived compounds remain the primary antileishmanial treatment in most developing countries. Increasing drug resistance towards these molecules has forced the use of alternative therapies in highly endemic areas including amphotericin B, paromomycin, and miltefosine. This chapter is presenting our current understanding of the mode of action and underlying resistance mechanisms of the few therapeutic drugs used against Leishmania.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMB:

Amphotericin B

CL:

Cutaneous leishmaniasis

DCL:

Diffuse cutaneous leishmaniasis

GSH:

Glutathione

MCL:

Mucocutaneous leishmaniasis

MIL:

Miltefosine

PKDL:

Post-kala-azar dermal leishmaniasis

PM:

Paromomycin

SAG:

Sodium antimony gluconate

SbIII :

Trivalent antimonials

SbV :

Pentavalent antimonials

SILAC:

Stable isotope labeling by amino acids in cell culture

TSH:

Trypanothione

VL:

Visceral leishmaniasis

References

  • Ait-Oudhia K, Gazanion E, Vergnes B, Oury B, Sereno D (2011) Leishmania antimony resistance: what we know what we can learn from the field. Parasitol Res 109:1225–1232

    Article  PubMed  Google Scholar 

  • Alvar J, Aparicio P, Aseffa A, Den Boer M, Canavate C, Dedet JP, Gradoni L, Ter Horst R, Lopez-Velez R, Moreno J (2008) The relationship between leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev 21:334–359, table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antinori S, Cascio A, Parravicini C, Bianchi R, Corbellino M (2008) Leishmaniasis among organ transplant recipients. Lancet Infect Dis 8:191–199

    Article  PubMed  Google Scholar 

  • Aronov AM, Suresh S, Buckner FS, Van Voorhis WC, Verlinde CL, Opperdoes FR, Hol WG, Gelb MH (1999) Structure-based design of submicromolar, biologically active inhibitors of trypanosomatid glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A 96:4273–4278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentwich Z (2003) Concurrent infections that rise the HIV viral load. J HIV Ther 8:72–75

    PubMed  Google Scholar 

  • Bernier R, Turco SJ, Olivier M, Tremblay M (1995) Activation of human immunodeficiency virus type 1 in monocytoid cells by the protozoan parasite Leishmania donovani. J Virol 69:7282–7285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boite MC, Mauricio IL, Miles MA, Cupolillo E (2012) New insights on taxonomy, phylogeny and population genetics of Leishmania (Viannia) parasites based on multilocus sequence analysis. PLoS Negl Trop Dis 6:e1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose Dasgupta S, Ganguly A, Roy A, Mukherjee T, Majumder HK (2008) A novel ATP-binding cassette transporter, ABCG6 is involved in chemoresistance of Leishmania. Mol Biochem Parasitol 158:176–188

    Article  CAS  Google Scholar 

  • Brajtburg J, Powderly WG, Kobayashi GS, Medoff G (1990) Amphotericin B: current understanding of mechanisms of action. Antimicrob Agents Chemother 34:183–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brochu C, Wang J, Roy G, Messier N, Wang XY, Saravia NG, Ouellette M (2003) Antimony uptake systems in the protozoan parasite Leishmania and accumulation differences in antimony-resistant parasites. Antimicrob Agents Chemother 47:3073–3079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryceson A (2001) A policy for leishmaniasis with respect to the prevention and control of drug resistance. Trop Med Int Health 6:928–934

    Article  CAS  PubMed  Google Scholar 

  • Bucheton B, Abel L, El-Safi S, Kheir MM, Pavek S, Lemainque A, Dessein AJ (2003) A major susceptibility locus on chromosome 22q12 plays a critical role in the control of kala-azar. Am J Hum Genet 73:1052–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castanys-Munoz E, Alder-Baerens N, Pomorski T, Gamarro F, Castanys S (2007) A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids. Mol Microbiol 64:1141–1153

