Skip to main content

Antibiotic Resistance and Tolerance in Bacterial Biofilms

  • Reference work entry
  • First Online:
Book cover Handbook of Antimicrobial Resistance

Abstract

Bacteria can grow as multicellular communities called biofilms, and this sessile lifestyle is distinct from planktonic growth. While microbial biofilms are ubiquitous in the natural and industrial environment, their importance in human infections has only been fully recognized in the past few decades. Biofilm-associated bacteria typically cause subacute and chronic infections. Many bacterial pathogens, such as Staphylococcus aureus, readily form biofilms, and Pseudomonas aeruginosa, which causes chronic airway infections in patients with cystic fibrosis, is an important model organism for biofilm studies. They are clinically significant due to their persistence despite sustained antimicrobial treatments and adequate host defenses. Biofilm bacteria are highly resistant to a wide range of antimicrobial compounds and disinfectants, and the mechanisms underlying this resistance are likely multifactorial. This chapter will review the cellular processes and pathways implicated in antibiotic resistance and tolerance of bacterial biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizenman E, Engelberg-Kulka H, Glaser G (1996) An Escherichia coli chromosomal “addiction module” regulated by guanosine [corrected] 3′,5′-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci U S A 93(12):6059–6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M, Christensen LD, Jensen P, Nielsen AK, Parsek M, Wozniak D, Molin SR, Tolker-Nielsen T, Høiby N, Givskov M, Bjarnsholt T (2011) Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 6(11):e27943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alkawash MA, Soothill JS, Schiller NL (2006) Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS 114(2):131–138, Epub 08 Mar 2006

    Article  CAS  PubMed  Google Scholar 

  • Allegrucci M, Sauer K (2007) Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J Bacteriol 189(5):2030–2038

    Article  CAS  PubMed  Google Scholar 

  • Allegrucci M, Sauer K (2008) Formation of Streptococcus pneumoniae non-phase-variable colony variants is Due to increased mutation frequency present under biofilm growth conditions. J Bacteriol 190(19):6330–6339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473(7346):216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez-Ortega C, Harwood CS (2007) Responses of Pseudomonas aeruginosa to low oxygen indicate that growth in the cystic fibrosis lung is by aerobic respiration. Mol Microbiol 65(1):153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amato SM, Orman MA, Brynildsen MP (2013) Metabolic control of persister formation in Escherichia coli. Mol Cell 50(4):475–487

    Article  CAS  PubMed  Google Scholar 

  • An D, Parsek MR (2007) The promise and peril of transcriptional profiling in biofilm communities. Curr Opin Microbiol 10(3):292–296

    Article  CAS  PubMed  Google Scholar 

  • Anwar H, Dasgupta M, Lam K, Costerton JW (1989) Tobramycin resistance of mucoid Pseudomonas aeruginosa biofilm grown under iron limitation. J Antimicrob Chemother 24(5):647–655

    Article  CAS  PubMed  Google Scholar 

  • Arce Miranda JE, Sotomayor CE, Albesa I, Paraje MG (2011) Oxidative and nitrosative stress in Staphylococcus aureus biofilm. FEMS Microbiol Lett 315(1):23–29

    Article  PubMed  CAS  Google Scholar 

  • Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Hoiby N (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and?-lactamase and alginate production. Antimicrob Agents Chemother 48(4):1175–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balaban NQ (2011) Persistence: mechanisms for triggering and enhancing phenotypic variability. Curr Opin Genet Dev 21(6):768–775

    Article  CAS  PubMed  Google Scholar 

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625, Epub 17 Aug 2004

    Article  CAS  PubMed  Google Scholar 

  • Banin E, Vasil ML, Greenberg EP (2005) Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102(31):11076–11081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli*. Annu Rev Microbiol 65(1):189–213

    Article  CAS  PubMed  Google Scholar 

  • Beenken KE, Dunman PM, McAleese F, Macapagal D, Murphy E, Projan SJ, Blevins JS, Smeltzer MS (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186(14):4665–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beloin C, Valle J, Latour-Lambert P, Faure P, Kzreminski M, Balestrino D, Haagensen JA, Molin S, Prensier G, Arbeille B, Ghigo JM (2004) Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression. Mol Microbiol 51(3):659–674, Epub 21 Jan 2004

