Encyclopedia of Database Systems

Living Edition
| Editors: Ling Liu, M. Tamer Özsu

Constraint Query Languages

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4899-7993-3_1240-2

Definition

A constraint query language is a query language for constraint databases.

Historical Background

The field of constraint databases was initiated in 1990 in a paper by Kanellakis, Kuper, and Revesz [1]. The goal was to obtain a database-style, optimizable version of constraint logic programming. It grew out of the research on datalog and constraint logic programming. The key idea was that the notion of tuple in a relational database could be replaced by a conjunction of constraints from an appropriate language and that many of the features of the relational model could then be extended in an appropriate way. In particular, standard query languages such as those based on first-order logic and datalog could be extended to such a model.

It soon became clear, however, that recursive constraint query languages led to noneffective languages. The focus therefore shifted to non-recursive constraint query languages. The standard query language is the constraint relational calculus (or...

This is a preview of subscription content, log in to check access

Recommended Reading

  1. 1.
    Kanellakis PC, Kuper GM, Revesz PZ. Constraint query languages. J Comput Syst Sci. 1995;51(1):26–52.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kuper GM, Libkin L, Paredaens J. Constraint databases. Berlin: Springer; 2000.CrossRefMATHGoogle Scholar
  3. 3.
    Revesz PZ. Introduction to constraint databases. New York: Springer; 2002.MATHGoogle Scholar
  4. 4.
    Benedikt M, Libkin L. Relational queries over interpreted structures. J ACM. 2000;47(4):644–80.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Grumbach S, Su J. Queries with arithmetical constraints. Theor Comput Sci. 1997;173(1):151–81.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gyssens M, Van den Bussche J, Van Gucht D. Complete geometric query languages. J Comput Syst Sci. 1999;58(3):483–511.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kuijpers B, Paredaens J, Van den Bussche J. Topological elementary equivalence of closed semi-algebraic sets in the real plane. J Symb Log. 2000;65(4):1530–55.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Benedikt M, Kuijpers B, Löding C, Van den Bussche J, Wilke T. A characterization of first-order topological properties of planar spatial data. J. ACM. 2006;53(2):273–305.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Geerts F, Kuijpers B, Van den Bussche J. Linearization and completeness results for terminating transitive closure queries on spatial databases. SIAM J Comput. 2006;35(6):1386–439.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Benedikt M, Libkin L. Aggregate operators in constraint query languages. J Comput Syst Sci. 2002;64(3):628–54.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Benedikt M, Grohe M, Libkin L, Segoufin L. Reachability and connectivity queries in constraint databases. J Comput Syst Sci. 2003;66(1):169–206.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Van den Bussche J. Constraint databases. A tutorial introduction ACM SIGMOD Record. 2000;29(3):44–51.CrossRefMATHGoogle Scholar
  13. 13.
    Libkin L. Embedded finite models and constraint databases. In: Grädel E, Kolaitis PG, Libkin L, Marx M, Spencer J, Vardi MY, Venema Y, Weinstein S, editors. Finite Model Theory and Its Applications. Berlin/Heidelberg: Springer; 2007.Google Scholar
  14. 14.
    Geerts F, Kuijpers B. Real algebraic geometry and constraint databases. In: Aiello M, Pratt-Hartmann I, Van Benthem J, editors. Handbook of Spatial Logics. Dordrecht: Springer; 2007.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.University of AntwerpAntwerpBelgium