    Article  CAS  PubMed  Google Scholar 

  • Castanys-Munoz E, Perez-Victoria JM, Gamarro F, Castanys S (2008) Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob Agents Chemother 52:3573–3579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chawla B, Jhingran A, Panigrahi A, Stuart KD, Madhubala R (2011) Paromomycin affects translation and vesicle-mediated trafficking as revealed by proteomics of paromomycin -susceptible -resistant Leishmania donovani. PLoS One 6:e26660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cockburn R, Newton PN, Agyarko EK, Akunyili D, White NJ (2005) The global threat of counterfeit drugs: why industry and governments must communicate the dangers. PLoS Med 2:e100

    Article  PubMed  PubMed Central  Google Scholar 

  • Coelho AC, Boisvert S, Mukherjee A, Leprohon P, Corbeil J, Ouellette M (2012) Multiple mutations in heterogeneous miltefosine-resistant Leishmania major population as determined by whole genome sequencing. PLoS Negl Trop Dis 6:e1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corona P, Gibellini F, Cavalli A, Saxena P, Carta A, Loriga M, Luciani R, Paglietti G, Guerrieri D, Nerini E, Gupta S, Hannaert V, Michels PA, Ferrari S, Costi PM (2012) Structure-based selectivity optimization of piperidine-pteridine derivatives as potent Leishmania pteridine reductase inhibitors. J Med Chem 55:8318–8329

    Article  CAS  PubMed  Google Scholar 

  • Costa CH, Peters NC, Maruyama SR, de Brito EC, Santos IK (2011) Vaccines for the leishmaniases: proposals for a research agenda. PLoS Negl Trop Dis 5:e943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cruz I, Morales MA, Noguer I, Rodriguez A, Alvar J (2002) Leishmania in discarded syringes from intravenous drug users. Lancet 359:1124–1125

    Article  CAS  PubMed  Google Scholar 

  • Delobel P, Launois P, Djossou F, Sainte-Marie D, Pradinaud R (2003) American cutaneous leishmaniasis, lepromatous leprosy, and pulmonary tuberculosis coinfection with downregulation of the T-helper 1 cell response. Clin Infect Dis 37:628–633

    Article  PubMed  Google Scholar 

  • Dey S, Ouellette M, Lightbody J, Papadopoulou B, Rosen BP (1996) An ATP-dependent as(III)-glutathione transport system in membrane vesicles of Leishmania tarentolae. Proc Natl Acad Sci U S A 93:2192–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downing T, Imamura H, Decuypere S, Clark TG, Coombs GH, Cotton JA, Hilley JD, de Doncker S, Maes I, Mottram JC, Quail MA, Rijal S, Sanders M, Schonian G, Stark O, Sundar S, Vanaerschot M, Hertz-Fowler C, Dujardin JC, Berriman M (2011) Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Res 21:2143–2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escobar P, Matu S, Marques C, Croft SL (2002) Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH(3) (edelfosine) and amphotericin B. Acta Trop 81:151–157

    Article  CAS  PubMed  Google Scholar 

  • Farouk S, Salih MA, Musa AM, Blackwell JM, Miller EN, Khalil EA, Elhassan AM, Ibrahim ME, Mohamed HS (2010) Interleukin 10 gene polymorphisms and development of post kala-azar dermal leishmaniasis in a selected Sudanese population. Public Health Genomics 13:362–367

    Article  CAS  PubMed  Google Scholar 

  • Fernandes Rodrigues JC, Concepcion JL, Rodrigues C, Caldera A, Urbina JA, de Souza W (2008) In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects. Antimicrob Agents Chemother 52:4098–4114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandez MM, Malchiodi EL, Algranati ID (2011) Differential effects of paromomycin on ribosomes of Leishmania mexicana and mammalian cells. Antimicrob Agents Chemother 55:86–93

    Article  CAS  PubMed  Google Scholar 

  • Fish WR, Marr JJ, Berens RL, Looker DL, Nelson DJ, LaFon SW, Balber AE (1985) Inosine analogs as chemotherapeutic agents for African trypanosomes: metabolism in trypanosomes and efficacy in tissue culture. Antimicrob Agents Chemother 27:33–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gourbal B, Sonuc N, Bhattacharjee H, Legare D, Sundar S, Ouellette M, Rosen BP, Mukhopadhyay R (2004) Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J Biol Chem 279:31010–31017