    Article  CAS  PubMed  Google Scholar 

  • Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppe J-Y, Ghigo J-M, Beloin C (2013) Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9(1):e1003144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boles BR, Singh PK (2008) Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci 105(34):12503–12508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A 101(47):16630–16635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48(7):2659–2664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borriello G, Richards L, Ehrlich GD, Stewart PS (2006) Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 50(1):382–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler LL, Zhanel GG, Ball TB, Saward LL (2012) Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime. Antimicrob Agents Chemother 56(9):4976–4979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braeken K, Moris M, Daniels R, Vanderleyden J, Michiels J (2006) New horizons for (p)ppGpp in bacterial and plant physiology. Trends Microbiol 14(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Branda SS, Vik Å, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13(1):20–26

    Article  CAS  PubMed  Google Scholar 

  • Brooun A, Liu S, Lewis K (2000) A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 44(3):640–646, Epub 19 Feb 2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MR, Allison DG, Gilbert P (1988) Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother 22(6):777–780, Epub 01 Dec 1988

    Article  CAS  PubMed  Google Scholar 

  • Cashel M, Gentry DR, Hernandez VJ, Vinella D (1996) The stringent response. In: Neidhardt FC (ed) Escherichia coli and Salmonella, 2nd edn. ASM Press, Washington, DC, pp 1458–1496

    Google Scholar 

  • Castonguay MH, van der Schaaf S, Koester W, Krooneman J, van der Meer W, Harmsen H, Landini P (2006) Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Res Microbiol 157(5):471–478

    Article  CAS  PubMed  Google Scholar 

  • Chambers JR, Sauer K (2013) The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ. J Bacteriol 195(20):4678–4688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Hu J, Chen PR, Lan L, Li Z, Hicks LM, Dinner AR, He C (2008) The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci 105(36):13586–13591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang W-C, Pamp SJ, Nilsson M, Givskov M, Tolker-Nielsen T (2012) The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. FEMS Immunol Med Microbiol 65(2):245

    Article  CAS  PubMed  Google Scholar 

  • Ciofu O, Beveridge TJ, Kadurugamuwa J, Walther-Rasmussen J, Høiby N (2000) Chromosomal β-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45(1):9–13

    Article  CAS  PubMed  Google Scholar 

  • Cohen NR, Lobritz MA, Collins JJ (2013) Microbial persistence and the road to drug resistance. Cell Host Microbe 13(6):632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GCL, Parsek MR (2011) The Pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 7(1):e1001264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conibear TCR, Collins SL, Webb JS (2009) Role of mutation in Pseudomonas aeruginosa biofilm development. PLoS One 4(7):e6289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322

    Article  CAS  PubMed  Google Scholar 

  • Cozens RM, Tuomanen E, Tosch W, Zak O, Suter J, Tomasz A (1986) Evaluation of the bactericidal activity of beta-lactam antibiotics on slowly growing bacteria cultured in the chemostat. Antimicrob Agents Chemother 29(5):797–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalhoff A, Matutat S, Ullmann U (1995) Effect of quinolones against slowly growing bacteria. Chemotherapy 41(2):92–99, Epub 01 Mar 1995

    Article  CAS  PubMed  Google Scholar 

  • De Beer D, Srinivasan R, Stewart PS (1994a) Direct measurement of chlorine penetration into biofilms during disinfection. Appl Environ Microbiol 60(12):4339–4344, Epub 01 Dec 1994

    PubMed  PubMed Central  Google Scholar 

  • de Beer D, Stoodley P, Roe F, Lewandowski Z (1994b) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43(11):1131–1138

    Article  PubMed  Google Scholar 

  • de Bentzmann S, Giraud C, Bernard CS, Calderon V, Ewald F, Plesiat P, Nguyen C, Grunwald D, Attree I, Jeannot K, Fauvarque M-O, Bordi C (2012) Unique biofilm signature, drug susceptibility and decreased virulence in Drosophila through the Pseudomonas aeruginosa two-component system PprAB. PLoS Pathog 8(11):e1003052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, Iglewski BH, Storey DG (2001) Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 45(6):1761–1770

    Article  PubMed  PubMed Central  Google Scholar 

  • Diggle SP, Cornelis P, Williams P, Camara M (2006) 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296(2):83–91

    Article  CAS  PubMed  Google Scholar 

  • Dorel C, Vidal O, Prigent-Combaret C, Vallet I, Lejeune P (1999) Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178(1):169–175, Epub 14 Sept 1999

    Article  CAS  PubMed  Google Scholar 

  • Dorel C, Lejeune P, Rodrigue A (2006) The Cpx system of Escherichia coli, a strategic signaling pathway for confronting adverse conditions and for settling biofilm communities? Res Microbiol 157(4):306–314

    Article  CAS  PubMed  Google Scholar 

  • Dorr T, Lewis K, Vulic M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5(12):e1000760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dorr T, Vulic M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8(2):e1000317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dotsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, Geffers R, Haussler S (2012) The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. PLoS One 7(2):e31092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416(6882):740–743

    Article  CAS  PubMed  Google Scholar 

  • Driffield K, Miller K, Bostock JM, O’Neill AJ, Chopra I (2008) Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61(5):1053–1056

    Article  CAS  PubMed  Google Scholar 

  • Evans DJ, Allison DG, Brown MRW, Gilbert P (1991) Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother 27(2):177–184

    Article  CAS  PubMed  Google Scholar 

  • Fasani RA, Savageau MA (2013) Molecular mechanisms of multiple toxin-antitoxin systems are coordinated to govern the persister phenotype. Proc Natl Acad Sci U S A 110(27):E2528–E2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field TR, White A, Elborn JS, Tunney MM (2005) Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms. Eur J Clin Microbiol Infect Dis 24(10):677–687

    Article  CAS  PubMed  Google Scholar 

  • Folsom JP, Richards L, Pitts B, Roe F, Ehrlich GD, Parker A, Mazurie AL, Stewart PS (2010) Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis. BMC Microbiol 10(1):294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fraud S, Poole K (2011) Oxidative stress induction of the MexXY multidrug efflux genes and promotion of aminoglycoside resistance development in Pseudomonas aeruginosa. Antimicrob Agents Chemother 55(3):1068–1074

    Article  CAS  PubMed  Google Scholar 

  • Frawley ER, Crouch M-LV, Bingham-Ramos LK, Robbins HF, Wang W, Wright GD, Fang FC (2013) Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in Salmonella typhimurium. Proc Natl Acad Sci 110(29):12054–12059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia LG, Lemaire S, Kahl BC, Becker K, Proctor RA, Denis O, Tulkens PM, Van Bambeke F (2013) Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. J Antimicrob Chemother 68(7):1455–1464, Epub 15 Mar 2013

    Article  CAS  PubMed  Google Scholar 

  • Gerdes K, Maisonneuve E (2012) Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol 66(1):103–123

    Article  CAS  PubMed  Google Scholar 

  • Gillis RJ, White KG, Choi KH, Wagner VE, Schweizer HP, Iglewski BH (2005) Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 49(9):3858–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon CA, Hodges NA, Marriott C (1988) Antibiotic interaction and diffusion through alginate and exopolysaccharide of cystic fibrosis-derived Pseudomonas aeruginosa. J Antimicrob Chemother 22(5):667–674

    Article  CAS  PubMed  Google Scholar 

  • Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43(6):1367–1378, Epub 16 Apr 2002

    Article  CAS  PubMed  Google Scholar 

  • Groisman EA, Kayser J, Soncini FC (1997) Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. J Bacteriol 179(22):7040–7045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen S, Lewis K, Vuliƒá M (2008) Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob Agents Chemother 52(8):2718–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison JJ, Wade WD, Akierman S, Vacchi-Suzzi C, Stremick CA, Turner RJ, Ceri H (2009) The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother 53(6):2253–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65(8):3710–3713, Epub 31 July 1999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haussler S, Ziegler I, Lottel A, von Gotz F, Rohde M, Wehmhohner D, Saravanamuthu S, Tummler B, Steinmetz I (2003) Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52(Pt 4):295–301, Epub 05 Apr 2003