    Article  CAS  PubMed  Google Scholar 

  • Grogl M, Daugirda JL, Hoover DL, Magill AJ, Berman JD (1993) Survivability and infectivity of viscerotropic Leishmania tropica from operation desert storm participants in human blood products maintained under blood bank conditions. Am J Trop Med Hyg 49:308–315

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Nagar M, Mishra SS, Lahariya C (2013) Visceral leishmaniasis (Kala Azar) elimination from Indian Sub-continent by 2015. Int J Trop Dis Health 3:73–81

    Article  Google Scholar 

  • Ilari A, Baiocco P, Messori L, Fiorillo A, Boffi A, Gramiccia M, Di Muccio T, Colotti G (2012) A gold-containing drug against parasitic polyamine metabolism: the X-ray structure of trypanothione reductase from Leishmania infantum in complex with auranofin reveals a dual mechanism of enzyme inhibition. Amino Acids 42:803–811

    Article  CAS  PubMed  Google Scholar 

  • Imbert L, Ramos RG, Libong D, Abreu S, Loiseau PM, Chaminade P (2012) Identification of phospholipid species affected by miltefosine action in Leishmania donovani cultures using LC-ELSD, LC-ESI/MS, and multivariate data analysis. Anal Bioanal Chem 402:1169–1182

    Article  CAS  PubMed  Google Scholar 

  • Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9:604–615

    Article  CAS  PubMed  Google Scholar 

  • Kelly RJ, Robey RW, Chen CC, Draper D, Luchenko V, Barnett D, Oldham RK, Caluag Z, Frye AR, Steinberg SM, Fojo T, Bates SE (2012) A pharmacodynamic study of the P-glycoprotein antagonist CBT-1(R) in combination with paclitaxel in solid tumors. Oncologist 17:512

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalili G, Dobakhti F, Mahmoudzadeh-Niknam H, Khaze V, Partovi F (2011) Immunotherapy with imiquimod increases the efficacy of glucantime therapy of Leishmania major infection. Iran J Immunol 8:45–51

    CAS  PubMed  Google Scholar 

  • King CH, Bertino AM (2008) Asymmetries of poverty: why global burden of disease valuations underestimate the burden of neglected tropical diseases. PLoS Negl Trop Dis 2:e209

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobets T, Grekov I, Lipoldova M (2012) Leishmaniasis: prevention, parasite detection and treatment. Curr Med Chem 19:1443–1474

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Kulshrestha A, Singh R, Salotra P (2009) In vitro susceptibility of field isolates of Leishmania donovani to Miltefosine and amphotericin B: correlation with sodium antimony gluconate susceptibility and implications for treatment in areas of endemicity. Antimicrob Agents Chemother 53:835–838

    Article  CAS  PubMed  Google Scholar 

  • Lachaud L, Bourgeois N, Plourde M, Leprohon P, Bastien P, Ouellette M (2009) Parasite susceptibility to amphotericin B in failures of treatment for visceral leishmaniasis in patients coinfected with HIV type 1 and leishmania infantum. Clin Infect Dis 48:e16–e22

    Article  CAS  PubMed  Google Scholar 

  • Legare D, Richard D, Mukhopadhyay R, Stierhof YD, Rosen BP, Haimeur A, Papadopoulou B, Ouellette M (2001) The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem 276:26301–26307

    Article  CAS  PubMed  Google Scholar 

  • Lemke A, Kiderlen AF, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162

    Article  CAS  PubMed  Google Scholar 

  • Loiseau PM, Cojean S, Schrevel J (2011) Sitamaquine as a putative antileishmanial drug candidate: from the mechanism of action to the risk of drug resistance. Parasite 18:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luque-Ortega JR, Rivas L (2007) Miltefosine (hexadecylphosphocholine) inhibits cytochrome c oxidase in Leishmania donovani promastigotes. Antimicrob Agents Chemother 51:1327–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackey TK, Liang BA (2011) The global counterfeit drug trade: patient safety and public health risks. J Pharm Sci 100:4571–4579