    Article  PubMed  Google Scholar 

  • Hill D, Rose B, Pajkos A, Robinson M, Bye P, Bell S, Elkins M, Thompson B, MacLeod C, Aaron SD, Harbour C (2005) Antibiotic susceptibilities of Pseudomonas aeruginosa isolates derived from patients with cystic fibrosis under aerobic, anaerobic, and biofilm conditions. J Clin Microbiol 43(10):5085–5090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirakawa H, Nishino K, Hirata T, Yamaguchi A (2003) Comprehensive studies of drug resistance mediated by overexpression of response regulators of two-component signal transduction systems in Escherichia coli. J Bacteriol 185(6):1851–1856, Epub 06 Mar 2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyle BD, Alcantara J, Costerton JW (1992) Pseudomonas aeruginosa biofilm as a diffusion barrier to piperacillin. Antimicrob Agents Chemother 36(9):2054–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito A, Taniuchi A, May T, Kawata K, Okabe S (2009) Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl Environ Microbiol 75(12):4093–4100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK (2007) The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 117(4):877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayama S, Murakami K, Ono T, Ushimaru M, Yamamoto A, Hirota K, Miyake Y (2009) The role of rpoS gene and quorum sensing system in ofloxacin tolerance in Pseudomonas aeruginosa. FEMS Microbiol Lett 298(2):184–192

    Article  CAS  PubMed  Google Scholar 

  • Keren I, Kaldalu N, Spoering A, Wang Y, Lewis K (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230(1):13–18, Epub 22 Jan 2004

    Article  CAS  PubMed  Google Scholar 

  • Khakimova M, Ahlgren H, Harrison JJ, English A, Nguyen D (2013) The stringent response controls catalases in Pseudomonas aeruginosa: implications for hydrogen peroxide and antibiotic tolerance. J Bacteriol 195(9):2011–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan W, Bernier SP, Kuchma SL, Hammond JH, Hasan F, O’Toole GA (2010) Aminoglycoside resistance of Pseudomonas aeruginosa biofilms modulated by extracellular polysaccharide. Int Microbiol 13(4):207–212, Epub 16 Mar 2011

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YH, Lee Y, Kim S, Yeom J, Yeom S, Seok Kim B, Oh S, Park S, Jeon CO, Park W (2006) The role of periplasmic antioxidant enzymes (superoxide dismutase and thiol peroxidase) of the Shiga toxin-producing Escherichia coli O157:H7 in the formation of biofilms. Proteomics 6(23):6181–6193

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Hahn J-S, Franklin MJ, Stewart PS, Yoon J (2009) Tolerance of dormant and active cells in Pseudomonas aeruginosa PA01 biofilm to antimicrobial agents. J Antimicrob Chemother 63(1):129–135

    Article  CAS  PubMed  Google Scholar 

  • Kint CI, Verstraeten N, Fauvart M, Michiels J (2012) New-found fundamentals of bacterial persistence. Trends Microbiol 20(12):577–585

    Article  CAS  PubMed  Google Scholar 

  • Koh KS, Lam KW, Alhede M, Queck SY, Labbate M, Kjelleberg S, Rice SA (2007) Phenotypic diversification and adaptation of Serratia marcescens MG1 biofilm-derived morphotypes. J Bacteriol 189(1):119–130

    Article  CAS  PubMed  Google Scholar 

  • Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130(5):797–810, Epub 07 Sept 2007

    Article  CAS  PubMed  Google Scholar 

  • Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54(1):413–437

    Article  CAS  PubMed  Google Scholar 

  • Korch SB, Henderson TA, Hill TM (2003) Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol Microbiol 50(4):1199–1213

    Article  CAS  PubMed  Google Scholar 

  • Król JE, Nguyen HD, Rogers LM, Beyenal H, Krone SM, Top EM (2011) Increased transfer of a multidrug resistance plasmid in Escherichia coli biofilms at the air-liquid interface. Appl Environ Microbiol 77(15):5079–5088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumon H, Tomochika K-i, Matunaga T, Ogawa M, Ohmori H (1994) A sandwich cup method for the penetration assay of antimicrobial agents through Pseudomonas exopolysaccharides. Microbiol Immunol 38(8):615–619