    Article  CAS  PubMed  Google Scholar 

  • Maizels N, Gray LT (2013) The G4 genome. PLoS Genet 9:e1003468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzano JI, Garcia-Hernandez R, Castanys S, Gamarro F (2013) A new ABC half-transporter in Leishmania major is involved in resistance to antimony. Antimicrob Agents Chemother 57:3719–3730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marquis N, Gourbal B, Rosen BP, Mukhopadhyay R, Ouellette M (2005) Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Mol Microbiol 57:1690–1699

    Article  CAS  PubMed  Google Scholar 

  • Mbongo N, Loiseau PM, Billion MA, Robert-Gero M (1998) Mechanism of amphotericin B resistance in Leishmania donovani promastigotes. Antimicrob Agents Chemother 42:352–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal MK, Rai S, Ashutosh R, Gupta S, Sundar S, Goyal N (2007) Characterization of natural antimony resistance in Leishmania donovani isolates. Am J Trop Med Hyg 76:681–688

    CAS  PubMed  Google Scholar 

  • Mock DJ, Hollenbaugh JA, Daddacha W, Overstreet MG, Lazarski CA, Fowell DJ, Kim B (2012) Leishmania induces survival, proliferation and elevated cellular dNTP levels in human monocytes promoting acceleration of HIV co-infection. PLoS Pathog 8:e1002635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed HS, Ibrahim ME, Miller EN, Peacock CS, Khalil EA, Cordell HJ, Howson JM, El Hassan AM, Bereir RE, Blackwell JM (2003) Genetic susceptibility to visceral leishmaniasis in the Sudan: linkage and association with IL4 and IFNGR1. Genes Immun 4:351–355

    Article  CAS  PubMed  Google Scholar 

  • Mohamed HS, Ibrahim ME, Miller EN, White JK, Cordell HJ, Howson JM, Peacock CS, Khalil EA, El Hassan AM, Blackwell JM (2004) SLC11A1 (formerly NRAMP1) and susceptibility to visceral leishmaniasis in the Sudan. Eur J Hum Genet 12:66–74

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Padmanabhan PK, Singh S, Roy G, Girard I, Chatterjee M, Ouellette M, Madhubala R (2007) Role of ABC transporter MRPA, gamma-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. J Antimicrob Chemother 59:204–211

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Boisvert S, Monte-Neto RL, Coelho AC, Raymond F, Mukhopadhyay R, Corbeil J, Ouellette M (2013a) Telomeric gene deletion and intrachromosomal amplification in antimony-resistant Leishmania. Mol Microbiol 88:189–202

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee B, Mukhopadhyay R, Bannerjee B, Chowdhury S, Mukherjee S, Naskar K, Allam US, Chakravortty D, Sundar S, Dujardin JC, Roy S (2013b) Antimony-resistant but not antimony-sensitive Leishmania donovani up-regulates host IL-10 to overexpress multidrug-resistant protein 1. Proc Natl Acad Sci U S A 110:E575–E582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsini M, Canela JR, Disch J, Maciel F, Greco D, Toledo A Jr, Rabello A (2012) High frequency of asymptomatic Leishmania spp. Infection among HIV-infected patients living in endemic areas for visceral leishmaniasis in Brazil. Trans R Soc Trop Med Hyg 106:283–288

    Article  PubMed  Google Scholar 

  • Palatnik-de-Sousa CB (2008) Vaccines for leishmaniasis in the fore coming 25 years. Vaccine 26:1709–1724

    Article  CAS  PubMed  Google Scholar 

  • Perez-Victoria JM, Perez-Victoria FJ, Parodi-Talice A, Jimenez IA, Ravelo AG, Castanys S, Gamarro F (2001) Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob Agents Chemother 45:2468–2474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Victoria FJ, Castanys S, Gamarro F (2003) Leishmania donovani resistance to miltefosine involves a defective inward translocation of the drug. Antimicrob Agents Chemother 47:2397–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez-Victoria FJ, Sanchez-Canete MP, Castanys S, Gamarro F (2006a) Phospholipid translocation and miltefosine potency require both L. donovani miltefosine transporter and the new protein LdRos3 in Leishmania parasites. J Biol Chem 281:23766–23775

    Article  CAS  PubMed  Google Scholar 

  • Perez-Victoria FJ, Sanchez-Canete MP, Seifert K, Croft SL, Sundar S, Castanys S, Gamarro F (2006b) Mechanisms of experimental resistance of Leishmania to miltefosine: implications for clinical use. Drug Resist Updat 9:26–39

    Article  CAS  PubMed  Google Scholar 

  • Perez-Victoria JM, Bavchvarov BI, Torrecillas IR, Martinez-Garcia M, Lopez-Martin C, Campillo M, Castanys S, Gamarro F (2011) Sitamaquine overcomes ABC-mediated resistance to miltefosine and antimony in Leishmania. Antimicrob Agents Chemother 55:3838–3844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry MR, Wyllie S, Prajapati VK, Feldmann J, Sundar S, Boelaert M, Fairlamb AH (2011) Visceral leishmaniasis and arsenic: an ancient poison contributing to antimonial treatment failure in the Indian subcontinent? PLoS Negl Trop Dis 5:e1227

    Article  PubMed  PubMed Central  Google Scholar 

  • Pradines B (2013) P-glycoprotein-like transporters in Leishmania: a search for reversal agents. In: Ponte-Sucre A, Diaz E, Padròn-Nieves M. Ponte-Sucre A (ed) Drug resistance in Leishmania parasites. Springer, Vienna

    Google Scholar 

  • Purkait B, Kumar A, Nandi N, Sardar AH, Das S, Kumar S, Pandey K, Ravidas V, Kumar M, De T, Singh D, Das P (2012) Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrob Agents Chemother 56:1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasekaran R, Chen YP (2012) Probing the structure of Leishmania major DHFR TS and structure based virtual screening of peptide library for the identification of anti-leishmanial leads. J Mol Model 18:4089–4100

    Article  CAS  PubMed  Google Scholar 

  • Ramos H, Valdivieso E, Gamargo M, Dagger F, Cohen BE (1996) Amphotericin B kills unicellular leishmanias by forming aqueous pores permeable to small cations and anions. J Membr Biol 152:65–75

    Article  CAS  PubMed  Google Scholar 

  • Rathnayake D, Ranawake RR, Sirimanna G, Siriwardhane Y, Karunaweera N, De Silva R (2010) Co-infection of mucosal leishmaniasis and extra pulmonary tuberculosis in a patient with inherent immune deficiency. Int J Dermatol 49:549–551

    Article  PubMed  Google Scholar 

  • Requena JM (2011) Lights and shadows on gene organization and regulation of gene expression in Leishmania. Front Biosci 16:2069–2085

    Article  CAS  Google Scholar 

  • Rijal S, Ostyn B, Uranw S, Rai K, Bhattarai NR, Dorlo TP, Beijnen JH, Vanaerschot M, Decuypere S, Dhakal SS, Das ML, Karki P, Singh R, Boelaert M, Dujardin JC (2013) Increasing failure of miltefosine in the treatment of kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis 56:1530–1538

    Article  CAS  PubMed  Google Scholar 

  • Robey RW, Shukla S, Finley EM, Oldham RK, Barnett D, Ambudkar SV, Fojo T, Bates SE (2008) Inhibition of P-glycoprotein (ABCB1)- and multidrug resistance-associated protein 1 (ABCC1)-mediated transport by the orally administered inhibitor, CBT-1((R)). Biochem Pharmacol 75:1302–1312

    Article  CAS  PubMed  Google Scholar 

  • el-Safi SH, Hamid N, Omer A, Abdel-Haleem A, Hammad A, Kareem HG, Boelaert M (2004) Infection rates with Leishmania donovani and Mycobacterium tuberculosis in a village in eastern Sudan. Trop Med Int Health 9:1305–1311

    Article  PubMed  Google Scholar 

  • Saha S, Mondal S, Ravindran R, Bhowmick S, Modak D, Mallick S, Rahman M, Kar S, Goswami R, Guha SK, Pramanik N, Saha B, Ali N (2007) IL-10- and TGF-beta-mediated susceptibility in kala-azar and post-kala-azar dermal leishmaniasis: the significance of amphotericin B in the control of Leishmania donovani infection in India. J Immunol 179:5592–5603