    Article  CAS  PubMed  Google Scholar 

  • Kvist M, Hancock V, Klemm P (2008) Inactivation of efflux pumps abolishes bacterial biofilm formation. Appl Environ Microbiol 74(23):7376–7382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laham NA, Rohde H, Sander G, Fischer A, Hussain M, Heilmann C, Mack D, Proctor R, Peters G, Becker K, von Eiff C (2007) Augmented expression of polysaccharide intercellular adhesin in a defined Staphylococcus epidermidis mutant with the small-colony-variant phenotype. J Bacteriol 189(12):4494–4501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee S, Hinz A, Bauerle E, Angermeyer A, Juhaszova K, Kaneko Y, Singh PK, Manoil C (2009) Targeting a bacterial stress response to enhance antibiotic action. Proc Natl Acad Sci U S A 106(34):14570–14575, Epub 27 Aug 2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz AP, Williamson KS, Pitts B, Stewart PS, Franklin MJ (2008) Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 74(14):4463–4471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131

    CAS  PubMed  Google Scholar 

  • Lewis K (2010) Persister cells. Annu Rev Microbiol 64(1):357–372

    Article  CAS  PubMed  Google Scholar 

  • Liao J, Sauer K (2012) The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J Bacteriol 194(18):4823–4836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao J, Schurr MJ, Sauer K (2013) The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195(15):3352–3363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Roe F, Jesaitis A, Lewandowski Z (1998) Resistance of biofilms to the catalase inhibitor 3-amino-1,2, 4-triazole. Biotechnol Bioeng 59(2):156–162

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Helmann JD (2012) Analysis of the role of Bacillus subtilis sigma(M) in beta-lactam resistance reveals an essential role for c-di-AMP in peptidoglycan homeostasis. Mol Microbiol 83(3):623–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch SV, Dixon L, Benoit MR, Brodie EL, Keyhan M, Hu P, Ackerley DF, Andersen GL, Matin A (2007) Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob Agents Chemother 51(10):3650–3658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macfarlane EL, Kwasnicka A, Ochs MM, Hancock RE (1999) PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol Microbiol 34(2):305–316, Epub 17 Nov 1999

    Article  CAS  PubMed  Google Scholar 

  • Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426(6964):306–310

    Article  CAS  PubMed  Google Scholar 

  • Maira-Litran T, Allison DG, Gilbert P (2000) An evaluation of the potential of the multiple antibiotic resistance operon (mar) and the multidrug efflux pump acrAB to moderate resistance towards ciprofloxacin in Escherichia coli biofilms. J Antimicrob Chemother 45(6):789–795

    Article  CAS  PubMed  Google Scholar 

  • Maisonneuve E, Shakespeare LJ, Jorgensen MG, Gerdes K (2011) Bacterial persistence by RNA endonucleases. Proc Natl Acad Sci 108(32):13206–13211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisonneuve E, Castro-Camargo M, Gerdes K (2013) (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 154(5):1140–1150

    Article  CAS  PubMed  Google Scholar 

  • McEllistrem MC, Ransford JV, Khan SA (2007) Characterization of in vitro biofilm-associated pneumococcal phase variants of a clinically relevant serotype 3 clone. J Clin Microbiol 45(1):97–101

    Article  CAS  PubMed  Google Scholar 

  • McPhee JB, Lewenza S, Hancock REW (2003) Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol Microbiol 50(1):205

    Article  CAS  PubMed  Google Scholar 

  • Meissner A, Wild V, Simm R, Rohde M, Erck C, Bredenbruch F, Morr M, Römling U, Häussler S (2007) Pseudomonas aeruginosa cupA-encoded fimbriae expression is regulated by a GGDEF and EAL domain-dependent modulation of the intracellular level of cyclic diguanylate. Environ Microbiol 9(10):2475

    Article  CAS  PubMed  Google Scholar 

  • Mikkelsen H, Duck Z, Lilley KS, Welch M (2007) Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa. J Bacteriol 189(6):2411–2416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikkelsen H, Ball G, Giraud C, Filloux A (2009) Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLoS One 4(6):e6018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller PF, Sulavik MC (1996) Overlaps and parallels in the regulation of intrinsic multiple-antibiotic resistance in Escherichia coli. Mol Microbiol 21(3):441–448

    Article  CAS  PubMed  Google Scholar 

  • Mills E, Pultz IS, Kulasekara HD, Miller SI (2011) The bacterial second messenger c-di-GMP: mechanisms of signalling. Cell Microbiol 13(8):1122–1129

    Article  CAS  PubMed  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14(3):255–261

    Article  CAS  PubMed  Google Scholar 

  • Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4(11):e1000213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen D, Joshi-Datar A, Lepine F, Bauerle E, Olakanmi O, Beer K, McKay G, Siehnel R, Schafhauser J, Wang Y, Britigan BE, Singh PK (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334(6058):982–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54(1):49–79