    Article  CAS  PubMed  Google Scholar 

  • Salih MA, Ibrahim ME, Blackwell JM, Miller EN, Khalil EA, ElHassan AM, Musa AM, Mohamed HS (2007) IFNG and IFNGR1 gene polymorphisms and susceptibility to post-kala-azar dermal leishmaniasis in Sudan. Genes Immun 8:75–78

    Article  CAS  PubMed  Google Scholar 

  • Santos LO, Vitorio BS, Branquinha MH, Pedroso e Silva CM, Santos AL, d'Avila-Levy CM (2013) Nelfinavir is effective in inhibiting the multiplication and aspartic peptidase activity of Leishmania species, including strains obtained from HIV-positive patients. J Antimicrob Chemother 68:348–353

    Article  CAS  PubMed  Google Scholar 

  • Seifert K, Perez-Victoria FJ, Stettler M, Sanchez-Canete MP, Castanys S, Gamarro F, Croft SL (2007) Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Agents 30:229–235

    Article  CAS  PubMed  Google Scholar 

  • Shaked-Mishan P, Ulrich N, Ephros M, Zilberstein D (2001) Novel intracellular SbV reducing activity correlates with antimony susceptibility in Leishmania donovani. J Biol Chem 276:3971–3976

    Article  CAS  PubMed  Google Scholar 

  • Singh N (2006) Drug resistance mechanisms in clinical isolates of Leishmania donovani. Indian J Med Res 123:411–422

    CAS  PubMed  Google Scholar 

  • Singh N, Singh RT, Sundar S (2003) Novel mechanism of drug resistance in kala azar field isolates. J Infect Dis 188:600–607

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kumar D, Duncan RC, Nakhasi HL, Salotra P (2010) Overexpression of histone H2A modulates drug susceptibility in Leishmania parasites. Int J Antimicrob Agents 36:50–57

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5:485–497

    Article  CAS  PubMed  Google Scholar 

  • Srivastava P, Prajapati VK, Rai M, Sundar S (2011) Unusual case of resistance to amphotericin B in visceral leishmaniasis in a region in India where leishmaniasis is not endemic. J Clin Microbiol 49:3088–3091

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun YL, Chen JJ, Kumar P, Chen K, Sodani K, Patel A, Chen YL, Chen SD, Jiang WQ, Chen ZS (2013) Reversal of MRP7 (ABCC10)-mediated multidrug resistance by tariquidar. PLoS One 8:e55576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundar S, Chakravarty J (2013) Leishmaniasis: an update of current pharmacotherapy. Expert Opin Pharmacother 14:53–63

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Singh A, Rai M, Prajapati VK, Singh AK, Ostyn B, Boelaert M, Dujardin JC, Chakravarty J (2012) Efficacy of miltefosine in the treatment of visceral leishmaniasis in India after a decade of use. Clin Infect Dis 55:543–550

    Article  CAS  PubMed  Google Scholar 

  • Trejo WH, Bennett RE (1963) Streptomyces nodosus sp. n., the amphotericin-producing organism. J Bacteriol 85:436–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urbina JA, Cohen BE, Perozo E, Cornivelli L (1987) Spin-labeled amphotericin B: synthesis, characterization, biological and spectroscopic properties. Biochim Biophys Acta 897:467–473

    Article  CAS  PubMed  Google Scholar 

  • Vanaerschot M, Decuypere S, Downing T, Imamura H, Stark O, De Doncker S, Roy S, Ostyn B, Maes L, Khanal B, Boelaert M, Schonian G, Berriman M, Chappuis F, Dujardin JC, Sundar S, Rijal S (2012) Genetic markers for SSG resistance in Leishmania donovani and SSG treatment failure in visceral leishmaniasis patients of the Indian subcontinent. J Infect Dis 206:752–755

    Article  PubMed  PubMed Central  Google Scholar 

  • Venkatesan SK, Dubey VK (2012) Footprinting of inhibitor interactions of in silico identified inhibitors of trypanothione reductase of Leishmania parasite. Sci World J 2012:963658