    Article  PubMed  Google Scholar 

  • Otto K, Silhavy TJ (2002) Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc Natl Acad Sci U S A 99(4):2287–2292, Epub 07 Feb 2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68(1):223

    Article  CAS  PubMed  Google Scholar 

  • Parsek MR, Greenberg EP (2000) Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A 97(16):8789–8793, Epub 02 Aug 2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701, Epub 07 Oct 2003

    Article  CAS  PubMed  Google Scholar 

  • Patell S, Gu M, Davenport P, Givskov M, Waite RD, Welch M (2010) Comparative microarray analysis reveals that the core biofilm-associated transcriptome of Pseudomonas aeruginosa comprises relatively few genes. Environ Microbiol Rep 2(3):440–448, Epub 01 June 2010

    Article  CAS  PubMed  Google Scholar 

  • Patrauchan MA, Sarkisova SA, Franklin MJ (2007) Strain-specific proteome responses of Pseudomonas aeruginosa to biofilm-associated growth and to calcium. Microbiology 153(11):3838–3851

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Osorio AC, Williamson KS, Franklin MJ (2010) Heterogeneous rpoS and rhlR mRNA levels and 16S rRNA/rDNA (rRNA gene) ratios within Pseudomonas aeruginosa biofilms, sampled by laser capture microdissection. J Bacteriol 192(12):2991–3000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry RD, Bobrov AG, Kirillina O, Jones HA, Pedersen L, Abney J, Fetherston JD (2004) Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186(6):1638–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips NJ, Steichen CT, Schilling B, Post DMB, Niles RK, Bair TB, Falsetta ML, Apicella MA, Gibson BW (2012) Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins. PLoS One 7(6):e38303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole K (2012) Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol 20(5):227–234

    Article  CAS  PubMed  Google Scholar 

  • Potera C (1999) Forging a link between biofilms and disease. Science 283(5409):1837–1839

    Article  CAS  PubMed  Google Scholar 

  • Potrykus K, Cashel M (2008) (p)ppGpp: still magical? Annu Rev Microbiol 62:35–51, Epub 06 May 2008

    Article  CAS  PubMed  Google Scholar 

  • Potvin E, Sanschagrin F, Levesque RC (2008) Sigma factors in Pseudomonas aeruginosa. FEMS Microbiol Rev 32(1):38

    Article  CAS  PubMed  Google Scholar 

  • Proctor RA, von Eiff C, Kahl BC, Becker K, McNamara P, Herrmann M, Peters G (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4(4):295–305

    Article  CAS  PubMed  Google Scholar 

  • Raivio TL, Leblanc SK, Price NL (2013) The Escherichia coli Cpx envelope stress response regulates genes of diverse function that impact antibiotic resistance and membrane integrity. J Bacteriol 195(12):2755–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Resch A, Rosenstein R, Nerz C, Gotz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71(5):2663–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romling U (2012) Cyclic di-GMP, an established secondary messenger still speeding up. Environ Microbiol 14(8):1817–1829

    Article  PubMed  CAS  Google Scholar 

  • Romling U, Galperin MY, Gomelsky M (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol Mol Biol Rev 77(1):1–52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rotem E, Loinger A, Ronin I, Levin-Reisman I, Gabay C, Shoresh N, Biham O, Balaban NQ (2010) Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci U S A 107(28):12541–12546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder VJ, Chopra I, O’Neill AJ (2012) Increased mutability of Staphylococci in biofilms as a consequence of oxidative stress. PLoS One 7(10):e47695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184(4):1140–1154, Epub 25 Jan 2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaible B, Taylor CT, Schaffer K (2012) Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob Agents Chemother 56(4):2114–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schramm A, Larsen LH, Revsbech NP, Ramsing NB, Amann R, Schleifer KH (1996) Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol 62(12):4641–4647, Epub 01 Dec 1996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seneviratne CJ, Wang Y, Jin L, Wong SSW, Herath TDK, Samaranayake LP (2012) Unraveling the resistance of microbial biofilms: has proteomics been helpful? Proteomics 12(4–5):651–665