    Article  CAS  Google Scholar 

  • Vergnes B, Gourbal B, Girard I, Sundar S, Drummelsmith J, Ouellette M (2007) A proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced programmed cell death. Mol Cell Proteomics 6:88–101

    Article  CAS  PubMed  Google Scholar 

  • Vieira M, Rohloff P, Luo S, Cunha-e-Silva NL, de Souza W, Docampo R (2005) Role for a P-type H + −ATPase in the acidification of the endocytic pathway of Trypanosoma cruzi. Biochem J 392:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Vanley C, Miyamoto E, Turner JA, Peng SK (1999) Coinfection of visceral leishmaniasis and Mycobacterium in a patient with acquired immunodeficiency syndrome. Arch Pathol Lab Med 123:835–837

    CAS  PubMed  Google Scholar 

  • Wasan KM, Wasan EK, Gershkovich P, Zhu X, Tidwell RR, Werbovetz KA, Clement JG, Thornton SJ (2009) Highly effective oral amphotericin B formulation against murine visceral leishmaniasis. J Infect Dis 200:357–360

    Article  CAS  PubMed  Google Scholar 

  • Wasan EK, Gershkovich P, Zhao J, Zhu X, Werbovetz K, Tidwell RR, Clement JG, Thornton SJ, Wasan KM (2010) A novel tropically stable oral amphotericin B formulation (iCo-010) exhibits efficacy against visceral Leishmaniasis in a murine model. PLoS Negl Trop Dis 4:e913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WHO (2010) Control of the leishmaniases. World Health Organ Tech Rep Ser: xii–xiii, pp 1–186

    Google Scholar 

  • Wolday D, Akuffo H, Demissie A, Britton S (1999) Role of Leishmania donovani and its lipophosphoglycan in CD4+ T-cell activation-induced human immunodeficiency virus replication. Infect Immun 67:5258–5264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wyllie S, Patterson S, Stojanovski L, Simeons FR, Norval S, Kime R, Read KD, Fairlamb AH (2012) The anti-trypanosome drug fexinidazole shows potential for treating visceral leishmaniasis. Sci Transl Med 4(119):119re111

    Article  CAS  Google Scholar 

  • Yardley V, Gamarro F, Croft SL (2010) Antileishmanial and antitrypanosomal activities of the 8-aminoquinoline tafenoquine. Antimicrob Agents Chemother 54:5356–5358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zijlstra EE, el-Hassan AM, Ismael A (1995) Endemic kala-azar in eastern Sudan: post-kala-azar dermal leishmaniasis. Am J Trop Med Hyg 52:299–305

    Article  CAS  PubMed  Google Scholar 

  • Zijlstra EE, Khalil EA, Kager PA, El-Hassan AM (2000) Post-kala-azar dermal leishmaniasis in the Sudan: clinical presentation and differential diagnosis. Br J Dermatol 143:136–143

    Article  CAS  PubMed  Google Scholar 

  • Zijlstra EE, Musa AM, Khalil EA, el-Hassan IM, el-Hassan AM (2003) Post-kala-azar dermal leishmaniasis. Lancet Infect Dis 3:87–98

    Article  CAS  PubMed  Google Scholar 

  • Zucca M, Scutera S, Savoia D (2013) New chemotherapeutic strategies against malaria, leishmaniasis and trypanosomiases. Curr Med Chem 20:502–526

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the members of the laboratory at the Centre de Recherche en Infectiologie du CHU de Québec for their dedication, professionalism, and critical reading of the manuscript. The authors owe an apology to their colleagues in the field of leishmaniasis and even wider area of drug resistance whose work could not be properly acknowledged due to space limitations. This work was funded by a CIHR grant to M.O. M.O. holds the Canada Research Chair in Antimicrobial Resistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ouellette .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

Légaré, D., Ouellette, M. (2017). Drug Resistance in Leishmania . In: Berghuis, A., Matlashewski, G., Wainberg, M., Sheppard, D. (eds) Handbook of Antimicrobial Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0694-9_17

Download citation

Publish with us

Policies and ethics