    Article  CAS  PubMed  Google Scholar 

  • Serra DO, Richter AM, Klauck G, Mika F, Hengge R (2013) Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 4(2):e00103–e00113

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53, Epub 14 June 2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shigeta M, Tanaka G, Komatsuzawa H, Sugai M, Suginaka H, Usui T (1997) Permeation of antimicrobial agents through Pseudomonas aeruginosa biofilms: a simple method. Chemotherapy 43(5):340–345

    Article  CAS  PubMed  Google Scholar 

  • Shrout JD, Tolker-Nielsen T, Givskov M, Parsek MR (2011) The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bull 36(5):367–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Ray P, Das A, Sharma M (2010) Enhanced production of exopolysaccharide matrix and biofilm by a menadione-auxotrophic Staphylococcus aureus small-colony variant. J Med Microbiol 59(5):521–527

    Article  CAS  PubMed  Google Scholar 

  • Sommerfeldt N, Possling A, Becker G, Pesavento C, Tschowri N, Hengge R (2009) Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiology 155(Pt 4):1318–1331

    Article  CAS  PubMed  Google Scholar 

  • Southey-Pillig CJ, Davies DG, Sauer K (2005) Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol 187(23):8114–8126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sriramulu DD, Lunsdorf H, Lam JS, Romling U (2005) Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54(Pt 7):667–676, Epub 11 June 2005

    Article  PubMed  Google Scholar 

  • Starkey M, Hickman JH, Ma L, Zhang N, De Long S, Hinz A, Palacios S, Manoil C, Kirisits MJ, Starner TD, Wozniak DJ, Harwood CS, Parsek MR (2009) Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol 191(11):3492–3503, Epub 31 Mar 2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staudinger BJ, Muller JF, Halldorsson S, Boles B, Angermeyer A, Nguyen D, Rosen H, Baldursson O, Gottfreethsson M, Guethmundsson GH, Singh PK (2014) Conditions associated with the cystic fibrosis defect promote chronic Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 189(7):812–824, Epub 29 Jan 2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternberg C, Christensen BB, Johansen T, Nielsen AT, Andersen JB, Givskov M, Molin S (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65(9):4108–4117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart PS (1996) Theoretical aspects of antibiotic diffusion into microbial biofilms. Antimicrob Agents Chemother 40(11):2517–2522, Epub 01 Nov 1996

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6(3):199–210, Epub 12 Feb 2008

    Article  CAS  PubMed  Google Scholar 

  • Stewart PS, Rayner J, Roe F, Rees WM (2001) Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J Appl Microbiol 91(3):525–532, Epub 15 Sept 2001

    Article  CAS  PubMed  Google Scholar 

  • Tremoulet F, Duche O, Namane A, Martinie B, Labadie JC, European Listeria Genome C (2002) Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiol Lett 210(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Tresse O, Jouenne T, Junter GA (1995) The role of oxygen limitation in the resistance of agar-entrapped, sessile-like Escherichia coli to aminoglycoside and β-lactam antibiotics. J Antimicrob Chemother 36(3):521–526

    Article  CAS  PubMed  Google Scholar 

  • Trunk K, Benkert B, Quack N, Munch R, Scheer M, Garbe J, Jansch L, Trost M, Wehland J, Buer J, Jahn M, Schobert M, Jahn D (2010) Anaerobic adaptation in Pseudomonas aeruginosa: definition of the Anr and Dnr regulons. Environ Microbiol 12(6):1719–1733, Epub 18 June 2010

    Article  CAS  PubMed  Google Scholar 

  • Tuomanen E, Cozens R, Tosch W, Zak O, Tomasz A (1986) The rate of killing of Escherichia coli by beta-lactam antibiotics is strictly proportional to the rate of bacterial growth. J Gen Microbiol 132(5):1297–1304

    CAS  PubMed  Google Scholar 

  • Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. Environ Microbiol 8(11):1997–2011

    Article  CAS  PubMed  Google Scholar 

  • van Alen T, Claus H, Zahedi RP, Groh J, Blazyca H, Lappann M, Sickmann A, Vogel U (2010) Comparative proteomic analysis of biofilm and planktonic cells of Neisseria meningitidis. Proteomics 10(24):4512–4521

    Article  PubMed  CAS  Google Scholar 

  • Vega NM, Allison KR, Khalil AS, Collins JJ (2012) Signaling-mediated bacterial persister formation. Nat Chem Biol 8(5):431–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinella D, Albrecht C, Cashel M, D’Ari R (2005) Iron limitation induces SpoT-dependent accumulation of ppGpp in Escherichia coli. Mol Microbiol 56(4):958–970

    Article  CAS  PubMed  Google Scholar 

  • von Gotz F, Haussler S, Jordan D, Saravanamuthu SS, Wehmhoner D, Strussmann A, Lauber J, Attree I, Buer J, Tummler B, Steinmetz I (2004) Expression analysis of a highly adherent and cytotoxic small colony variant of Pseudomonas aeruginosa isolated from a lung of a patient with cystic fibrosis. J Bacteriol 186(12):3837–3847, Epub 04 June 2004

    Article  CAS  Google Scholar 

  • Vrany JD, Stewart PS, Suci PA (1997) Comparison of recalcitrance to ciprofloxacin and levofloxacin exhibited by Pseudomonas aeruginosa biofilms displaying rapid-transport characteristics. Antimicrob Agents Chemother 41(6):1352–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187(18):6571–6576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47(1):317–323, Epub 25 Dec 2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346, Epub 11 Oct 2005

    Article  CAS  PubMed  Google Scholar 

  • Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70(10):6188–6196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413(6858):860–864, Epub 26 Oct 2001

    Article  CAS  PubMed  Google Scholar 

  • Wijman JGE, de Leeuw PPLA, Moezelaar R, Zwietering MH, Abee T (2007) Air-liquid interface biofilms of Bacillus cereus: formation, sporulation, and dispersion. Appl Environ Microbiol 73(5):1481–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood TK, Knabel SJ, Kwan BW (2013) Bacterial persister cell formation and dormancy. Appl Environ Microbiol 79(23):7116–7121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak DJ, Wyckoff TJ, Starkey M, Keyser R, Azadi P, O’Toole GA, Parsek MR (2003) Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100(13):7907–7912, Epub 18 June 2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu KD, Stewart PS, Xia F, Huang C-T, McFeters GA (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64(10):4035–4039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu KD, Franklin MJ, Park CH, McFeters GA, Stewart PS (2001) Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiol Lett 199(1):67–71

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Inouye M (2011) Regulation of growth and death in Escherichia coli by toxin‚ Äìantitoxin systems. Nat Rev Microbiol 9(11):779–790

    Article  CAS  PubMed  Google Scholar 

  • Yasuda H, Ajiki Y, Koga T, Kawada H, Yokota T (1993) Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin. Antimicrob Agents Chemother 37(9):1749–1755, Epub 01 Sept 1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeom J, Imlay JA, Park W (2010) Iron homeostasis affects antibiotic-mediated cell death in Pseudomonas species. J Biol Chem 285(29):22689–22695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci 96(7):4028–4033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Griffin EF, Moreau-Marquis S, Schwartzman JD, Stanton BA, O’Toole GA (2012) In vitro evaluation of tobramycin and aztreonam versus Pseudomonas aeruginosa biofilms on cystic fibrosis-derived human airway epithelial cells. J Antimicrob Chemother 67(11):2673–2681, Epub 31 July 2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zegans ME, Wozniak D, Griffin E, Toutain-Kidd CM, Hammond JH, Garfoot A, Lam JS (2012) Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80. Antimicrob Agents Chemother 56(8):4112–4122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeiler HJ (1985) Evaluation of the in vitro bactericidal action of ciprofloxacin on cells of Escherichia coli in the logarithmic and stationary phases of growth. Antimicrob Agents Chemother 28(4):524–527, Epub 01 Oct 1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Mah T-F (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190(13):4447–4452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Fritsch M, Hammond L, Landreville R, Slatculescu C, Colavita A, Mah T-F (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One 8(4):e61625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zogaj X, Nimtz M, Rohde M, Bokranz W, Romling U (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39(6):1452–1463, Epub 22 Mar 2001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey McKay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this entry

Cite this entry

McKay, G., Nguyen, D. (2017). Antibiotic Resistance and Tolerance in Bacterial Biofilms. In: Berghuis, A., Matlashewski, G., Wainberg, M., Sheppard, D. (eds) Handbook of Antimicrobial Resistance. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0694-9_11

Download citation

Publish with us

Policies and ethics